Open Access

Nonexistence of positive solutions for a system of coupled fractional boundary value problems

Boundary Value Problems20152015:138

https://doi.org/10.1186/s13661-015-0403-8

Received: 13 May 2015

Accepted: 27 July 2015

Published: 13 August 2015

Abstract

We investigate the nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with coupled integral boundary conditions.

Keywords

Riemann-Liouville fractional differential equations integral boundary conditions positive solutions nonexistence

MSC

34A08 45G15

1 Introduction

Fractional differential equations describe many phenomena in various fields of engineering and scientific disciplines such as physics, biophysics, chemistry, biology (such as blood flow phenomena), economics, control theory, signal and image processing, aerodynamics, viscoelasticity, electromagnetics, and so on (see [16]). For some recent developments on the topic, see [721] and the references therein. Coupled boundary conditions appear in the study of reaction-diffusion equations and Sturm-Liouville problems, and they have applications in many fields of sciences and engineering such as thermal conduction and mathematical biology (see for example [2228]).

In this paper, we consider the system of nonlinear fractional differential equations
$$(\mathrm{S})\quad \left \{ \textstyle\begin{array}{l} D_{0+}^{\alpha}u(t)+\lambda f(t,u(t),v(t))=0, \quad t\in (0,1), \\ D_{0+}^{\beta}v(t)+\mu g(t,u(t),v(t))=0, \quad t\in(0,1), \end{array}\displaystyle \right . $$
with the coupled integral boundary conditions
$$(\mathrm{BC})\quad \left \{ \textstyle\begin{array}{l}u(0)=u'(0)=\cdots=u^{(n-2)}(0)=0,\qquad u(1)= \int_{0}^{1} v(s)\, dH(s), \\ v(0)=v'(0)=\cdots=v^{(m-2)}(0)=0,\qquad v(1)= \int_{0}^{1} u(s)\, dK(s), \end{array}\displaystyle \right . $$
where \(n-1<\alpha\le n\), \(m-1<\beta\le m\), \(n, m\in\mathbb{N}\), \(n, m\ge3\), \(D_{0+}^{\alpha}\), and \(D_{0+}^{\beta}\) denote the Riemann-Liouville derivatives of orders α and β, respectively, and the integrals from (BC) are Riemann-Stieltjes integrals.
We shall give sufficient conditions on λ, μ, f, and g such that (S)-(BC) has no positive solutions. By a positive solution of problem (S)-(BC) we mean a pair of functions \((u,v)\in C([0,1])\times C([0,1])\) satisfying (S) and (BC) with \(u(t)\ge0\), \(v(t)\ge0\) for all \(t\in[0,1]\) and \((u,v)\neq (0,0)\). The existence of positive solutions for (S)-(BC) has been studied in [29] by using the Guo-Krasnosel’skii fixed point theorem. The multiplicity of positive solutions of the system (S) with \(\lambda=\mu=1\), \(f(t,u,v)=\tilde{f}(t,v)\) and \(g(t,u,v)=\tilde{g}(t,u)\) (denoted by (S1)), with the boundary conditions (BC) was investigated in [30], where the nonlinearities f and g are nonsingular or singular functions. In [30], the authors used some theorems from the fixed point index theory and the Guo-Krasnosel’skii fixed point theorem. We also mention [31], where we studied the existence of positive solutions for (S)-(BC) (\(u(t)\ge0\), \(v(t)\ge0\) for all \(t\in[0,1]\), and \(u(t)>0\), \(v(t)>0\) for all \(t\in(0,1)\)), where f and g are sign-changing functions. The systems (S) and (S1) with uncoupled boundary conditions
$$(\mathrm{BC}_{1})\quad \left \{ \textstyle\begin{array}{l} u(0)=u'(0)=\cdots=u^{(n-2)}(0)=0, \qquad u(1)= \int_{0}^{1} u(s)\, dH(s), \\ v(0)=v'(0)=\cdots=v^{(m-2)}(0)=0,\qquad v(1)= \int_{0}^{1} v(s)\, dK(s), \end{array}\displaystyle \right . $$
were investigated in [3235].

In Section 2, we present the necessary definitions and properties from the fractional calculus theory and some auxiliary results from [29], which investigates a nonlocal boundary value problem for fractional differential equations. In Section 3, we prove some nonexistence results for the positive solutions with respect to a cone for our problem (S)-(BC). Finally, two examples are given to illustrate our main results.

2 Auxiliary results

We present here the definitions, some lemmas from the theory of fractional calculus, and some auxiliary results from [29] that will be used to prove our main theorems.

Definition 2.1

The (left-sided) fractional integral of order \(\alpha>0\) of a function \(f:(0,\infty)\to\mathbb{R}\) is given by
$$\bigl(I_{0+}^{\alpha}\, f\bigr) (t)= \frac{1}{\Gamma(\alpha)} \int _{0}^{t}(t-s)^{\alpha -1}f(s) \,ds,\quad t>0, $$
provided the right-hand side is pointwise defined on \((0,\infty)\), where \(\Gamma(\alpha)\) is the Euler gamma function defined by \(\Gamma (\alpha)= \int_{0}^{\infty}t^{\alpha-1}e^{-t} \, dt\), \(\alpha>0\).

Definition 2.2

The Riemann-Liouville fractional derivative of order \(\alpha\ge0\) for a function \(f:(0,\infty)\to\mathbb {R}\) is given by
$$\bigl(D_{0+}^{\alpha}\, f\bigr) (t)= \biggl( \frac{d}{dt} \biggr)^{n} \bigl(I_{0+}^{n-\alpha }f \bigr) (t)= \frac{1}{\Gamma(n-\alpha)} \biggl( \frac{d}{dt} \biggr)^{n} \int _{0}^{t} \frac{f(s)}{(t-s)^{\alpha-n+1}} \,ds,\quad t>0, $$
where \(n=[\![\alpha]\!]+1\), provided that the right-hand side is pointwise defined on \((0,\infty)\).

The notation \([\![\alpha]\!]\) stands for the largest integer not greater than α. If \(\alpha=m\in\mathbb{N}\) then \(D_{0+}^{m}\, f(t)=f^{(m)}(t)\) for \(t>0\), and if \(\alpha=0\) then \(D_{0+}^{0}\, f(t)=f(t)\) for \(t>0\).

We consider now the fractional differential system
$$ \left \{ \textstyle\begin{array}{l} D_{0+}^{\alpha}u(t)+x(t)=0, \quad t\in(0,1), \\ D_{0+}^{\beta}v(t)+y(t)=0,\quad t\in(0,1), \end{array}\displaystyle \right . $$
(1)
with the coupled integral boundary conditions (BC), where \(n-1<\alpha \le n\), \(m-1<\beta\le m\), \(n, m\in\mathbb{N}\), \(n, m\ge3\), and \(H, K:[0,1]\to\mathbb{R}\) from (BC) are functions of bounded variation.

