Blow-up criteria of smooth solutions to the three-dimensional magneto-micropolar fluid equations

Article metrics

• 1040 Accesses

• 2 Citations

Abstract

In this short article, the initial value problem for the 3D magneto-micropolar fluid equations is investigated. Some new blow-up criteria of smooth solutions in terms of the vorticity and the velocity in a homogenous Besov space are established, respectively.

Introduction

In the short article, we consider the initial value problem for three-dimensional magneto-micropolar fluid equations

$$\left \{ \textstyle\begin{array}{@{}l} \partial_{t}u-(\mu+\chi)\Delta u+u\cdot\nabla u-b\cdot \nabla b+\nabla(p+\frac{1}{2}|b|^{2})-\chi\nabla\times v=0, \\ \partial_{t} v-\gamma\Delta v-\kappa\nabla\nabla\cdot v+2\chi v+u\cdot\nabla v-\chi\nabla\times u=0, \\ \partial_{t} b-\nu\Delta b+u\cdot\nabla b-b\cdot\nabla u=0, \\ \nabla\cdot u=0, \qquad \nabla\cdot b=0, \end{array}\displaystyle \right .$$
(1.1)

with the initial value

$$t=0: \quad u=u_{0}(x),\qquad v=v_{0}(x), \qquad b=b_{0}(x),$$
(1.2)

where $$u(t, x)$$, $$v(t, x)$$, $$b(t, x)$$ and $$p(t, x)$$ denote the velocity of the fluid, the micro-rotational velocity, magnetic field and hydrostatic pressure, respectively. μ is the kinematic viscosity, χ is the vortex viscosity, γ and κ are spin viscosities, and $$\frac{1}{\nu}$$ is the magnetic Reynold.

Lots of physicists and mathematicians have studied the incompressible magneto-micropolar fluid equations because the equations have rich phenomena, important physical background and mathematical complexity and challenges. On the one hand, for well-posedness of solutions to problem (1.1), (1.2), we refer to  and  and the references cited therein. On the other hand, for the blow-up criteria of smooth solutions and regularity criteria of weak solutions, we refer to  and [5, 9, 10].

If $$b=0$$, (1.1) reduces to micropolar fluid equations. The micropolar fluid equations were first proposed by Eringen  (see also ). The study of the micropolar fluid equations attracts lots of physicists and mathematicians’ attention, and many interesting results have been established. For instance, we refer to  and . If both $$v=0$$ and $$\chi=0$$, then equations (1.1) reduce to being the magneto-hydrodynamic (MHD) equations. The MHD equations govern the dynamics of the velocity and magnetic fields in electrically conducting fluids such as plasmas, liquid metals, salt water, etc. (see ). The field of MHD was initiated by Hannes Alfvén, for which he received the Nobel Prize in physics in 1970. For global well-posedness of solutions to the MHD equations, there are a few results, we refer to [21, 22]. When the magnetic fields are purely swirling and prependicular to the velocity fields, Lei proved global existence of solutions. Wang and Wang proved global existence of solutions in the critical space $$\chi ^{-1}$$, which was introduced in  and used in studying the global well-posedness of the incompressible Navier-Stokes equations by Lei and Lin  provided that the norm of initial norm of the initial value are bounded exactly by the minimal value of the viscosity coefficients. We also emphasize the various regularity criteria and blow-up criteria in  and . Regularity criterion of weak solutions to the MHD equations in terms of the vorticity was established in . Lei and Zhou  derived a criterion for the breakdown of classical solutions to the incompressible magneto-hydrodynamic equations with zero viscosity and positive resistivity.

In the absence of global well-posedness, the development of blow-up/non blow-up theory is of major importance for both theoretical and practical purposes. The purpose of this paper is to establish the blow-up criteria of smooth solutions to (1.1), (1.2). The results obtained in this paper extend the MHD results in  to complex fluid equations (1.1). We state our main results as follows.

Theorem 1.1

Assume that $$u_{0}, v_{0}, b_{0} \in H^{m}(\mathbb{R}^{3})$$, $$m\geq3$$ with $$\nabla\cdot u_{0}=0$$, $$\nabla\cdot b_{0}=0$$. Let $$(u, v, b)$$ be a smooth solution to problem (1.1), (1.2) for $$0\leq t< T$$. If u satisfies

$$\int^{T}_{0}\bigl\| \nabla\times u(t) \bigr\| ^{2}_{\dot{B}^{-1}_{\infty, \infty }}\,dt< \infty,$$
(1.3)

then the solution $$(u, v, b)$$ can be extended beyond $$t=T$$.

We have the following corollary immediately.

Corollary 1.1

Assume that $$u_{0}, v_{0}, b_{0} \in H^{m}(\mathbb{R}^{3})$$, $$m\geq3$$ with $$\nabla\cdot u_{0}=0$$, $$\nabla\cdot b_{0}=0$$. Let $$(u, v, b)$$ be a smooth solution to problem (1.1), (1.2) for $$0\leq t< T$$. Suppose that T is the maximal existence time, then

$$\int^{T}_{0}\bigl\| \nabla\times u(t) \bigr\| ^{2}_{\dot{B}^{-1}_{\infty, \infty }}\,dt=\infty.$$
(1.4)

Noticing the equivalence of the norm $$\|\nabla\times u\|_{\dot {B}^{-1}_{\infty, \infty}}$$ and $$\| u(t)\|_{\dot{B}^{0}_{\infty, \infty }}$$, from Theorem  1.1, we immediately obtain the following.

Corollary 1.2

Assume that $$u_{0}, v_{0}, b_{0} \in H^{m}(\mathbb{R}^{3})$$, $$m\geq3$$ with $$\nabla\cdot u_{0}=0$$, $$\nabla\cdot b_{0}=0$$. Let $$(u, v, b)$$ be a smooth solution to problem (1.1), (1.2) for $$0\leq t< T$$. If u satisfies

$$\int^{T}_{0}\bigl\| u(t) \bigr\| ^{2}_{\dot{B}^{0}_{\infty, \infty}}\,dt< \infty,$$
(1.5)

then the solution $$(u, v, b)$$ can be extended beyond $$t=T$$.

Corollary 1.2 implies the following result.

