# RETRACTED ARTICLE: Levin’s type boundary behaviors for functions harmonic and admitting certain lower bounds

• The Retraction Note to this article has been published in Boundary Value Problems 2020 2020:78

## Abstract

In this paper, we prove Levin’s type boundary behaviors for functions harmonic and admitting certain lower bounds, which extend Pan, Qiao and Deng’s inequalities for analytic functions in a half-space.

## Introduction and results

Let R and $${\mathbf{R}}_{+}$$ be the set of all real numbers and the set of all positive real numbers, respectively. We denote by $${\mathbf{R}}^{n}$$ ($$n\geq2$$) the n-dimensional Euclidean space. A point in $${\mathbf{R}}^{n}$$ is denoted by $$P=(X,x_{n})$$, $$X=(x_{1},x_{2},\ldots,x_{n-1})$$. The Euclidean distance between two points P and Q in $${\mathbf{R}}^{n}$$ is denoted by $$|P-Q|$$. Also $$|P-O|$$ with the origin O of $${\mathbf{R}}^{n}$$ is simply denoted by $$|P|$$. The boundary and the closure of a set S in $${\mathbf{R}}^{n}$$ are denoted by ∂S and , respectively.

We introduce a system of spherical coordinates $$(r,\Theta)$$, $$\Theta=(\theta_{1},\theta_{2},\ldots,\theta_{n-1})$$, in $${\mathbf{R}}^{n}$$ which are related to Cartesian coordinates $$(x_{1},x_{2},\ldots,x_{n-1},x_{n})$$ by $$x_{n}=r\cos\theta_{1}$$.

The unit sphere and the upper half-unit sphere in $${\mathbf{R}}^{n}$$ are denoted by $${\mathbf{S}}^{n-1}$$ and $${\mathbf{S}}^{n-1}_{+}$$, respectively. For simplicity, a point $$(1,\Theta)$$ on $${\mathbf{S}}^{n-1}$$ and the set $$\{\Theta; (1,\Theta)\in\Omega\}$$ for a set Ω, $$\Omega\subset{\mathbf{S}}^{n-1}$$, are often identified with Θ and Ω, respectively. For two sets $$\Xi\subset{\mathbf{R}}_{+}$$ and $$\Omega\subset{\mathbf{S}}^{n-1}$$, the set $$\{(r,\Theta)\in{\mathbf{R}}^{n}; r\in\Xi,(1,\Theta)\in\Omega\}$$ in $${\mathbf{R}}^{n}$$ is simply denoted by $$\Xi\times\Omega$$. In particular, the half-space $${\mathbf{R}}_{+}\times{\mathbf{S}}^{n-1}_{+}=\{(X,x_{n})\in{\mathbf{R}}^{n}; x_{n}>0\}$$ will be denoted by $${T}_{n}$$.

For $$P\in{\mathbf{R}}^{n}$$ and $$r>0$$, let $$B(P,r)$$ denote the open ball with center at P and radius r in $${\mathbf{R}}^{n}$$. $$S_{r}=\partial{B(O,r)}$$. By $$C_{n}(\Omega)$$, we denote the set $${\mathbf{R}}_{+}\times\Omega$$ in $${\mathbf{R}}^{n}$$ with the domain Ω on $${\mathbf{S}}^{n-1}$$. We call it a cone. Then $$T_{n}$$ is a special cone obtained by putting $$\Omega={\mathbf{S}}^{n-1}_{+}$$. We denote the sets $$I\times\Omega$$ and $$I\times\partial{\Omega}$$ with an interval on R by $$C_{n}(\Omega;I)$$ and $$S_{n}(\Omega;I)$$. By $$S_{n}(\Omega; r)$$ we denote $$C_{n}(\Omega)\cap S_{r}$$. By $$S_{n}(\Omega)$$ we denote $$S_{n}(\Omega; (0,+\infty))$$ which is $$\partial{C_{n}(\Omega)}-\{O\}$$.

We use the standard notations $$u^{+}=\max\{u,0\}$$ and $$u^{-}=-\min\{u,0\}$$. Further, we denote by $$w_{n}$$ the surface area $$2\pi^{n/2}\{\Gamma(n/2)\}^{-1}$$ of $${\mathbf{S}}^{n-1}$$, by $${\partial}/{\partial n_{Q}}$$ the differentiation at Q along the inward normal into $$C_{n}(\Omega)$$, by $$dS_{r}$$ the $$(n-1)$$-dimensional volume elements induced by the Euclidean metric on $$S_{r}$$ and by dw the elements of the Euclidean volume in $${\mathbf{R}}^{n}$$.