Lemma 2.1

([29])

If \(H, K:[0,1]\to\mathbb{R}\) are functions of bounded variations, \(\Delta=1- (\int_{0}^{1}\tau ^{\alpha-1} \, dK(\tau) ) (\int_{0}^{1}\tau^{\beta-1} \, dH(\tau) )\neq0\) and \(x, y\in C(0,1)\cap L^{1}(0,1)\), then the solution of problem (1)-(BC) is given by
$$ \left \{ \textstyle\begin{array}{l}u(t)= \int_{0}^{1}G_{1}(t,s)x(s) \,ds+ \int_{0}^{1}G_{2}(t,s)y(s) \,ds,\quad t\in[0,1], \\ v(t)= \int_{0}^{1}G_{3}(t,s)y(s) \,ds+ \int_{0}^{1}G_{4}(t,s)x(s) \,ds,\quad t\in[0,1], \end{array}\displaystyle \right . $$
(2)
where
$$ \left \{ \textstyle\begin{array}{l} G_{1}(t,s)=g_{1}(t,s)+ \frac{t^{\alpha-1}}{\Delta} ( \int_{0}^{1}\tau^{\beta -1}\, dH(\tau) ) ( \int_{0}^{1}g_{1}(\tau,s)\, dK(\tau) ), \\ G_{2}(t,s)= \frac{t^{\alpha-1}}{\Delta} \int_{0}^{1}g_{2}(\tau,s)\, dH(\tau), \\ G_{3}(t,s)=g_{2}(t,s)+ \frac{t^{\beta-1}}{\Delta} ( \int_{0}^{1}\tau^{\alpha -1}\, dK(\tau) ) ( \int_{0}^{1}g_{2}(\tau,s)\, dH(\tau) ), \\ G_{4}(t,s)= \frac{t^{\beta-1}}{\Delta} \int_{0}^{1}g_{1}(\tau,s)\, dK(\tau), \end{array}\displaystyle \right . $$
(3)
for all \(t, s\in[0,1]\) and
$$ \left \{ \textstyle\begin{array}{l} g_{1}(t,s)= \frac{1}{\Gamma(\alpha)} \left \{ \textstyle\begin{array}{l@{\quad}l} t^{\alpha-1}(1-s)^{\alpha-1}-(t-s)^{\alpha-1}, &0\le s\le t\le1,\\ t^{\alpha-1}(1-s)^{\alpha-1}, &0\le t\le s\le1, \end{array}\displaystyle \right . \\ g_{2}(t,s)= \frac{1}{\Gamma(\beta)} \left \{ \textstyle\begin{array}{l@{\quad}l} t^{\beta-1}(1-s)^{\beta-1}-(t-s)^{\beta-1},& 0\le s\le t\le1,\\ t^{\beta-1}(1-s)^{\beta-1},& 0\le t\le s\le1. \end{array}\displaystyle \right . \end{array}\displaystyle \right . $$
(4)

Lemma 2.2

([32])

The functions \(g_{1}\) and \(g_{2}\) given by (4) have the properties
  1. (a)

    \(g_{1}, g_{2}:[0,1]\times[0,1]\to\mathbb{R}_{+}\) are continuous functions, and \(g_{1}(t,s)>0\), \(g_{2}(t,s)>0\) for all \((t,s)\in(0,1)\times(0,1)\);

     
  2. (b)

    \(g_{1}(t,s)\le g_{1}(\theta_{1}(s),s)\), \(g_{2}(t,s)\le g_{2}(\theta_{2}(s),s)\), for all \((t,s)\in[0,1]\times[0,1]\);

     
  3. (c)
    for any \(c\in(0,1/2)\), we have
    $$\min_{t\in[c,1-c]}g_{1}(t,s)\ge\gamma_{1} g_{1}\bigl(\theta_{1}(s),s\bigr),\qquad \min _{t\in[c,1-c]}g_{2}(t,s)\ge\gamma_{2} g_{2}\bigl(\theta_{2}(s),s\bigr), $$
    for all \(s\in[0,1]\), where \(\gamma_{1}=c^{\alpha-1}\), \(\gamma_{2}=c^{\beta -1}\),
    $$\theta_{1}(s)= \left\{ \textstyle\begin{array}{l@{\quad}l} \frac{s}{1-(1-s)^{\frac{\alpha-1}{\alpha-2}}},& s\in (0,1], \\ \frac{\alpha-2}{\alpha-1},& s=0, \end{array}\displaystyle \right. $$
    if \(n-1<\alpha\le n\), \(n\ge3\), and
    $$\theta_{2}(s)= \left\{ \textstyle\begin{array}{l@{\quad}l} \frac{s}{1-(1-s)^{\frac{\beta-1}{\beta-2}}},& s\in (0,1], \\ \frac{\beta-2}{\beta-1},& s=0, \end{array}\displaystyle \right. $$
    if \(m-1<\beta\le m\), \(m\ge3\).
     

Lemma 2.3

([29])

If \(H, K:[0,1]\to\mathbb{R}\) are nondecreasing functions, and \(\Delta>0\), then \(G_{i}\), \(i=1,\ldots,4\) given by (3) are continuous functions on \([0,1]\times[0,1]\) and satisfy \(G_{i}(t,s)\ge0\) for all \((t,s)\in[0,1]\times[0,1]\), \(i=1,\ldots,4\). Moreover, if \(x, y\in C(0,1)\cap L^{1}(0,1)\) satisfy \(x(t)\ge0\), \(y(t)\ge0\) for all \(t\in(0,1)\), then the unique solution \((u,v)\) of problem (1)-(BC) (given by (2)) satisfies \(u(t)\ge0\), \(v(t)\ge0\) for all \(t\in[0,1]\).

Lemma 2.4

([29])

Assume that \(H, K:[0,1]\to \mathbb{R}\) are nondecreasing functions and \(\Delta>0\). Then the functions \(G_{i}\), \(i=1,\ldots,4\), satisfy the inequalities
(a1): 
\(G_{1}(t,s)\le J_{1}(s)\), \(\forall(t,s)\in[0,1]\times[0,1]\), where
$$J_{1}(s)=g_{1}\bigl(\theta_{1}(s),s\bigr)+ \frac{1}{\Delta} \biggl( \int_{0}^{1} \tau^{\beta -1}\, dH(\tau) \biggr) \biggl( \int_{0}^{1}g_{1}( \tau,s)\, dK(\tau) \biggr); $$
(a2): 
for every \(c\in(0,1/2)\), we have
$$\min_{t\in[c,1-c]}G_{1}(t,s)\ge\gamma_{1} J_{1}(s)\ge\gamma_{1} G_{1}\bigl(t',s \bigr),\quad \forall t', s\in[0,1]; $$
(b1): 

\(G_{2}(t,s)\le J_{2}(s)\), \(\forall(t,s)\in[0,1]\times[0,1]\), where \(J_{2}(s)= \frac{1}{\Delta} \int_{0}^{1}g_{2}(\tau,s)\, dH(\tau)\);

(b2): 
for every \(c\in(0,1/2)\), we have
$$\min_{t\in[c,1-c]}G_{2}(t,s)\ge\gamma_{1} J_{2}(s)\ge\gamma_{1} G_{2}\bigl(t',s \bigr),\quad \forall t', s\in[0,1]; $$
(c1): 
\(G_{3}(t,s)\le J_{3}(s)\), \(\forall(t,s)\in[0,1]\times[0,1]\), where
$$J_{3}(s)=g_{2}\bigl(\theta_{2}(s),s\bigr)+ \frac{1}{\Delta} \biggl( \int_{0}^{1} \tau^{\alpha -1}\, dK(\tau) \biggr) \biggl( \int_{0}^{1}g_{2}( \tau,s)\, dH(\tau) \biggr); $$
(c2): 
for every \(c\in(0,1/2)\), we have
$$\min_{t\in[c,1-c]}G_{3}(t,s)\ge\gamma_{2} J_{3}(s)\ge\gamma_{2} G_{3}\bigl(t',s \bigr),\quad \forall t', s\in[0,1]; $$
(d1): 

\(G_{4}(t,s)\le J_{4}(s)\), \(\forall(t,s)\in[0,1]\times[0,1]\), where \(J_{4}(s)= \frac{1}{\Delta} \int_{0}^{1}g_{1}(\tau,s)\, dK(\tau)\);

(d2): 
for every \(c\in(0,1/2)\), we have
$$\min_{t\in[c,1-c]}G_{4}(t,s)\ge\gamma_{2} J_{4}(s)\ge\gamma_{2} G_{4}\bigl(t',s \bigr),\quad \forall t', s\in[0,1]. $$

Lemma 2.5

([29])

Assume that \(H, K:[0,1]\to \mathbb{R}\) are nondecreasing functions, \(\Delta>0\), \(c\in(0,1/2)\), and \(x, y\in C(0,1)\cap L^{1}(0,1)\), \(x(t)\ge0\), \(y(t)\ge0\) for all \(t\in(0,1)\). Then the solution \((u(t),v(t))\), \(t\in[0,1]\) of problem (1)-(BC) satisfies the inequalities
$$\min_{t\in[c,1-c]}u(t)\ge\gamma_{1} \max _{t'\in[0,1]}u\bigl(t'\bigr),\qquad \min _{t\in [c,1-c]}v(t)\ge\gamma_{2} \max_{t'\in[0,1]}v \bigl(t'\bigr). $$

3 Main results

We present in this section intervals for λ and μ for which there exists no positive solution of problem (S)-(BC).