Corollary 1.3

Assume that $$u_{0}, v_{0}, b_{0} \in H^{m}(\mathbb{R}^{3})$$, $$m\geq3$$ with $$\nabla\cdot u_{0}=0$$, $$\nabla\cdot b_{0}=0$$. Let $$(u, v, b)$$ be a smooth solution to problem (1.1), (1.2) for $$0\leq t< T$$. Suppose that T is the maximal existence time, then

$$\int^{T}_{0}\bigl\| u(t) \bigr\| ^{2}_{\dot{B}^{0}_{\infty, \infty}}\,dt=\infty.$$
(1.6)

The paper is organized as follows. We first state some function spaces and important inequalities in Section 2. Then we prove our main results in Section 3.

Preliminaries

Let $$\mathcal{S}(\mathbb{R}^{n})$$ be the Schwartz class of rapidly decreasing functions. Given $$f \in\mathcal{S}(\mathbb{R}^{n})$$, its Fourier transform $$\mathcal{F}f=\hat{f}$$ is defined by

$$\hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-ix\cdot\xi}f(x)\,dx,$$

and for any given $$g \in\mathcal{S}(\mathbb{R}^{n})$$, its inverse Fourier transform $$\mathcal{F}^{-1}g=\check{g}$$ is defined by

$$\check{g}(x)=\int_{\mathbb{R}^{n}} e^{ix\cdot\xi}g(\xi)\,d\xi.$$

Firstly, we recall the Littlewood-Paley decomposition. Choose a nonnegative radial function $$\phi\in \mathcal{S}(\mathbb{R}^{n})$$, supported in $$\mathcal{C}=\{ \xi\in\mathbb{R}^{n}: \frac{3}{4}\leq|\xi|\leq \frac{8}{3}\}$$, such that

$$\sum^{\infty}_{k=-\infty}\phi\bigl(2^{-k} \xi\bigr)=1, \quad \forall\xi\in \mathbb{R}^{n}\backslash\{0\}.$$

The frequency localization operator is defined by

$$\triangle_{k}f =\int_{\mathbb{R}^{n}}\check{\phi}(y)f \bigl(x-2^{-k}y\bigr)\,dy.$$

Next we recall the definition of homogeneous function spaces (see ). For $$(p, q)\in[1, \infty]^{2}$$ and $$s \in\mathbb{R}$$, the homogeneous Besov space $$\dot{B}^{s}_{p, q}$$ is defined as the set of f up to polynomials such that

$$\|f\|_{\dot{B}^{s}_{p,q}} \triangleq\bigl\Vert 2^{ks}\| \triangle_{k}f\| _{L^{p}}\bigr\Vert _{l^{q}(\mathbb{Z})}< \infty.$$

$$BMO$$ denotes the homogenous space of bounded mean oscillations associated with the norm

$$\|f\|_{BMO}\triangleq\sup_{x\in\mathbb{R}^{n}, R>0}\frac {1}{|B_{R}(x)|}\int _{B_{R}(x)}\biggl\vert f(y) -\frac{1}{|B_{R}(y)|}\int _{B_{R}(y)}f(z)\,dz\biggr\vert \,dy.$$

The following inequality is the well-known Gagliardo-Nirenberg inequality.

Lemma 2.1

Let j, m be any integers satisfying $$0 \leq j < m$$, and let $$1 \leq q, r \leq\infty$$, and $$p\in\mathbb{R}$$, $$\frac{j}{m}\leq\theta\leq1$$ such that

$$\frac{1}{p}-\frac{j}{n}=\theta\biggl(\frac{1}{r}- \frac{m}{n}\biggr)+(1-\theta)\frac{1}{q}.$$

Then, for all $$f\in L^{q}(\mathbb{R}^{n})\cap W^{m, r}(\mathbb{R}^{n})$$, there is a positive constant C depending only on n, m, j, q, r, θ such that the following inequality holds:

$$\bigl\| \nabla^{j}f\bigr\| _{L^{p}}\leq C\|f \|^{1-\theta}_{L^{q}}\bigl\| \nabla^{m}f\bigr\| ^{\theta}_{L^{r}}$$
(2.1)

with the following exception: if $$1 < r < \infty$$ and $$m-j-\frac{n}{r}$$ is a nonnegative integer, then (2.1) holds only for satisfying $$\frac{j}{m}\leq \theta<1$$.

In order to prove our main result, we need the following lemma, which may be found in .

Lemma 2.2

There exists a positive constant C such that

$$\|f\|_{BMO}\leq C\bigl(1+\|f\|_{\dot{B}^{0}_{\infty, \infty}}\sqrt{\ln \bigl(e+\bigl\| \nabla^{3}f\bigr\| _{L^{2}}\bigr)} \bigr).$$
(2.2)

We also need the following lemma, which may be found in .

Lemma 2.3

Assume that f, g satisfy $$\nabla\cdot f=0$$ and $$\nabla\times g=0$$. Then

$$\|fg\|_{\mathcal{H}^{1}} \leq C\|f\|_{L^{2}}\|g \|_{L^{2}}.$$
(2.3)

Proof of main results

Proof of Theorem 1.1

It follows from (1.1) and energy estimate that

\begin{aligned} &\bigl\| u(t)\bigr\| ^{2}_{L^{2}}+\bigl\| v(t) \bigr\| ^{2}_{L^{2}}+\bigl\| b(t)\bigr\| ^{2}_{L^{2}}+2\int^{t}_{0}\bigl(\mu\bigl\| \nabla u(\tau) \bigr\| ^{2}_{L^{2}}+ \gamma\bigl\| \nabla v(\tau)\bigr\| ^{2}_{L^{2}} \bigr)\,d\tau \\ &\qquad{}+ 2\int^{t}_{0}\bigl(\kappa\bigl\| \nabla \cdot v(\tau)\bigr\| ^{2}_{L^{2}}+\frac{\chi}{2}\bigl\| v(\tau)\bigr\| ^{2}_{L^{2}}+ \nu\bigl\| \nabla b(\tau)\bigr\| ^{2}_{L^{2}}\bigr)\,d\tau \\ &\quad\leq\|u_{0}\| ^{2}_{L^{2}}+\| v_{0} \|^{2}_{L^{2}}+\|b_{0}\|^{2}_{L^{2}}. \end{aligned}
(3.1)