Let Ω be a domain on $${\mathbf{S}}^{n-1}$$ with smooth boundary. Consider the Dirichlet problem

\begin{aligned} \begin{aligned} &(\Lambda_{n}+\lambda)\varphi=0\quad \text{on } \Omega, \\ &\varphi=0 \quad \text{on } \partial{\Omega}, \end{aligned} \end{aligned}

where $$\Lambda_{n}$$ is the spherical part of the Laplace operator

$$\Delta_{n}=\frac{n-1}{r}\frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial r^{2}}+ \frac{\Lambda_{n}}{r^{2}}.$$

We denote the least positive eigenvalue of this boundary value problem by λ and the normalized positive eigenfunction corresponding to λ by $$\varphi(\Theta)$$,

$$\int_{\Omega}\varphi^{2}(\Theta)\, dS_{1}=1.$$

In order to ensure the existence of λ and smooth $$\varphi(\Theta)$$, we put a rather strong assumption on Ω: if $$n\geq3$$, then Ω is a $$C^{2,\alpha}$$-domain ($$0<\alpha<1$$) on $${\mathbf{S}}^{n-1}$$ surrounded by a finite number of mutually disjoint closed hypersurfaces for the definition of $$C^{2,\alpha}$$-domain. Then $$\varphi\in C^{2}(\overline{\Omega})$$ and $${\partial\varphi}/{\partial n}>0$$ on Ω (here and below, $${\partial}/{\partial n}$$ denotes differentiation along the interior normal).

We note that each function $$r^{\aleph^{\pm}}\varphi(\Theta)$$ is harmonic in $$C_{n}(\Omega)$$, belongs to the class $$C^{2}(C_{n}(\Omega )\backslash\{O\})$$ and vanishes on $$S_{n}(\Omega)$$, where

$$2\aleph^{\pm}=-n+2\pm\sqrt{(n-2)^{2}+4\lambda}.$$

In the sequel, for the sake of brevity, we shall write χ instead of $$\aleph^{+}-\aleph^{-}$$. If $$\Omega={\mathbf{S}}^{n-1}_{+}$$, then $$\aleph^{+}=1$$, $$\aleph^{-}=1-n$$ and $$\varphi(\Theta)=(2n w_{n}^{-1})^{1/2}\cos\theta_{1}$$.

Let $$G_{\Omega}(P,Q)$$ ($$P=(r,\Theta), Q=(t,\Phi)\in C_{n}(\Omega)$$) be the Green function of $$C_{n}(\Omega)$$. Then the ordinary Poisson kernel relative to $$C_{n}(\Omega)$$ is defined by

$$\mathcal {PI}_{\Omega}(P,Q)=\frac{1}{c_{n}}\frac{\partial}{\partial n_{Q}}G_{\Omega}(P,Q),$$

where $$Q\in S_{n}(\Omega)$$, $$c_{n}= 2\pi$$ if $$n=2$$ and $$c_{n}= (n-2)w_{n}$$ if $$n\geq3$$.

The estimate we deal with has a long history which can be traced back to Levin’s type boundary behaviors for functions harmonic from below (see, for example, Levin , p.209).

### Theorem A

Let $$A_{1}$$be a constant, $$u(z)$$ ($$|z|=R$$) be harmonic on $$T_{2}$$and continuous on $${\partial T}_{2}$$. Suppose that

$$u(z)\leq A_{1}R^{\rho}, \quad z\in T_{2}, R>1, \rho>1$$

and

$$\bigl\vert u(z)\bigr\vert \leq A_{1}, \quad R\leq1, z\in{ \overline{T}}_{2}.$$

Then

$$u(z)\geq-A_{1}A_{2}\bigl(1+R^{\rho}\bigr) \sin^{-1}\alpha,$$

where $$z=Re^{i\alpha}\in{T}_{2}$$and $$A_{2}$$is a constant independent of $$A_{1}$$, R, αand the function $$u(z)$$.

Recently, Pan et al.  considered Theorem A in the n-dimensional case and obtained the following result.

### Theorem B

Let $$A_{3}$$be a constant, $$u(P)$$ ($$|P|=R$$) be harmonic on $$T_{n}$$and continuous on $$\overline{T}_{n}$$. If

$$u(P)\leq A_{3}R^{\rho}, \quad P\in T_{n}, R>1, \rho>n-1$$
(1.1)

and

$$\bigl\vert u(P)\bigr\vert \leq A_{3}, \quad R\leq1, P\in \overline{T}_{n},$$
(1.2)

then

$$u(P)\geq-A_{3}A_{4}\bigl(1+R^{\rho}\bigr) \cos^{1-n}\theta_{1},$$

where $$P\in T_{n}$$and $$A_{4}$$is a constant independent of $$A_{3}$$, R, $$\theta_{1}$$and the function $$u(P)$$.

Now we have the following.

### Theorem 1

LetKbe a constant, $$u(P)$$ ($$P=(R,\Theta)$$) be harmonic on $$C_{n}(\Omega)$$and continuous on ̅. If

$$u(P)\leq KR^{\rho(R)}, \quad P=(R,\Theta)\in C_{n}\bigl( \Omega;(1,\infty)\bigr), \rho(R)>\aleph^{+}$$
(1.3)

and

$$u(P)\geq-K, \quad R\leq1, P=(R,\Theta) \in \overline{C_{n}(\Omega)},$$
(1.4)

then

$$u(P)\geq-KM\bigl(1+\rho(R)R^{\rho(R)}\bigr)\varphi^{1-n}\theta,$$

where $$P\in C_{n}(\Omega)$$, $$\rho(R)$$is nondecreasing in $$[1,+\infty)$$andMis a constant independent ofK, R, $$\varphi(\theta)$$and the function $$u(P)$$.