We present the assumptions that we shall use in the sequel.
  1. (H1)

    \(H, K:[0,1]\to\mathbb{R}\) are nondecreasing functions and \(\Delta=1- (\int_{0}^{1}\tau^{\alpha-1}\, dK(\tau) ) (\int_{0}^{1}\tau^{\beta-1} \, dH(\tau) ) >0\).

     
  2. (H2)

    The functions \(f, g:[0,1]\times[0,\infty)\times[0,\infty )\to[0,\infty)\) are continuous.

     
For \(c\in(0,1/2)\), we introduce the following extreme limits:
$$\begin{aligned}& f_{0}^{s}= \limsup_{u+v\to0^{+}} \max _{t\in[0,1]} \frac {f(t,u,v)}{u+v},\qquad g_{0}^{s}= \limsup_{u+v\to0^{+}} \max_{t\in[0,1]} \frac {g(t,u,v)}{u+v}, \\& f_{0}^{i}= \liminf_{u+v\to0^{+}} \min _{t\in[c,1-c]} \frac{f(t,u,v)}{u+v},\qquad g_{0}^{i}= \liminf_{u+v\to0^{+}} \min_{t\in[c,1-c]} \frac{g(t,u,v)}{u+v}, \\& f_{\infty}^{s}= \limsup_{u+v\to\infty} \max _{t\in[0,1]} \frac {f(t,u,v)}{u+v},\qquad g_{\infty}^{s}= \limsup_{u+v\to\infty} \max_{t\in [0,1]} \frac{g(t,u,v)}{u+v}, \\& f_{\infty}^{i}= \liminf_{u+v\to\infty} \min _{t\in[c,1-c]} \frac {f(t,u,v)}{u+v}, \qquad g_{\infty}^{i}= \liminf_{u+v\to\infty} \min_{t\in [c,1-c]} \frac{g(t,u,v)}{u+v}. \end{aligned}$$
In the definitions of the extreme limits above, the variables u and v are nonnegative.
By using the functions \(G_{i}\), \(i=1,\ldots,4\) from Section 2 (Lemma 2.1), our problem (S)-(BC) can be written equivalently as the following nonlinear system of integral equations:
$$\left \{ \textstyle\begin{array}{l} u(t)=\lambda\int_{0}^{1}G_{1}(t,s)f(s,u(s),v(s)) \,ds+\mu \int_{0}^{1} G_{2}(t,s) g(s,u(s),v(s)) \,ds, \quad t\in[0,1], \\ v(t)=\mu\int_{0}^{1}G_{3}(t,s)g(s,u(s),v(s)) \,ds+\lambda \int_{0}^{1} G_{4}(t,s) f(s,u(s),v(s)) \,ds,\quad t\in[0,1]. \end{array}\displaystyle \right . $$
We consider the Banach space \(X=C([0,1])\) with supremum norm \(\|\cdot\| \), and the Banach space \(Y=X\times X\) with the norm \(\|(u,v)\|_{Y}=\|u\| +\|v\|\). We define the cone \(P\subset Y\) by
$$P=\Bigl\{ (u,v)\in Y; u(t)\ge0, v(t)\ge0, \forall t\in[0,1] \mbox{ and } \inf _{t\in[c,1-c]}\bigl(u(t)+v(t)\bigr)\ge\gamma\bigl\Vert (u,v)\bigr\Vert _{Y}\Bigr\} , $$
where \(\gamma= \min\{\gamma_{1},\gamma_{2}\}\) and \(\gamma_{1}\), \(\gamma_{2}\) are defined in Section 2 (Lemma 2.2).
For \(\lambda, \mu>0\), we introduce the operators \(T_{1}, T_{2}:Y\to X\), and \(\mathcal{T}:Y\to Y\) defined by
$$\begin{aligned}& T_{1}(u,v) (t)=\lambda\int_{0}^{1}G_{1}(t,s)f \bigl(s,u(s),v(s)\bigr) \,ds+\mu \int_{0}^{1}G_{2}(t,s)g \bigl(s,u(s),v(s)\bigr) \,ds,\quad 0\le t\le1, \\& T_{2}(u,v) (t)=\mu\int_{0}^{1}G_{3}(t,s)g \bigl(s,u(s),v(s)\bigr) \,ds+\lambda \int_{0}^{1} G_{4}(t,s) f\bigl(s,u(s),v(s)\bigr) \,ds,\quad 0\le t\le1, \end{aligned}$$
and \(\mathcal{T}(u,v)=(T_{1}(u,v),T_{2}(u,v))\), \((u,v)\in Y\).

Lemma 3.1

([29])

If (H1) and (H2) hold, and \(c\in(0,1/2)\), then \(\mathcal{T}:P\to P\) is a completely continuous operator.

The positive solutions of our problem (S)-(BC) coincide with the fixed points of the operator \(\mathcal{T}\).

Theorem 3.1

Assume that (H1) and (H2) hold, and \(c\in(0,1/2)\). If \(f_{0}^{s}, f_{\infty}^{s}, g_{0}^{s}, g_{\infty }^{s}<\infty\), then there exist positive constants \(\lambda_{0}\), \(\mu_{0}\) such that, for every \(\lambda\in(0,\lambda_{0})\) and \(\mu\in(0,\mu_{0})\), the boundary value problem (S)-(BC) has no positive solution.

Proof

From the definitions of \(f_{0}^{s}\), \(f_{\infty}^{s}\), \(g_{0}^{s}\), \(g_{\infty}^{s}\), which are finite, we deduce that there exist \(M_{1}, M_{2}>0\) such that
$$f(t,u,v)\le M_{1}(u+v), \qquad g(t,u,v)\le M_{2} (u+v), \quad \forall t\in[0,1],\ u, v\ge0. $$

We define \(\lambda_{0}=\min \{\frac{1}{4M_{1}A},\frac{1}{4M_{1}D} \} \), \(\mu_{0}=\min \{\frac{1}{4M_{2}B},\frac{1}{4M_{2}C} \}\), where \(A=\int_{0}^{1}J_{1}(s) \,ds\), \(B=\int_{0}^{1}J_{2}(s) \,ds\), \(C=\int_{0}^{1}J_{3}(s) \,ds\), \(D=\int_{0}^{1}J_{4}(s) \,ds\). We shall show that, for every \(\lambda\in (0,\lambda_{0})\) and \(\mu\in(0,\mu_{0})\), problem (S)-(BC) has no positive solution.