Applying to the first equation in (1.1) and multiplying the resulting equation by u and integrating with respect to x on $$\mathbb{R}^{3}$$, using integration by parts, we obtain

\begin{aligned} &\frac{1}{2}\frac{d}{dt}\bigl\| \nabla u(t) \bigr\| ^{2}_{L^{2}}+(\mu +\chi)\bigl\| \nabla^{2} u(t) \bigr\| ^{2}_{L^{2}} \\ &\quad=- \int_{\mathbb{R}^{3}}\nabla(u\cdot\nabla u)\cdot\nabla u \,dx \\ &\qquad{} +\int_{\mathbb{R}^{3}}\nabla(b\cdot\nabla b)\cdot\nabla u \,dx+\chi\int_{\mathbb{R}^{3}}\nabla(\nabla\times v)\cdot\nabla u\,dx. \end{aligned}
(3.2)

Similarly, we get

\begin{aligned} &\frac{1}{2}\frac{d}{dt}\bigl\| \nabla v(t) \bigr\| ^{2}_{L^{2}}+\gamma \bigl\| \nabla^{2} v(t) \bigr\| ^{2}_{L^{2}}+\kappa\|\nabla\cdot\nabla v\|^{2}_{L^{2}}+2 \chi \|\nabla v\|^{2}_{L^{2}} \\ &\quad= \chi\int_{\mathbb{R}^{3}} \nabla(\nabla\times u) \cdot \nabla v \,dx-\int_{\mathbb{R}^{3}} \nabla(u \cdot\nabla v)\cdot\nabla v \,dx \end{aligned}
(3.3)

and

$$\frac{1}{2}\frac{d}{dt}\bigl\| \nabla b(t) \bigr\| ^{2}_{L^{2}}+\nu\bigl\| \nabla^{2} b(t) \bigr\| ^{2}_{L^{2}} = -\int_{\mathbb{R}^{3}} \nabla (u \cdot \nabla b)\cdot\nabla b \,dx+ \int_{\mathbb{R}^{3}} \nabla(b \cdot \nabla u)\cdot\nabla b \,dx.$$
(3.4)

Summing up (3.2)-(3.4), we deduce that

\begin{aligned} & \frac{1}{2} \frac{d}{dt}\bigl(\bigl\| \nabla u(t) \bigr\| ^{2}_{L^{2}}+\bigl\| \nabla v(t)\bigr\| ^{2}_{L^{2}}+\bigl\| \nabla b(t)\bigr\| ^{2}_{L^{2}}\bigr)+(\mu+\chi)\bigl\| \nabla^{2} u(t)\bigr\| ^{2}_{L^{2}} \\ &\qquad{}+ \gamma\bigl\| \nabla^{2} v(t)\bigr\| ^{2}_{L^{2}}+ \kappa\|\nabla\cdot \nabla v\|^{2}_{L^{2}}+2\chi\|\nabla v \|^{2}_{L^{2}}+\nu\bigl\| \nabla^{2} b(t)\bigr\| ^{2}_{L^{2}} \\ &\quad= - \int_{\mathbb{R}^{3}}\nabla(u\cdot\nabla u)\cdot \nabla u \,dx+\int_{\mathbb{R}^{3}}\nabla(b\cdot\nabla b)\cdot\nabla u \,dx+\chi \int_{\mathbb{R}^{3}}\nabla(\nabla\times v)\cdot\nabla u\,dx \\ &\qquad{} +\chi\int_{\mathbb{R}^{3}} \nabla(\nabla\times u) \cdot \nabla v\,dx-\int_{\mathbb{R}^{3}} \nabla(u \cdot\nabla v)\cdot\nabla v\,dx - \int_{\mathbb{R}^{3}} \nabla(u \cdot\nabla b)\cdot\nabla b\,dx \\ &\qquad{} + \int_{\mathbb{R}^{3}} \nabla(b \cdot\nabla u)\cdot \nabla b \,dx. \end{aligned}
(3.5)

By integration by parts and the Cauchy inequality, we obtain

$$\chi\int_{\mathbb{R}^{3}}\nabla(\nabla\times v)\cdot \nabla u\,dx+ \chi\int_{\mathbb{R}^{3}} \nabla(\nabla\times u) \cdot\nabla v\,dx \leq\chi\bigl\| \nabla^{2} u\bigr\| ^{2}_{L^{2}}+\frac{3\chi}{2}\| \nabla v\|^{2}_{L^{2}}.$$
(3.6)

Using integration by parts, (2.3) and the Cauchy inequality, we arrive at

\begin{aligned} - \int_{\mathbb{R}^{3}}\nabla(u\cdot\nabla u)\cdot\nabla u \,dx = & \int_{\mathbb{R}^{3}} u_{i}\partial_{i}u_{j} \partial ^{2}_{k}u_{j}\,dx \\ = & {-}\int_{\mathbb{R}^{3}} \partial_{k}(u_{i} \partial _{i}u_{j})\partial_{k}u_{j}\,dx \\ = & {-}\int_{\mathbb{R}^{3}} \partial_{k}u_{i} \partial _{i}u_{j}\partial_{k}u_{j}\,dx \\ = & \int_{\mathbb{R}^{3}} \partial_{k}(\partial_{k}u_{i} \partial _{i}u_{j})u_{j}\,dx \\ = & \int_{\mathbb{R}^{3}} \partial_{k}u_{i} \partial_{k}\partial _{i}u_{j}u_{j}\,dx \\ = & \int_{\mathbb{R}^{3}} \partial_{k}u\cdot\nabla\partial _{k} u\cdot u\,dx \\ \leq& C\|u\|_{BMO}\|\partial_{k}u\cdot\nabla \partial_{k} u\|_{\mathcal{H}^{1}} \\ \leq& C\|u\|_{BMO}\|\nabla u\|_{L^{2}} \bigl\| \nabla^{2} u\bigr\| _{L^{2}} \\ \leq& \frac{\mu}{2} \bigl\| \nabla^{2}u\bigr\| ^{2}_{L^{2}}+C \|u\| ^{2}_{BMO}\|\nabla u\|^{2}_{L^{2}}, \end{aligned}
(3.7)

where we have used $$\nabla\cdot\partial_{k}u=0$$ and $$\nabla\times\nabla \partial_{k}u=0$$.