Let \(\lambda\in(0,\lambda_{0})\) and \(\mu\in(0,\mu_{0})\). We suppose that (S)-(BC) has a positive solution \((u(t),v(t))\), \(t\in[0,1]\). Then by using Lemma 2.4, we obtain
$$\begin{aligned} u(t) =&\bigl(T_{1}(u,v)\bigr) (t)=\lambda\int_{0}^{1}G_{1}(t,s)f \bigl(s,u(s),v(s)\bigr) \,ds+\mu\int_{0}^{1}G_{2}(t,s)g \bigl(s,u(s),v(s)\bigr) \,ds \\ \le&\lambda \int_{0}^{1}J_{1}(s)f \bigl(s,u(s),v(s)\bigr) \,ds+\mu\int_{0}^{1}J_{2}(s)g \bigl(s,u(s),v(s)\bigr) \,ds \\ \le&\lambda M_{1} \int_{0}^{1}J_{1}(s) \bigl(u(s)+v(s)\bigr) \,ds+\mu M_{2} \int_{0}^{1} J_{2}(s) \bigl(u(s)+v(s)\bigr) \,ds \\ \le&\lambda M_{1} \int_{0}^{1}J_{1}(s) \bigl(\Vert u\Vert +\Vert v\Vert \bigr) \,ds+\mu M_{2} \int _{0}^{1}J_{2}(s) \bigl(\Vert u\Vert + \Vert v\Vert \bigr) \,ds \\ =&(\lambda M_{1} A+\mu M_{2} B)\bigl\Vert (u,v)\bigr\Vert _{Y}, \quad \forall t\in[0,1]. \end{aligned}$$
Therefore, we conclude
$$ \Vert u\Vert \le(\lambda M_{1}A+\mu M_{2}B)\bigl\Vert (u,v)\bigr\Vert _{Y}< ( \lambda_{0} M_{1} A+\mu_{0} M_{2}B)\bigl\Vert (u,v)\bigr\Vert _{Y}\le\frac{1}{2}\bigl\Vert (u,v) \bigr\Vert _{Y}. $$
(5)
In a similar manner, we obtain
$$\begin{aligned} v(t) =&\bigl(T_{2}(u,v)\bigr) (t)=\mu\int_{0}^{1}G_{3}(t,s)g \bigl(s,u(s),v(s)\bigr) \,ds+\lambda\int_{0}^{1}G_{4}(t,s)f \bigl(s,u(s),v(s)\bigr) \,ds \\ \le&\mu \int_{0}^{1}J_{3}(s)g \bigl(s,u(s),v(s)\bigr) \,ds+\lambda\int_{0}^{1}J_{4}(s)f \bigl(s,u(s),v(s)\bigr) \,ds \\ \le&\mu M_{2} \int_{0}^{1}J_{3}(s) \bigl(u(s)+v(s)\bigr) \,ds+\lambda M_{1} \int_{0}^{1} J_{4}(s) \bigl(u(s)+v(s)\bigr) \,ds \\ \le&\mu M_{2} \int_{0}^{1}J_{3}(s) \bigl(\Vert u\Vert +\Vert v\Vert \bigr) \,ds+\lambda M_{1} \int _{0}^{1}J_{4}(s) \bigl(\Vert u\Vert +\Vert v\Vert \bigr) \,ds \\ =&(\mu M_{2} C+\lambda M_{1} D)\bigl\Vert (u,v)\bigr\Vert _{Y},\quad \forall t\in[0,1]. \end{aligned}$$
Therefore, we deduce
$$ \Vert v\Vert \le(\mu M_{2} C+\lambda M_{1} D)\bigl\Vert (u,v)\bigr\Vert _{Y}< (\mu_{0} M_{2} C+\lambda_{0} M_{1}D)\bigl\Vert (u,v)\bigr\Vert _{Y}\le\frac{1}{2}\bigl\Vert (u,v)\bigr\Vert _{Y}. $$
(6)
Hence, by (5) and (6), we conclude
$$\bigl\Vert (u,v)\bigr\Vert _{Y}=\Vert u\Vert +\Vert v \Vert < \frac{1}{2}\bigl\Vert (u,v)\bigr\Vert _{Y}+ \frac{1}{2}\bigl\Vert (u,v)\bigr\Vert _{Y}=\bigl\Vert (u,v)\bigr\Vert _{Y}, $$
which is a contradiction. So the boundary value problem (S)-(BC) has no positive solution. □

Theorem 3.2

Assume that (H1) and (H2) hold, and \(c\in(0,1/2)\). If \(f_{0}^{i}, f_{\infty}^{i}>0\) and \(f(t,u,v)>0\) for all \(t\in[c,1-c]\), \(u\ge0\), \(v\ge0\), \(u+v>0\), then there exists a positive constant \(\tilde{\lambda}_{0}\) such that, for every \(\lambda >\tilde{\lambda}_{0}\) and \(\mu>0\), the boundary value problem (S)-(BC) has no positive solution.

Proof

From the assumptions of the theorem, we deduce that there exists \(m_{1}>0\) such that \(f(t,u,v)\ge m_{1}(u+v)\) for all \(t\in [c,1-c]\) and \(u, v\ge0\). We define \(\tilde{\lambda}_{0}=\min \{\frac{1}{\gamma\gamma_{1} m_{1}\widetilde{A}},\frac{1}{\gamma\gamma_{2} m_{1}\widetilde{D}} \}\), where \(\widetilde{A}=\int_{c}^{1-c}J_{1}(s) \,ds\) and \(\widetilde{D}=\int_{c}^{1-c}J_{4}(s) \,ds\). We shall show that, for every \(\lambda>\tilde{\lambda}_{0}\) and \(\mu>0\), problem (S)-(BC) has no positive solution.

Let \(\lambda>\tilde{\lambda}_{0}\) and \(\mu>0\). We suppose that (S)-(BC) has a positive solution \((u(t),v(t))\), \(t\in[0,1]\).

If \(\widetilde{A}\ge\widetilde{D}\), then \(\tilde{\lambda}_{0}=\frac {1}{\gamma\gamma_{1} m_{1}\widetilde{A}}\), and therefore, we obtain
$$\begin{aligned} u(c) =&\bigl(T_{1}(u,v)\bigr) (c)=\lambda \int_{0}^{1} G_{1}(c,s)f\bigl(s,u(s),v(s)\bigr) \,ds+\mu\int_{0}^{1}G_{2}(c,s)g \bigl(s,u(s),v(s)\bigr) \,ds \\ \ge&\lambda \int_{0}^{1}G_{1}(c,s)f \bigl(s,u(s),v(s)\bigr) \,ds \ge\lambda \int_{c}^{1-c}G_{1}(c,s)f \bigl(s,u(s),v(s)\bigr) \,ds \\ \ge&\lambda m_{1} \int_{c}^{1-c}G_{1}(c,s) \bigl(u(s)+v(s)\bigr) \,ds\ge\lambda m_{1}\gamma _{1} \int _{c}^{1-c}J_{1}(s)\gamma\bigl(\Vert u \Vert +\Vert v\Vert \bigr) \,ds \\ =&\lambda m_{1}\gamma\gamma_{1}\widetilde{A}\bigl\Vert (u,v)\bigr\Vert _{Y}. \end{aligned}$$
Then we conclude
$$\Vert u\Vert \ge u(c)\ge\lambda m_{1}\gamma\gamma_{1} \widetilde{A}\bigl\Vert (u,v)\bigr\Vert _{Y}>\tilde{ \lambda}_{0} m_{1}\gamma\gamma_{1} \widetilde{A} \bigl\Vert (u,v)\bigr\Vert _{Y}=\bigl\Vert (u,v)\bigr\Vert _{Y}, $$
and so \(\|(u,v)\|_{Y}=\|u\|+\|v\|\ge\|u\|>\|(u,v)\|_{Y}\), which is a contradiction.
If \(\widetilde{A} <\widetilde{D}\), then \(\tilde{\lambda}_{0}=\frac {1}{\gamma\gamma_{2} m_{1}\widetilde{D}}\), and therefore, we deduce
$$\begin{aligned} v(c) =&\bigl(T_{2}(u,v)\bigr) (c)=\mu \int_{0}^{1} G_{3}(c,s)g\bigl(s,u(s),v(s)\bigr) \,ds+\lambda\int _{0}^{1}G_{4}(c,s)f\bigl(s,u(s),v(s) \bigr) \,ds \\ \ge&\lambda \int_{0}^{1}G_{4}(c,s)f \bigl(s,u(s),v(s)\bigr) \,ds \ge\lambda \int_{c}^{1-c}G_{4}(c,s)f \bigl(s,u(s),v(s)\bigr) \,ds \\ \ge&\lambda m_{1} \int_{c}^{1-c}G_{4}(c,s) \bigl(u(s)+v(s)\bigr) \,ds\ge\lambda m_{1}\gamma _{2} \int _{c}^{1-c}J_{4}(s)\gamma\bigl(\Vert u \Vert +\Vert v\Vert \bigr) \,ds \\ =&\lambda m_{1}\gamma\gamma_{2}\widetilde{D}\bigl\Vert (u,v)\bigr\Vert _{Y}. \end{aligned}$$
Then we conclude
$$\Vert v\Vert \ge v(c)\ge\lambda m_{1}\gamma\gamma_{2} \widetilde{D}\bigl\Vert (u,v)\bigr\Vert _{Y}>\tilde{ \lambda}_{0} m_{1}\gamma\gamma_{2} \widetilde{D} \bigl\Vert (u,v)\bigr\Vert _{Y}=\bigl\Vert (u,v)\bigr\Vert _{Y}, $$
and so \(\|(u,v)\|_{Y}=\|u\|+\|v\|\ge\|v\|>\|(u,v)\|_{Y}\), which is a contradiction.

Therefore, the boundary value problem (S)-(BC) has no positive solution. □

Theorem 3.3

Assume that (H1) and (H2) hold, and \(c\in(0,1/2)\). If \(g_{0}^{i}, g_{\infty}^{i}>0\) and \(g(t,u,v)>0\) for all \(t\in[c,1-c]\), \(u\ge0\), \(v\ge0\), \(u+v>0\), then there exists a positive constant \(\tilde{\mu}_{0}\) such that, for every \(\mu>\tilde{\mu}_{0}\) and \(\lambda>0\), the boundary value problem (S)-(BC) has no positive solution.

Proof

From the assumptions of the theorem, we deduce that there exists \(m_{2}>0\) such that \(g(t,u,v)\ge m_{2}(u+v)\) for all \(t\in [c,1-c]\) and \(u, v\ge0\). We define \(\tilde{\mu}_{0}=\min \{\frac{1}{\gamma\gamma_{1} m_{2}\widetilde{B}},\frac{1}{\gamma\gamma_{2} m_{2}\widetilde{C}} \}\), where \(\widetilde{B}=\int_{c}^{1-c}J_{2}(s) \,ds\) and \(\widetilde{C}=\int_{c}^{1-c}J_{3}(s) \,ds\). We shall show that, for every \(\mu>\tilde{\mu}_{0}\) and \(\lambda>0\), problem (S)-(BC) has no positive solution.

Let \(\mu>\tilde{\mu}_{0}\) and \(\lambda>0\). We suppose that (S)-(BC) has a positive solution \((u(t),v(t))\), \(t\in[0,1]\).

If \(\widetilde{B}\ge\widetilde{C}\), then \(\tilde{\mu}_{0}=\frac{1}{\gamma \gamma_{1} m_{2}\widetilde{B}}\), and therefore we obtain
$$\begin{aligned} u(c) =&\bigl(T_{1}(u,v)\bigr) (c)=\lambda \int_{0}^{1}G_{1}(c,s)f \bigl(s,u(s),v(s)\bigr) \,ds+\mu \int_{0}^{1}G_{2}(c,s)g \bigl(s,u(s),v(s)\bigr) \,ds \\ \ge&\mu \int_{0}^{1} G_{2}(c,s)g \bigl(s,u(s),v(s)\bigr) \,ds\ge\mu \int_{c}^{1-c}G_{2}(c,s)g \bigl(s,u(s),v(s)\bigr) \,ds \\ \ge&\mu m_{2} \int_{c}^{1-c}G_{2}(c,s) \bigl(u(s)+v(s)\bigr) \,ds\ge\mu m_{2}\gamma_{1} \int _{c}^{1-c}J_{2}(s)\gamma\bigl(\Vert u \Vert +\Vert v\Vert \bigr) \,ds \\ =&\mu m_{2} \gamma\gamma_{1}\widetilde{B}\bigl\Vert (u,v) \bigr\Vert _{Y}. \end{aligned}$$
Then we conclude
$$\Vert u\Vert \ge u(c)\ge\mu m_{2}\gamma\gamma_{1} \widetilde{B}\bigl\Vert (u,v)\bigr\Vert _{Y}>\tilde{ \mu}_{0} m_{2}\gamma\gamma_{1}\widetilde{B}\bigl\Vert (u,v)\bigr\Vert _{Y}=\bigl\Vert (u,v)\bigr\Vert _{Y}, $$
and so \(\|(u,v)\|_{Y}=\|u\|+\|v\|\ge\|u\|>\|(u,v)\|_{Y}\), which is a contradiction.
If \(\widetilde{B} <\widetilde{C}\), then \(\tilde{\mu}_{0}=\frac{1}{\gamma \gamma_{2} m_{2}\widetilde{C}}\), and therefore, we deduce
$$\begin{aligned} v(c) =&\bigl(T_{2}(u,v)\bigr) (c)=\mu \int_{0}^{1}G_{3}(c,s)g \bigl(s,u(s),v(s)\bigr) \,ds+\lambda\int_{0}^{1}G_{4}(c,s)f \bigl(s,u(s),v(s)\bigr) \,ds \\ \ge&\mu \int_{0}^{1} G_{3}(c,s)g \bigl(s,u(s),v(s)\bigr) \,ds\ge\mu \int_{c}^{1-c}G_{3}(c,s)g \bigl(s,u(s),v(s)\bigr) \,ds \\ \ge&\mu m_{2} \int_{c}^{1-c}G_{3}(c,s) \bigl(u(s)+v(s)\bigr) \,ds\ge\mu m_{2}\gamma_{2} \int _{c}^{1-c}J_{3}(s)\gamma\bigl(\Vert u \Vert +\Vert v\Vert \bigr) \,ds \\ =&\mu m_{2} \gamma\gamma_{2}\widetilde{C}\bigl\Vert (u,v) \bigr\Vert _{Y}. \end{aligned}$$
Then we conclude
$$\Vert v\Vert \ge v(c)\ge\mu m_{2}\gamma\gamma_{2} \widetilde{C}\bigl\Vert (u,v)\bigr\Vert _{Y}>\tilde{ \mu}_{0} m_{2}\gamma\gamma_{2}\widetilde{C}\bigl\Vert (u,v)\bigr\Vert _{Y}=\bigl\Vert (u,v)\bigr\Vert _{Y}, $$
and so \(\|(u,v)\|_{Y}=\|u\|+\|v\|\ge\|v\|>\|(u,v)\|_{Y}\), which is a contradiction.

Therefore, the boundary value problem (S)-(BC) has no positive solution. □

Theorem 3.4

Assume that (H1) and (H2) hold, and \(c\in(0,1/2)\). If \(f_{0}^{i}, f_{\infty}^{i}, g_{0}^{i}, g_{\infty}^{i}>0\), and \(f(t,u,v)>0\), \(g(t,u,v)>0\) for all \(t\in[c,1-c]\), \(u\ge0\), \(v\ge0\), \(u+v>0\), then there exist positive constants \(\hat{\lambda}_{0}\) and \(\hat{\mu}_{0}\) such that, for every \(\lambda>\hat{\lambda}_{0}\) and \(\mu>\hat{\mu} _{0}\), the boundary value problem (S)-(BC) has no positive solution.

Proof

From the assumptions of the theorem, we deduce that there exist \(m_{1}, m_{2}>0\) such that \(f(t,u,v)\ge m_{1}(u+v)\), \(g(t,u,v)\ge m_{2}(u+v)\), for all \(t\in[c,1-c]\) and \(u, v\ge0\).