Integration by parts, $$\nabla\cdot\partial_{i}b=0$$, $$\nabla\times\nabla \partial_{i}b=0$$ and $$\nabla\cdot\partial^{2}_{i}b=0$$, $$\nabla\times\nabla b=0$$, (2.3) and the Cauchy inequality give

\begin{aligned} & \int_{\mathbb{R}^{3}}\nabla(b\cdot\nabla b)\cdot \nabla u \,dx+\int_{\mathbb{R}^{3}} \nabla(b \cdot\nabla u)\cdot\nabla b \,dx \\ &\quad= \int_{\mathbb{R}^{3}}\bigl[\partial_{i}(b_{k} \partial _{k}b_{j})\partial_{i}u_{j}+ \partial_{i}(b_{k}\partial_{k}u_{j}) \partial_{i}b_{j}\bigr]\,dx \\ &\quad= \int_{\mathbb{R}^{3}}[\partial_{i}b_{k} \partial_{k}b_{j}\partial _{i}u_{j}+ \partial_{i}b_{k}\partial_{k}u_{j} \partial_{i}b_{j}]\,dx \\ &\quad= -\int_{\mathbb{R}^{3}}u_{j}\bigl[ \partial_{i}b_{k}\partial _{k} \partial_{i} b_{j}+\partial^{2}_{i}b_{k} \partial_{k}b_{j}+\partial_{i} b_{k} \partial_{i} \partial_{k}b_{j}\bigr]\,dx \\ &\quad= -\int_{\mathbb{R}^{3}}u\cdot\bigl[(\partial_{i}b \cdot\nabla )\cdot\partial_{i} b+\bigl(\partial^{2}_{i}b \cdot\nabla\bigr)b+(\partial_{i} b\cdot \nabla)\partial_{i} b\bigr]\,dx \\ &\quad= C\|u\|_{BMO}\|\partial_{i}b\cdot\nabla\cdot\partial _{i} b\|_{\mathcal{H}^{1}}+ C\|u\|_{BMO}\bigl\| \partial^{2}_{i}b \cdot\nabla b\bigr\| _{\mathcal{H}^{1}}+C\|u\|_{BMO}\|\partial_{i} b \cdot\nabla\partial_{i} b\| _{\mathcal{H}^{1}} \\ &\quad\leq \frac{\nu}{4} \bigl\| \nabla^{2}b\bigr\| ^{2}_{L^{2}}+C \|u\| ^{2}_{BMO}\|\nabla b\|^{2}_{L^{2}}. \end{aligned}
(3.8)

By the method to obtain (3.16) in , we have

$$- \int_{\mathbb{R}^{3}}\nabla(u\cdot\nabla v)\cdot\nabla v \,dx\leq\frac {\gamma}{2} \bigl\| \nabla^{2}v\bigr\| ^{2}_{L^{2}}+C \|u\|^{2}_{BMO}\|\nabla v\|^{2}_{L^{2}}.$$
(3.9)

Similar to the proof of (3.9), we arrive at

$$- \int_{\mathbb{R}^{3}}\nabla(u\cdot\nabla b)\cdot\nabla b \,dx\leq \frac {\nu}{4}\bigl\| \nabla^{2}b\bigr\| ^{2}_{L^{2}}+C \|u\|^{2}_{BMO}\|\nabla b\|^{2}_{L^{2}}.$$
(3.10)

Inserting (3.6)-(3.10) into (3.5) yields

\begin{aligned} & \frac{d}{dt}\bigl(\bigl\| \nabla u(t)\bigr\| ^{2}_{L^{2}}+ \bigl\| \nabla v(t)\bigr\| ^{2}_{L^{2}}+\bigl\| \nabla b(t)\bigr\| ^{2}_{L^{2}} \bigr)+ \bigl\| \nabla^{2} u(t)\bigr\| ^{2}_{L^{2}} \\ &\qquad{} + \bigl\| \nabla^{2} v(t)\bigr\| ^{2}_{L^{2}}+\|\nabla \cdot\nabla v\| ^{2}_{L^{2}}+\bigl\| \nabla v(t)\bigr\| ^{2}_{L^{2}}+ \bigl\| \nabla^{2} b(t)\bigr\| ^{2}_{L^{2}} \\ &\quad\leq C\|u\|^{2}_{BMO}\bigl(\bigl\| \nabla u(t) \bigr\| ^{2}_{L^{2}}+\bigl\| \nabla v(t)\bigr\| ^{2}_{L^{2}}+\bigl\| \nabla b(t)\bigr\| ^{2}_{L^{2}}\bigr). \end{aligned}
(3.11)

Owing to (1.3), we know that for any small constant $$\varepsilon>0$$, there exists $$T_{\star}< T$$ such that

$$\int^{T}_{T_{\star}}\bigl\| \nabla\times u(t) \bigr\| ^{2}_{\dot{B}^{-1}_{\infty, \infty }}\,dt\leq\varepsilon.$$
(3.12)

Let

$$X(t)=\sup_{T_{\star}\leq\tau\leq t}\bigl(\bigl\| \nabla^{3}u( \tau)\bigr\| ^{2}_{L^{2}}+\bigl\| \nabla^{3}v(\tau) \bigr\| ^{2}_{L^{2}}+\bigl\| \nabla ^{3}b(\tau) \bigr\| ^{2}_{L^{2}}\bigr),\quad T_{\star}\leq t< T.$$
(3.13)

Integrating (3.11) with respect to t, we have

\begin{aligned} &\bigl\| \nabla u(t)\bigr\| ^{2}_{L^{2}}+\bigl\| \nabla v(t) \bigr\| ^{2}_{L^{2}}+\bigl\| \nabla b(t)\bigr\| ^{2}_{L^{2}}+\int ^{t}_{T_{*}}\bigl(\bigl\| \nabla^{2} u(\tau) \bigr\| ^{2}_{L^{2}}+ \bigl\| \nabla^{2} v(\tau) \bigr\| ^{2}_{L^{2}}\bigr)\,d\tau \\ &\qquad{}+ \int^{t}_{T_{*}}\bigl(\bigl\| \nabla\cdot\nabla v(\tau)\bigr\| ^{2}_{L^{2}}+\bigl\| \nabla v(\tau)\bigr\| ^{2}_{L^{2}}+ \bigl\| \nabla^{2} b(\tau)\bigr\| ^{2}_{L^{2}}\bigr)\,d\tau \\ &\quad\leq \bigl(\bigl\| u(T_{*})\bigr\| ^{2}_{L^{2}}+ \bigl\| v(T_{*})\bigr\| ^{2}_{L^{2}}+\bigl\| b(T_{*}) \bigr\| ^{2}_{L^{2}}\bigr)\exp\biggl\{ C\int^{t}_{T_{*}} \bigl\| u(\tau )\bigr\| ^{2}_{BMO}\,d\tau\biggr\} \\ &\quad\leq \bigl(\bigl\| u(T_{*})\bigr\| ^{2}_{L^{2}}+ \bigl\| v(T_{*})\bigr\| ^{2}_{L^{2}}+\bigl\| b(T_{*}) \bigr\| ^{2}_{L^{2}}\bigr) \\ &\qquad{}\times\exp\biggl\{ C\int^{t}_{T_{*}}\bigl[1+ \bigl\| u(\tau)\bigr\| ^{2}_{\dot{B}^{0}_{\infty, \infty}} \ln\bigl(e+\bigl\| \nabla^{3}u(\tau) \bigr\| _{L^{2}}\bigr)\bigr]\,d\tau\biggr\} \\ &\quad\leq \bigl(\bigl\| u(T_{*})\bigr\| ^{2}_{L^{2}}+ \bigl\| v(T_{*})\bigr\| ^{2}_{L^{2}}+\bigl\| b(T_{*}) \bigr\| ^{2}_{L^{2}}\bigr)\exp\biggl\{ C \ln\bigl(e+X(t)\bigr) \int ^{t}_{T_{*}}\bigl\| u(\tau)\bigr\| ^{2}_{\dot{B}^{0}_{\infty, \infty}} \,d\tau\biggr\} \\ &\quad\leq \bigl(\bigl\| u(T_{*})\bigr\| ^{2}_{L^{2}}+ \bigl\| v(T_{*})\bigr\| ^{2}_{L^{2}}+\bigl\| b(T_{*}) \bigr\| ^{2}_{L^{2}}\bigr)\exp\biggl\{ C \ln\bigl(e+X(t)\bigr) \int ^{t}_{T_{*}}\bigl\| \nabla u(\tau)\bigr\| ^{2}_{\dot{B}^{-1}_{\infty, \infty}} \,d\tau\biggr\} \\ &\quad\leq \bigl(\bigl\| u(T_{*})\bigr\| ^{2}_{L^{2}}+ \bigl\| v(T_{*})\bigr\| ^{2}_{L^{2}}+\bigl\| b(T_{*}) \bigr\| ^{2}_{L^{2}}\bigr) \\ &\qquad{}\times\exp\biggl\{ C \ln\bigl(e+X(t)\bigr) \int ^{t}_{T_{*}}\bigl\| \nabla\times u(\tau) \bigr\| ^{2}_{\dot{B}^{-1}_{\infty, \infty}}\,d\tau\biggr\} \\ &\quad\leq C\bigl(e+X(t)\bigr)^{C_{1}\varepsilon}. \end{aligned}
(3.14)

We apply $$\nabla^{m}$$ to the first equation in (1.1) and multiply the resulting equation by $$\nabla^{m} u$$ and integrate with respect to x on $$\mathbb{R}^{3}$$, use integration by parts, we obtain

\begin{aligned} &\frac{1}{2}\frac{d}{dt}\bigl\| \nabla^{m} u(t) \bigr\| ^{2}_{L^{2}}+(\mu +\chi)\bigl\| \nabla^{m+1} u(t) \bigr\| ^{2}_{L^{2}} \\ &\quad=- \int_{\mathbb{R}^{3}}\nabla^{m}(u\cdot\nabla u)\cdot \nabla^{m} u \,dx \\ &\qquad{}+\int_{\mathbb{R}^{3}}\nabla^{m}(b\cdot\nabla b)\cdot \nabla^{m} u \,dx+\chi\int_{\mathbb{R}^{3}}\nabla^{m} (\nabla\times v)\cdot \nabla^{m} u\,dx. \end{aligned}
(3.15)

Similarly, we deduce that

\begin{aligned} &\frac{1}{2}\frac{d}{dt}\bigl\| \nabla^{m} v(t) \bigr\| ^{2}_{L^{2}}+\gamma\bigl\| \nabla^{m+1} v(t) \bigr\| ^{2}_{L^{2}}+\kappa\bigl\| \nabla\cdot\nabla ^{m} v \bigr\| ^{2}_{L^{2}}+2\chi\bigl\| \nabla^{m} v\bigr\| ^{2}_{L^{2}} \\ &\quad= \chi\int_{\mathbb{R}^{3}} \nabla^{m}(\nabla\times u) \cdot\nabla^{m} v\,dx-\int_{\mathbb{R}^{3}} \nabla^{m}(u \cdot\nabla v)\cdot \nabla^{m} v \,dx \end{aligned}
(3.16)

and

\begin{aligned} &\frac{1}{2}\frac{d}{dt}\bigl\| \nabla^{m} b(t) \bigr\| ^{2}_{L^{2}}+\nu\bigl\| \nabla^{m+1} b(t) \bigr\| ^{2}_{L^{2}} \\ &\quad= -\int_{\mathbb{R}^{3}} \nabla^{m}(u \cdot\nabla b)\cdot\nabla^{m} b \,dx+ \int _{\mathbb{R}^{3}} \nabla^{m}(b \cdot\nabla u)\cdot \nabla^{m} b \,dx. \end{aligned}
(3.17)

In what follows, for simplicity, we shall set $$m=3$$.

Summing up (3.15)-(3.17) and noting $$\nabla\cdot u=0$$, $$\nabla \cdot b=0$$, we deduce that