We define \(\hat{\lambda}_{0}=\frac{1}{2\gamma\gamma_{1} m_{1}\widetilde{A}}\) and \(\hat{\mu}_{0}=\frac{1}{2 \gamma\gamma_{2} m_{2}\widetilde{C}}\), where \(\widetilde{A}=\int_{c}^{1-c}J_{1}(s) \,ds\) and \(\widetilde{C}=\int_{c}^{1-c}J_{3}(s) \,ds\). Then, for every \(\lambda>\hat{\lambda}_{0}\) and \(\mu >\hat{\mu}_{0}\), problem (S)-(BC) has no positive solution. Indeed, let \(\lambda>\hat{\lambda}_{0}\) and \(\mu>\hat{\mu}_{0}\). We suppose that (S)-(BC) has a positive solution \((u(t),v(t))\), \(t\in[0,1]\). In a similar manner to that used in the proofs of Theorems 3.2 and 3.3, we obtain
$$\Vert u\Vert \ge u(c)\ge\lambda m_{1}\gamma\gamma_{1} \widetilde{A}\bigl\Vert (u,v)\bigr\Vert _{Y},\qquad \Vert v \Vert \ge v(c)\ge\mu m_{2}\gamma\gamma_{2} \widetilde{C} \bigl\Vert (u,v)\bigr\Vert _{Y}, $$
and so
$$\begin{aligned} \bigl\Vert (u,v)\bigr\Vert _{Y} =&\Vert u\Vert +\Vert v \Vert \ge\lambda m_{1}\gamma\gamma_{1}\widetilde{A}\bigl\Vert (u,v)\bigr\Vert _{Y}+\mu m_{2} \gamma \gamma_{2}\widetilde{C}\bigl\Vert (u,v)\bigr\Vert _{Y} \\ >&\hat{\lambda}_{0} m_{1}\gamma\gamma_{1} \widetilde{A}\bigl\Vert (u,v)\bigr\Vert _{Y}+\hat{ \mu}_{0} m_{2}\gamma\gamma_{2}\widetilde{C}\bigl\Vert (u,v)\bigr\Vert _{Y} \\ =&\frac{1}{2}\bigl\Vert (u,v) \bigr\Vert _{Y}+\frac {1}{2}\bigl\Vert (u,v)\bigr\Vert _{Y}=\bigl\Vert (u,v)\bigr\Vert _{Y}, \end{aligned}$$
which is a contradiction. Therefore, the boundary value problem (S)-(BC) has no positive solution.
We can also define \(\hat{\lambda}_{0}'=\frac{1}{2\gamma\gamma_{2} m_{1}\widetilde{D}}\) and \(\hat{\mu}_{0}'=\frac{1}{2\gamma\gamma_{1} m_{2}\widetilde{B}}\), where \(\widetilde{B}=\int_{c}^{1-c}J_{2}(s) \,ds\) and \(\widetilde{D}=\int_{c}^{1-c}J_{4}(s) \,ds\). Then, for every \(\lambda>\hat{\lambda}_{0}'\) and \(\mu >\hat{\mu}_{0}'\), problem (S)-(BC) has no positive solution. Indeed, let \(\lambda>\hat{\lambda}_{0}'\) and \(\mu>\hat{\mu}'_{0}\). We suppose that (S)-(BC) has a positive solution \((u(t),v(t))\), \(t\in[0,1]\). In a similar manner to that used in the proofs of Theorems 3.2 and 3.3, we obtain
$$\Vert v\Vert \ge v(c)\ge\lambda m_{1}\gamma\gamma_{2} \widetilde{D}\bigl\Vert (u,v)\bigr\Vert _{Y}, \qquad \Vert u \Vert \ge u(c)\ge\mu m_{2}\gamma\gamma_{1} \widetilde{B} \bigl\Vert (u,v)\bigr\Vert _{Y}, $$
and so
$$\begin{aligned} \bigl\Vert (u,v)\bigr\Vert _{Y} =&\Vert u\Vert +\Vert v \Vert \ge\mu m_{2}\gamma\gamma_{1}\widetilde{B}\bigl\Vert (u,v)\bigr\Vert _{Y}+\lambda m_{1} \gamma \gamma_{2}\widetilde{D}\bigl\Vert (u,v)\bigr\Vert _{Y} \\ >&\hat{\mu}_{0}' m_{2}\gamma \gamma_{1}\widetilde{B}\bigl\Vert (u,v)\bigr\Vert _{Y}+ \hat{\lambda}_{0}' m_{1}\gamma \gamma_{2}\widetilde{D}\bigl\Vert (u,v)\bigr\Vert _{Y} \\ =& \frac{1}{2}\bigl\Vert (u,v)\bigr\Vert _{Y}+ \frac {1}{2}\bigl\Vert (u,v)\bigr\Vert _{Y}=\bigl\Vert (u,v)\bigr\Vert _{Y}, \end{aligned}$$
which is a contradiction. Therefore, the boundary value problem (S)-(BC) has no positive solution. □

Remark 3.1

Under the assumptions of Theorem 3.4, we have the following observations.
  1. (a)

    In the case \(\widetilde{A}\ge\widetilde{D}\) and \(\widetilde{B}\le \widetilde{C}\), Theorem 3.4 gives some supplementary information for the domain of λ and μ for which there is no positive solution of (S)-(BC), in comparison to Theorems 3.2 and 3.3, because \(\hat{\lambda}_{0}=\frac {\tilde{\lambda}_{0}}{2}\) and \(\hat{\mu}_{0}=\frac{\tilde{\mu}_{0}}{2}\).

     
  2. (b)

    In the case \(\widetilde{A}\le\widetilde{D}\) and \(\widetilde{B}\ge \widetilde{C}\), Theorem 3.4 gives some supplementary information for the domain of λ and μ for which there is no positive solution of (S)-(BC), in comparison to Theorems 3.2 and 3.3, because \(\hat{\lambda}_{0}'=\frac {\tilde{\lambda}_{0}}{2}\) and \(\hat{\mu}_{0}'=\frac{\tilde{\mu}_{0}}{2}\).

     