\begin{aligned} &\frac{1}{2} \frac{d}{dt}\bigl(\bigl\| \nabla^{3} u(t)\bigr\| ^{2}_{L^{2}}+\bigl\| \nabla^{3} v(t)\bigr\| ^{2}_{L^{2}}+\bigl\| \nabla^{3} b(t) \bigr\| ^{2}_{L^{2}}\bigr)+(\mu+\chi)\bigl\| \nabla^{4} u(t) \bigr\| ^{2}_{L^{2}} \\ &\qquad{}+ \gamma\bigl\| \nabla^{4} v(t)\bigr\| ^{2}_{L^{2}}+ \kappa\bigl\| \nabla\cdot \nabla^{3} v\bigr\| ^{2}_{L^{2}}+2\chi\bigl\| \nabla^{3} v\bigr\| ^{2}_{L^{2}}+\nu\bigl\| \nabla^{4} b(t)\bigr\| ^{2}_{L^{2}} \\ &\quad= - \int_{\mathbb{R}^{3}}\bigl[\nabla^{3}(u\cdot\nabla u)-u\cdot\nabla\nabla^{3} u\bigr]\cdot\nabla^{3} u \,dx+\int _{\mathbb {R}^{3}}\bigl[\nabla^{3} (b\cdot\nabla b)-b\cdot\nabla \nabla^{3}b\bigr] \cdot\nabla ^{3} u \,dx \\ &\qquad{} +\chi\int_{\mathbb{R}^{3}}\nabla^{3} (\nabla\times v)\cdot\nabla^{3} u\,dx+\chi\int_{\mathbb{R}^{3}} \nabla^{3}(\nabla\times u) \cdot\nabla^{3} v\,dx \\ &\qquad{} -\int_{\mathbb{R}^{3}} \bigl[\nabla^{3}(u \cdot \nabla v)-u \cdot\nabla\nabla^{3} v\bigr]\cdot\nabla^{3} v\,dx -\int_{\mathbb{R}^{3}} \bigl[\nabla ^{3}(u \cdot\nabla b)- u \cdot\nabla\nabla^{3} b\bigr]\cdot\nabla^{3} b\,dx \\ &\qquad{} + \int_{\mathbb{R}^{3}} \bigl[\nabla^{3}(b \cdot \nabla u)-b \cdot\nabla\nabla^{3} u\bigr]\cdot\nabla^{3} b \,dx \\ & \quad=:J_{1}+J_{2}+J_{3}+J_{4}+J_{5}+J_{6}. \end{aligned}
(3.18)

It follows from integration by parts, the Hölder inequality, Gagliardo-Nirenberg inequality (2.1), the Cauchy inequality and (3.14) that

\begin{aligned} J_{1} \leq& 4\|\nabla u\|_{L^{\infty}}\bigl\| \nabla^{3}u\bigr\| ^{2}_{L^{2}}+3\bigl\| \nabla^{2} u \bigr\| _{L^{4}}\bigl\| \nabla^{3}u\bigr\| ^{2}_{L^{2}} \\ \leq& C\|\nabla u\|^{\frac{7}{6}}_{L^{2}} \bigl\| \nabla^{4}u\bigr\| ^{\frac{11}{6}}_{L^{2}} \\ \leq& \frac{\mu}{8}\bigl\| \nabla^{4}u\bigr\| ^{2}_{L^{2}}+C \|\nabla u\| ^{14}_{L^{2}} \\ \leq& \frac{\mu}{8}\bigl\| \nabla^{4}u\bigr\| ^{2}_{L^{2}}+C \bigl(e+X(t)\bigr)^{7C_{1}\epsilon}. \end{aligned}
(3.19)

Similarly, we have

\begin{aligned} J_{2}+J_{6} \leq& \|\nabla b \|_{L^{\infty}}\bigl\| \nabla^{3}u\bigr\| _{L^{2}}\bigl\| \nabla^{3}b \bigr\| _{L^{2}}+3\bigl\| \nabla^{2} u\bigr\| _{L^{4}}\bigl\| \nabla^{2}b\bigr\| _{L^{4}} \bigl\| \nabla^{3}b\bigr\| _{L^{2}} +3\|\nabla u\|_{L^{\infty}}\bigl\| \nabla^{3}b\bigr\| ^{2}_{L^{2}} \\ \leq& C\|\nabla u\|^{\frac{1}{3}}_{L^{2}}\bigl\| \nabla^{4}u\bigr\| ^{\frac{2}{3}}_{L^{2}}\|\nabla b\|^{\frac{5}{6}}_{L^{2}}\bigl\| \nabla^{4}b\bigr\| ^{\frac {7}{6}}_{L^{2}}+\|\nabla u \|^{\frac{5}{12}}_{L^{2}}\bigl\| \nabla^{4}u\bigr\| ^{\frac {7}{12}}_{L^{2}} \|\nabla b\|^{\frac{3}{4}}_{L^{2}}\bigl\| \nabla^{4}b \bigr\| ^{\frac {5}{4}}_{L^{2}} \\ &{}+ C\|\nabla u\|^{\frac{1}{2}}_{L^{2}}\bigl\| \nabla^{4}u \bigr\| ^{\frac {1}{2}}_{L^{2}}\|\nabla b\|^{\frac{2}{3}}_{L^{2}}\bigl\| \nabla^{4}b\bigr\| ^{\frac {4}{3}}_{L^{2}} \\ \leq& \frac{\mu}{8} \bigl\| \nabla^{4}u\bigr\| ^{2}_{L^{2}}+ \frac{\nu}{4}\bigl\| \nabla^{4}b\bigr\| ^{2}_{L^{2}}+C\| \nabla u\|^{4}_{L^{2}}\|\nabla b\| ^{10}_{L^{2}} \\ &{} +C\|\nabla u\|^{5}_{L^{2}}\|\nabla b\|^{9}_{L^{2}}+C \| \nabla u\|^{6}_{L^{2}}\|\nabla b\|^{8}_{L^{2}} \\ \leq& \frac{\mu}{8}\bigl\| \nabla^{4}u\bigr\| ^{2}_{L^{2}}+ \frac{\nu}{4}\bigl\| \nabla^{4}b\bigr\| ^{2}_{L^{2}}+ C \bigl(e+X(t)\bigr)^{7C_{1}\epsilon}. \end{aligned}
(3.20)

The Cauchy inequality gives

$$J_{3} \leq \chi\bigl\| \nabla^{4}u \bigr\| ^{2}_{L^{2}}+\frac{3\chi}{2}\bigl\| \nabla^{3} v\bigr\| ^{2}_{L^{2}}.$$
(3.21)

We may obtain the following estimate by making use of integration by parts, the Hölder inequality, Gagliardo-Nirenberg inequality (2.1), the Cauchy inequality and (3.14):

\begin{aligned} J_{4} \leq& \|\nabla v\|_{L^{\infty}}\bigl\| \nabla^{3}u\bigr\| _{L^{2}}\bigl\| \nabla^{3}v\bigr\| _{L^{2}}+3\bigl\| \nabla^{2} u\bigr\| _{L^{4}}\bigl\| \nabla^{2}v\bigr\| _{L^{4}} \bigl\| \nabla^{3}v\bigr\| _{L^{2}} +3\|\nabla u\|_{L^{\infty}}\bigl\| \nabla^{3}v\bigr\| ^{2}_{L^{2}} \\ \leq& C\|\nabla u\|^{\frac{1}{3}}_{L^{2}}\bigl\| \nabla^{4}u\bigr\| ^{\frac{2}{3}}_{L^{2}}\|\nabla v\|^{\frac{5}{6}}_{L^{2}}\bigl\| \nabla^{4}v\bigr\| ^{\frac {7}{6}}_{L^{2}}+\|\nabla u \|^{\frac{5}{12}}_{L^{2}}\bigl\| \nabla^{4}u\bigr\| ^{\frac {7}{12}}_{L^{2}} \|\nabla v\|^{\frac{3}{4}}_{L^{2}}\bigl\| \nabla^{4}v \bigr\| ^{\frac {5}{4}}_{L^{2}} \\ &{}+ C\|\nabla u\|^{\frac{1}{2}}_{L^{2}}\bigl\| \nabla^{4}u \bigr\| ^{\frac {1}{2}}_{L^{2}}\|\nabla v\|^{\frac{2}{3}}_{L^{2}}\bigl\| \nabla^{4}v\bigr\| ^{\frac {4}{3}}_{L^{2}} \\ \leq& \frac{\mu}{8} \bigl\| \nabla^{4}u\bigr\| ^{2}_{L^{2}}+ \frac{\gamma }{2}\bigl\| \nabla^{4}v\bigr\| ^{2}_{L^{2}}+C\| \nabla u\|^{4}_{L^{2}}\|\nabla v\| ^{10}_{L^{2}} \\ &{}+C\|\nabla u\|^{5}_{L^{2}}\|\nabla v\|^{9}_{L^{2}}+C \| \nabla u\|^{6}_{L^{2}}\|\nabla v\|^{8}_{L^{2}} \\ \leq& \frac{\mu}{8} \bigl\| \nabla^{4}u\bigr\| ^{2}_{L^{2}}+ \frac{\gamma }{2}\bigl\| \nabla^{4}v\bigr\| ^{2}_{L^{2}}+C \bigl(e+X(t)\bigr)^{7C_{1}\epsilon}. \end{aligned}
(3.22)

Similarly, we deduce that

\begin{aligned} J_{5} \leq& \|\nabla b\|_{L^{\infty}}\bigl\| \nabla^{3}u\bigr\| _{L^{2}}\bigl\| \nabla^{3}b\bigr\| _{L^{2}}+3\bigl\| \nabla^{2} u\bigr\| _{L^{4}}\bigl\| \nabla^{2}b\bigr\| _{L^{4}} \bigl\| \nabla^{3}b\bigr\| _{L^{2}} +3\|\nabla u\|_{L^{\infty}}\bigl\| \nabla^{3}b\bigr\| ^{2}_{L^{2}} \\ \leq& C\|\nabla u\|^{\frac{1}{3}}_{L^{2}}\bigl\| \nabla^{4}u\bigr\| ^{\frac{2}{3}}_{L^{2}}\|\nabla b\|^{\frac{5}{6}}_{L^{2}}\bigl\| \nabla^{4}b\bigr\| ^{\frac {7}{6}}_{L^{2}}+\|\nabla u \|^{\frac{5}{12}}_{L^{2}}\bigl\| \nabla^{4}u\bigr\| ^{\frac {7}{12}}_{L^{2}} \|\nabla b\|^{\frac{3}{4}}_{L^{2}}\bigl\| \nabla^{4}b \bigr\| ^{\frac {5}{4}}_{L^{2}} \\ &{}+ C\|\nabla u\|^{\frac{1}{2}}_{L^{2}}\bigl\| \nabla^{4}u \bigr\| ^{\frac {1}{2}}_{L^{2}}\|\nabla b\|^{\frac{2}{3}}_{L^{2}}\bigl\| \nabla^{4}b\bigr\| ^{\frac {4}{3}}_{L^{2}} \\ \leq& \frac{\mu}{8}\bigl\| \nabla^{4}u\bigr\| ^{2}_{L^{2}}+ \frac{\nu}{4} \bigl\| \nabla^{4}b\bigr\| ^{2}_{L^{2}}+C\| \nabla u\|^{4}_{L^{2}}\|\nabla b\| ^{10}_{L^{2}} \\ &{} +C\|\nabla u\|^{5}_{L^{2}}\|\nabla b\|^{9}_{L^{2}}+C \| \nabla u\|^{6}_{L^{2}}\|\nabla b\|^{8}_{L^{2}} \\ \leq& \frac{\mu}{8}\bigl\| \nabla^{4}u\bigr\| ^{2}_{L^{2}}+ \frac{\nu }{4}\bigl\| \nabla^{4}b\bigr\| ^{2}_{L^{2}}+ C \bigl(e+X(t)\bigr)^{7C_{1}\epsilon}. \end{aligned}
(3.23)

Inserting estimates (3.19)-(3.23) into (3.18) yields

$$\frac{d}{dt}\bigl(\bigl\| \nabla^{3} u(t) \bigr\| ^{2}_{L^{2}}+\bigl\| \nabla^{3} v(t)\bigr\| ^{2}_{L^{2}}+ \bigl\| \nabla^{3} b(t)\bigr\| ^{2}_{L^{2}}\bigr)\leq C\bigl(e+X(t) \bigr)^{7C_{1}\varepsilon}, \quad t \in[T^{*}, T).$$
(3.24)

Integrating (3.24) with respect to time from $$T^{*}$$ to $$t \in [T^{*}, T)$$, we have

$$e+ \bigl\| \nabla^{3} u(t)\bigr\| ^{2}_{L^{2}}+\bigl\| \nabla^{3} v(t)\bigr\| ^{2}_{L^{2}}+\bigl\| \nabla^{3} b(t)\bigr\| ^{2}_{L^{2}} \leq C+C\bigl(e+X(t)\bigr)^{7C_{1}\varepsilon}.$$
(3.25)

By choosing $$\varepsilon<\frac{1}{7C_{1}}$$ and noting (3.1), we know that $$(u, v, b)\in L^{\infty}(0, T; H^{3}(\mathbb{R}^{3}))$$. Thus, $$(u, v, b)$$ can be extended smoothly beyond $$t = T$$. We have completed the proof of Theorem 1.1. □

References

1. 1.

Ortega-Torres, E, Rojas-Medar, M: On the uniqueness and regularity of the weak solution for magneto-micropolar fluid equations. Rev. Mat. Apl. 17, 75-90 (1996)

2. 2.