4 Examples

Let \(\alpha=7/3\) (\(n=3\)), \(\beta=5/2\) (\(m=3\)), \(H(t)=t^{2}\),
$$K(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} 0,& t\in[0,1/3), \\ 1,& t\in[1/3,2/3), \\ 3/2,& t\in[2/3,1], \end{array}\displaystyle \right . $$
for all \(t\in[0,1]\). Then \(\int_{0}^{1}v(s)\, dH(s)=2\int_{0}^{1}sv(s) \,ds\) and \(\int_{0}^{1}u(s)\, dK(s)=u (\frac{1}{3} )+\frac{1}{2}u (\frac{2}{3} )\).
We consider the system of fractional differential equations
$$(\mathrm{S}_{0})\quad \left \{ \textstyle\begin{array}{l} D_{0+}^{7/3}u(t)+\lambda f(t,u(t),v(t))=0,\quad t\in(0,1), \\ D_{0+}^{5/2}v(t)+\mu g(t,u(t),v(t))=0,\quad t\in(0,1), \end{array}\displaystyle \right . $$
with the boundary conditions
$$(\mathrm{BC}_{0})\quad \left \{ \textstyle\begin{array}{l} u(0)=u'(0)=0,\qquad u(1)=2\int_{0}^{1}sv(s) \,ds, \\ v(0)=v'(0)=0,\qquad v(1)=u (\frac{1}{3} )+\frac{1}{2}u (\frac {2}{3} ). \end{array}\displaystyle \right . $$
Then we deduce \(\Delta\approx0.70153491>0\), \(\theta_{1}(s)=\frac {1}{4-6s+4s^{2}-s^{3}}\), \(\theta_{2}(s)=\frac{1}{3-3s+s^{2}}\) for all \(s\in [0,1]\) (see also [29]). For the functions \(J_{i}\), \(i=1,\ldots,4\), we obtain
$$\begin{aligned}& J_{1}(s)=\left \{ \textstyle\begin{array}{l@{\quad}l} \frac{1}{\Gamma(7/3)}\{ \frac {s(1-s)^{4/3}}{(4-6s+4s^{2}-s^{3})^{1/3}}+ \frac{2}{21\sqrt[3]{3}\Delta }[2(1-s)^{4/3}-2(1-3s)^{4/3} \\ \quad {}+(2-2s)^{4/3}-(2-3s)^{4/3}] \},& 0\le s< 1/3, \\ \frac{1}{\Gamma(7/3)}\{ \frac {s(1-s)^{4/3}}{(4-6s+4s^{2}-s^{3})^{1/3}}+ \frac{2}{21\sqrt[3]{3}\Delta }[2(1-s)^{4/3}+(2-2s)^{4/3} \\ \quad {}-(2-3s)^{4/3}] \}, &1/3\le s< 2/3, \\ \frac{1}{\Gamma(7/3)} \{ \frac {s(1-s)^{4/3}}{(4-6s+4s^{2}-s^{3})^{1/3}}+ \frac{2}{21\sqrt[3]{3}\Delta } [2(1-s)^{4/3}+(2-2s)^{4/3} ] \},& 2/3\le s\le1, \end{array}\displaystyle \displaystyle \displaystyle \right . \\& J_{2}(s)= \frac{16}{3\sqrt{\pi}\Delta} \biggl\{ \frac{1}{7}(1-s)^{3/2}- \frac {1}{7}(1-s)^{7/2}-\frac{1}{5}s(1-s)^{5/2} \biggr\} ,\quad s\in[0,1], \\& J_{3}(s)= \frac{4}{3\sqrt{\pi}} \biggl\{ \frac {s(1-s)^{3/2}}{(3-3s+s^{2})^{1/2}}+ \frac{4(1+\sqrt[3]{2})}{3\sqrt [3]{3}\Delta} \biggl[\frac{1}{7}(1-s)^{3/2}- \frac{1}{7}(1-s)^{7/2}-\frac {1}{5}s(1-s)^{5/2} \biggr] \biggr\} , \\& \quad s\in[0,1], \\& J_{4}(s)=\left \{ \textstyle\begin{array}{l@{\quad}l} \frac{1}{6\sqrt[3]{3}\Delta\Gamma(7/3)} [2(1-s)^{4/3}-2(1-3s)^{4/3}+(2-2s)^{4/3}-(2-3s)^{4/3} ],& 0\le s< 1/3, \\ \frac{1}{6\sqrt[3]{3}\Delta\Gamma(7/3)} [2(1-s)^{4/3}+(2-2s)^{4/3}-(2-3s)^{4/3} ],& 1/3\le s< 2/3, \\ \frac{1}{6\sqrt[3]{3}\Delta\Gamma(7/3)} [2(1-s)^{4/3}+(2-2s)^{4/3} ],& 2/3\le s\le1. \end{array}\displaystyle \displaystyle \displaystyle \displaystyle \displaystyle \displaystyle \displaystyle \displaystyle \displaystyle \displaystyle \displaystyle \right . \end{aligned}$$

For \(c=1/4\), we deduce \(\gamma_{1}=4^{-4/3}\approx0.15749013\), \(\gamma _{2}=\frac{1}{8}\), \(\gamma=\gamma_{2}\). After some computations, we conclude \(A=\int_{0}^{1}J_{1}(s) \,ds\approx0.15972386\), \(\widetilde{A}=\int_{1/4}^{3/4}J_{1}(s) \,ds\approx0.11335535\), \(B=\int_{0}^{1}J_{2}(s) \,ds\approx 0.05446581\), \(\widetilde{B}=\int_{1/4}^{3/4}J_{2}(s) \,ds\approx 0.03892266\), \(C=\int_{0}^{1}J_{3}(s) \,ds\approx0.09198682\), \(\widetilde{C}=\int_{1/4}^{3/4}J_{3}(s) \,ds\approx0.06559293\), \(D=\int_{0}^{1}J_{4}(s) \,ds\approx 0.12885992\), \(\widetilde{D}=\int_{1/4}^{3/4}J_{4}(s) \,ds\approx 0.09158825\).

Example 1

We consider the functions
$$\begin{aligned}& f(t,u,v)= \frac{\sqrt[3]{t} [p_{1}(u+v)+1](u+v)(q_{1}+\sin v)}{u+v+1}, \\& g(t,u,v)= \frac{\sqrt{1-t} [p_{2}(u+v)+1](u+v)(q_{2}+\cos u)}{u+v+1}, \end{aligned}$$
for \(t\in[0,1]\), \(u, v\ge0\), where \(p_{1}, p_{2}>0\) and \(q_{1}, q_{2}>1\).

We obtain \(f_{0}^{s}=q_{1}\), \(g_{0}^{s}=q_{2}+1\), \(f_{\infty}^{s}=p_{1}(q_{1}+1)\), \(g_{\infty}^{s}=p_{2}(q_{2}+1)\), and then we can apply Theorem 3.1. So we conclude that there exist \(\lambda_{0}, \mu_{0}>0\) such that, for every \(\lambda\in(0,\lambda_{0})\) and \(\mu\in(0,\mu_{0})\), the boundary value problem (S0)-(BC0) has no positive solution. By Theorem 3.1, the positive constants \(\lambda_{0}\) and \(\mu_{0}\) are given by \(\lambda_{0}=\min \{\frac{1}{4M_{1}A},\frac{1}{4M_{1}D} \}=\frac{1}{4M_{1}A}\) and \(\mu_{0}=\min \{\frac{1}{4M_{2}B},\frac {1}{4M_{2}C} \}=\frac{1}{4M_{2}C}\). For example, if \(p_{1}=356\), \(p_{2}=482\), \(q_{1}=2\), \(q_{2}=3\), then we obtain \(M_{1}=1\text{,}068\), \(M_{2}=1\text{,}928\), \(\lambda_{0}\approx1.46554\cdot10^{-3}\), and \(\mu_{0}\approx1.40964\cdot 10^{-3}\).

Because \(f_{0}^{i}=\frac{1}{\sqrt[3]{4}}q_{1}\) and \(f_{\infty}^{i}=\frac {1}{\sqrt[3]{4}}p_{1}(q_{1}-1)\), we can apply Theorem 3.2. Then there exists \(\tilde{\lambda}_{0}>0\) such that, for every \(\lambda >\tilde{\lambda}_{0}\) and \(\mu>0\), problem (S0)-(BC0) has no positive solution. From the proof of Theorem 3.2, the positive constant \(\tilde{\lambda}_{0}\) is given by \(\tilde{\lambda} _{0}=\min \{\frac{1}{\gamma\gamma_{1} m_{1}\widetilde{A}},\frac{1}{\gamma \gamma_{2} m_{1}\widetilde{D}} \}\). For example, if \(p_{1}=356\) and \(q_{1}=2\), then we deduce \(m_{1}=\sqrt[3]{2}\) and \(\tilde{\lambda} _{0}\approx355.67332\).

Because \(g_{0}^{i}=\frac{1}{2}(q_{2}+1)\) and \(g_{\infty}^{i}=\frac {1}{2}p_{2}(q_{2}-1)\), we can also apply Theorem 3.3. Then there exists \(\tilde{\mu}_{0}>0\) such that, for every \(\mu>\tilde{\mu}_{0}\) and \(\lambda>0\), problem (S0)-(BC0) has no positive solution. From the proof of Theorem 3.3, the positive constant \(\tilde{\mu}_{0}\) is given by \(\tilde{\mu}_{0}=\min \{\frac {1}{\gamma\gamma_{1} m_{2}\widetilde{B}},\frac{1}{\gamma\gamma_{2} m_{2}\widetilde{C}} \}\). For example, if \(p_{2}=482\) and \(q_{2}=3\), then we obtain \(m_{2}=2\) and \(\tilde{\mu}_{0}\approx487.85746\).