Ortega-Torres, E, Rojas-Medar, M: Magneto-micropolar fluid motion: global existence of strong solutions. Abstr. Appl. Anal. 4, 109-125 (1999)

3. 3.

Rojas-Medar, M: Magneto-micropolar fluid motion: existence and uniqueness of strong solutions. Math. Nachr. 188, 301-319 (1997)

4. 4.

Rojas-Medar, M, Boldrini, J: Magneto-micropolar fluid motion: existence of weak solutions. Rev. Mat. Complut. 11, 443-460 (1998)

5. 5.

Yuan, J: Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations. Math. Methods Appl. Sci. 31, 1113-1130 (2008)

6. 6.

Gala, S: Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space. Nonlinear Differ. Equ. Appl. 17, 181-194 (2010)

7. 7.

Wang, Y, Hu, L, Wang, Y: A Beale-Kato-Madja criterion for magneto-micropolar fluid equations with partial viscosity. Bound. Value Probl. 2011, Article ID 128614 (2011)

8. 8.

Wang, Y: Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations. Bound. Value Probl. 2013, Article ID 58 (2013)

9. 9.

Yuan, Y: Regularity of weak solutions to magneto-micropolar fluid equations. Acta Math. Sci. 30, 1469-1480 (2010)

10. 10.

Zhang, Z, Yao, Z, Wang, X: A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces. Nonlinear Anal. 74, 2220-2225 (2011)

11. 11.

Eringen, A: Theory of micropolar fluids. J. Math. Mech. 16, 1-18 (1966)

12. 12.

Lukaszewicz, G: Micropolar Fluids: Theory and Applications. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1999)

13. 13.

Dong, B, Chen, Z: Regularity criteria of weak solutions to the three-dimensional micropolar flows. J. Math. Phys. 50, 103525 (2009)

14. 14.

Dong, B, Jia, Y, Chen, Z: Pressure regularity criteria of the three-dimensional micropolar fluids flows. Math. Methods Appl. Sci. 34, 595-606 (2011)

15. 15.

Galdi, G, Rionero, S: A note on the existence and uniqueness of solutions of the micropolar fluid equations. Int. J. Eng. Sci. 15, 105-108 (1977)

16. 16.

Ortega-Torres, E, Rojas-Medar, M: On the regularity for solutions of the micropolar fluid equations. Rend. Semin. Mat. Univ. Padova 122, 27-37 (2009)

17. 17.

Wang, Y, Chen, Z: Regularity criterion for weak solution to the 3D micropolar fluid equations. J. Appl. Math. 2011, Article ID 456547 (2011)

18. 18.

Wang, Y, Yuan, H: A logarithmically improved blow-up criterion for smooth solutions to the 3D micropolar fluid equations. Nonlinear Anal., Real World Appl. 13, 1904-1912 (2012)

19. 19.

Yamaguchi, N: Existence of global strong solution to the micropolar fluid system in a bounded domain. Math. Methods Appl. Sci. 28, 1507-1526 (2005)

20. 20.

Lifschitz, A: Magnetohydrodynamics and spectral theory. In: Developments in Electromagnetic Theory and Applications, vol. 4. Kluwer Academic, Dordrecht (1989)

21. 21.

Lei, Z: On axially symmetric incompressible magnetohydrodynamics in three dimensions. J. Differ. Equ. 259, 3202-3215 (2015)

22. 22.

Wang, Y, Wang, K: Global well-posedness of the three dimensional magnetohydrodynamics equations. Nonlinear Anal., Real World Appl. 17, 245-251 (2014)

23. 23.

Constantin, P, Córdoba, D, Gancedo, F, Strain, R: On the global existence for the Muskat problem. J. Eur. Math. Soc. 15, 201-227 (2013)

24. 24.

Lei, Z, Lin, F: Global mild solutions of Navier-Stokes equations. Commun. Pure Appl. Math. 64, 1297-1304 (2011)

25. 25.

Cao, C, Wu, J: Two regularity criteria for the 3D equations. J. Differ. Equ. 248, 2263-2274 (2010)

26. 26.

Chen, Q, Miao, C, Zhang, Z: On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Commun. Math. Phys. 284, 919-930 (2008)

27. 27.

Fan, J, Li, F, Nakamura, G, Tan, Z: Regularity criteria for the three-dimensional magnetohydrodynamic equations. J. Differ. Equ. 256, 2858-2875 (2014)

28. 28.

He, C, Xin, Z: On the regularity of solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235-254 (2005)

29. 29.

He, C, Wang, Y: On the regularity for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 238, 1-17 (2007)

30. 30.

Jia, X, Zhou, Y: Regularity criteria for the 3D MHD equations via partial derivatives II. Kinet. Relat. Models 7, 291-304 (2014)

31. 31.

Lei, Z, Zhou, Y: BKM criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete Contin. Dyn. Syst., Ser. A 25, 575-583 (2009)

32. 32.

Wang, Y, Zhao, H, Wang, Y: A logarithmally improved blow up criterion of smooth solutions for the three-dimensional MHD equations. Int. J. Math. 23, 1250027 (2012)

33. 33.

Wang, Y, Wang, S, Wang, Y: Regularity criteria for weak solution to the 3D magnetohydrodynamic equations. Acta Math. Sci. 32, 1063-1072 (2012)

34. 34.

Xu, X, Ye, Z, Zhang, Z: Remark on an improved regularity criterion for the 3D MHD equations. Appl. Math. Lett. 42, 41-46 (2015)

35. 35.

Triebel, H: Theory of Function Spaces. Monograph in Mathematics, vol. 78. Birkhäuser, Basel (1983)

36. 36.

Kozono, H, Ogawa, T, Taniuchi, Y: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251-278 (2002)

37. 37.

Coifman, R, Lions, P, Meyer, Y, Semmes, S: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72, 247-286 (1993)

38. 38.

Zheng, X: A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component. J. Differ. Equ. 256, 283-309 (2014)

Acknowledgements

The author would like to thank the referees for valuable comments and suggestions. This work is partially supported by the NNSF of China (Grant No. 11101144).

Author information

Correspondence to Yinxia Wang.

Competing interests

The author declares that she has no competing interests.

Author’s contributions

The author completed the paper herself. The author read and approved the final manuscript.

Rights and permissions 