Example 2

We consider the functions
$$f(t,u,v)=p_{1}t^{\tilde{a}}\bigl(u^{2}+v^{2} \bigr),\qquad g(t,u,v)=p_{2}(1-t)^{\tilde{b}}\bigl(e^{u+v}-1 \bigr),\quad t\in[0,1],\ u, v\ge0, $$
where \(\tilde{a}, \tilde{b}, p_{1}, p_{2}>0\).

Because \(g_{0}^{i}=2^{-2\tilde{b}}p_{2}\) and \(g_{\infty}^{i}=\infty\), we can apply Theorem 3.3. Then there exists \(\tilde{\mu}_{0}\) such that, for every \(\mu>\tilde{\mu}_{0}\) and \(\lambda>0\), problem (S0)-(BC0) has no positive solution. For example, if \(p_{2}=\tilde{b}=1\), then we deduce \(m_{2}=\frac{1}{4}\) and \(\tilde{\mu}_{0}\approx3\text{,}902.85965\).

5 Conclusions

In this paper, we give sufficient conditions on λ, μ, f, and g such that the system of nonlinear Riemann-Liouville fractional differential equations (S) with the coupled integral boundary conditions (BC) has no positive solutions. Some examples which illustrate the obtained results are also presented.

Declarations

Acknowledgements

The authors thank the referees for their valuable comments and suggestions. The work of R Luca was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0557.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics, Baylor University
(2)
Department of Mathematics, Gh. Asachi Technical University

References

  1. Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Boston (2012) MATHGoogle Scholar
  2. Das, S: Functional Fractional Calculus for System Identification and Control. Springer, New York (2008) Google Scholar
  3. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) MATHView ArticleGoogle Scholar
  4. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999) MATHGoogle Scholar
  5. Sabatier, J, Agrawal, OP, Machado, JAT (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007) Google Scholar
  6. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993) MATHGoogle Scholar
  7. Agarwal, RP, Andrade, B, Cuevas, C: Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations. Nonlinear Anal., Real World Appl. 11, 3532-3554 (2010) MATHMathSciNetView ArticleGoogle Scholar
  8. Agarwal, RP, Zhou, Y, He, Y: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59, 1095-1100 (2010) MATHMathSciNetView ArticleGoogle Scholar
  9. Aghajani, A, Jalilian, Y, Trujillo, JJ: On the existence of solutions of fractional integro-differential equations. Fract. Calc. Appl. Anal. 15, 44-69 (2012) MATHMathSciNetView ArticleGoogle Scholar
  10. Ahmad, B, Ntouyas, SK: Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip boundary conditions. Electron. J. Differ. Equ. 2012, 98 (2012) MathSciNetView ArticleGoogle Scholar
  11. Ahmad, B, Ntouyas, SK: A note on fractional differential equations with fractional separated boundary conditions. Abstr. Appl. Anal. 2012, Article ID 818703 (2012) MathSciNetView ArticleGoogle Scholar
  12. Ahmad, B, Ntouyas, SK: A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 17(2), 348-360 (2014) MATHMathSciNetView ArticleGoogle Scholar
  13. Ahmad, B, Ntouyas, SK: Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 266, 615-622 (2015) MathSciNetView ArticleGoogle Scholar
  14. Bai, Z: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, 916-924 (2010) MATHMathSciNetView ArticleGoogle Scholar
  15. Balachandran, K, Trujillo, JJ: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal. 72, 4587-4593 (2010) MATHMathSciNetView ArticleGoogle Scholar
  16. El-Shahed, M, Nieto, JJ: Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order. Comput. Math. Appl. 59, 3438-3443 (2010) MATHMathSciNetView ArticleGoogle Scholar
  17. Graef, JR, Kong, L, Kong, Q, Wang, M: Uniqueness of positive solutions of fractional boundary value problems with non-homogeneous integral boundary conditions. Fract. Calc. Appl. Anal. 15, 509-528 (2012) MATHMathSciNetGoogle Scholar
  18. Jiang, D, Yuan, C: The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal. 72, 710-719 (2010) MATHMathSciNetView ArticleGoogle Scholar
  19. Liang, S, Zhang, J: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 71, 5545-5550 (2009) MATHMathSciNetView ArticleGoogle Scholar
  20. Yuan, C: Multiple positive solutions for \((n-1,1)\)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 36 (2010) Google Scholar
  21. Yuan, C, Jiang, D, O’Regan, D, Agarwal, RP: Multiple positive solutions to systems of nonlinear semipositone fractional differential equations with coupled boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2012, 13 (2012) MathSciNetView ArticleGoogle Scholar
  22. Amann, H: Parabolic evolution equations with nonlinear boundary conditions. In: Browder, FE (ed.) Nonlinear Functional Analysis and Its Applications. Proceedings of Symposia in Pure Mathematics, vol. 45, pp. 17-27. Am. Math. Soc., Providence (1986) View ArticleGoogle Scholar
  23. Amann, H: Parabolic evolution equations and nonlinear boundary conditions. J. Differ. Equ. 72, 201-269 (1988) MATHMathSciNetView ArticleGoogle Scholar
  24. Aronson, DG: A comparison method for stability analysis of nonlinear parabolic problems. SIAM Rev. 20, 245-264 (1978) MATHMathSciNetView ArticleGoogle Scholar
  25. Deng, K: Global existence and blow-up for a system of heat equations with nonlinear boundary conditions. Math. Methods Appl. Sci. 18, 307-315 (1995) MATHMathSciNetView ArticleGoogle Scholar
  26. Deng, K: Blow-up rates for parabolic systems. Z. Angew. Math. Phys. 47, 132-143 (1996) MATHMathSciNetView ArticleGoogle Scholar
  27. Lin, Z, Xie, C: The blow-up rate for a system of heat equations with nonlinear boundary conditions. Nonlinear Anal. 34, 767-778 (1998) MATHMathSciNetView ArticleGoogle Scholar
  28. Pedersen, M, Lin, Z: Blow-up analysis for a system of heat equations coupled through a nonlinear boundary condition. Appl. Math. Lett. 14, 171-176 (2001) MATHMathSciNetView ArticleGoogle Scholar
  29. Henderson, J, Luca, R: Positive solutions for a system of fractional differential equations with coupled integral boundary conditions. Appl. Math. Comput. 249, 182-197 (2014) MathSciNetView ArticleGoogle Scholar
  30. Henderson, J, Luca, R, Tudorache, A: On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 18, 361-386 (2015) MATHMathSciNetGoogle Scholar
  31. Henderson, J, Luca, R: Positive solutions for a system of semipositone coupled fractional boundary value problems (submitted) Google Scholar
  32. Henderson, J, Luca, R: Positive solutions for a system of nonlocal fractional boundary value problems. Fract. Calc. Appl. Anal. 16, 985-1008 (2013) MathSciNetView ArticleGoogle Scholar
  33. Henderson, J, Luca, R: Existence and multiplicity of positive solutions for a system of fractional boundary value problems. Bound. Value Probl. 2014, 60 (2014) MathSciNetView ArticleGoogle Scholar
  34. Henderson, J, Luca, R, Tudorache, A: Positive solutions for a fractional boundary value problem. Nonlinear Stud. 22, 1-13 (2015) Google Scholar
  35. Luca, R, Tudorache, A: Positive solutions to a system of semipositone fractional boundary value problems. Adv. Differ. Equ. 2014, 179 (2014) MathSciNetView ArticleGoogle Scholar

Copyright

© Henderson and Luca 2015