By taking $$\rho(R)\equiv\rho$$, we obtain the following corollary, which generalizes Theorem B to the conical case.

### Corollary

LetKbe a constant, $$u(P)$$ ($$P=(R,\Theta)$$) be harmonic on $$C_{n}(\Omega)$$and continuous on ̅. If

$$u(P)\leq KR^{\rho}, \quad P=(R,\Theta)\in C_{n}\bigl( \Omega;(1,\infty)\bigr), \rho>\aleph^{+}$$

and

$$u(P)\geq-K, \quad R\leq1, P=(R,\Theta) \in \overline{C_{n}(\Omega)},$$

then

$$u(P)\geq-KM\bigl(1+R^{\rho}\bigr)\varphi^{1-n}\theta,$$

where $$P\in C_{n}(\Omega)$$, Mis a constant independent ofK, R, $$\varphi(\theta)$$and the function $$u(P)$$.

### Remark

(see )

From corollary, we know that conditions (1.1) and (1.2) may be replaced with weaker conditions

$$u(P)\leq A_{3}R^{\rho}, \quad P\in T_{n}, R>1, \rho>1$$

and

$$u(P)\geq-A_{3}, \quad R\leq1, P\in\overline{T}_{n},$$

respectively.

## Lemma

Throughout this paper, let M denote various constants independent of the variables in question, which may be different from line to line.

### Lemma 1

(see )

$$\mathcal{PI}_{\Omega}(P,Q)\leq M r^{\aleph^{-}}t^{\aleph^{+}-1}\varphi( \Theta)\frac{\partial\varphi( \Phi)}{\partial n_{\Phi}}$$
(2.1)

for any $$P=(r,\Theta)\in C_{n}(\Omega)$$and any $$Q=(t,\Phi)\in S_{n}(\Omega)$$satisfying $$0<\frac{t}{r}\leq\frac{4}{5}$$;

$$\mathcal{PI}_{\Omega}(P,Q)\leq M\frac{\varphi(\Theta)}{t^{n-1}}\frac{\partial\varphi( \Phi)}{\partial n_{\Phi}}+M \frac{r\varphi(\Theta)}{|P-Q|^{n}}\frac{\partial\varphi( \Phi)}{\partial n_{\Phi}}$$
(2.2)

for any $$P=(r,\Theta)\in C_{n}(\Omega)$$and any $$Q=(t,\Phi)\in S_{n}(\Omega; (\frac{4}{5}r,\frac{5}{4}r))$$.

Let $$G_{\Omega,R}(P,Q)$$be the Green function of $$C_{n}(\Omega,(0,R))$$. Then

$$\frac{\partial G_{\Omega,R}(P,Q)}{\partial R}\leq M r^{\aleph^{+}}R^{\aleph^{-}-1}\varphi(\Theta)\varphi( \Phi),$$
(2.3)

where $$P=(r,\Theta)\in C_{n}(\Omega)$$and $$Q=(R,\Phi)\in S_{n}(\Omega;R)$$.

## Proof of theorem

Applied Carleman’s formula (see ) to $$u=u^{+}-u^{-}$$ gives

\begin{aligned}& \chi\int_{S_{n}(\Omega;R)}\frac{u^{+}\varphi}{R^{1-\aleph^{-}}}\, d S_{R}+\int _{S_{n}(\Omega;(1,R))}u^{+} \biggl(\frac{1}{t^{-\aleph^{-}}}- \frac {t^{\aleph^{+}}}{R^{\chi}} \biggr) \frac{\partial\varphi}{\partial n} \, d\sigma_{Q}+d_{1}+ \frac{d_{2}}{R^{\chi}} \\& \quad =\chi\int_{S_{n}(\Omega;R)}\frac{u^{-}\varphi}{R^{1-\aleph^{-}}}\, d S_{R}+\int _{S_{n}(\Omega;(1,R))}u^{-} \biggl(\frac{1}{t^{-\aleph^{-}}}- \frac {t^{\aleph^{+}}}{R^{\chi}} \biggr) \frac{\partial\varphi}{\partial n} \, d\sigma_{Q}. \end{aligned}
(3.1)

It immediately follows from (1.3) that

$$\chi\int_{S_{n}(\Omega;R)}\frac{u^{+}\varphi}{R^{1-\aleph^{-}}}\, d S_{R} \leq MKR^{\rho(R)-\aleph^{+}}$$
(3.2)

and

\begin{aligned}& \int_{S_{n}(\Omega;(1,R))}u^{+} \biggl(\frac{1}{t^{-\aleph^{-}}}- \frac {t^{\aleph^{+}}}{R^{\chi}} \biggr) \frac{\partial\varphi}{\partial n} \, d\sigma_{Q} \\& \quad \leq MK\int_{1}^{R} \biggl(r^{\rho(r)-\aleph^{+}-1}- \frac{r^{\rho(r)-\aleph^{-}-1}}{R^{\chi }} \biggr) \frac{\partial\varphi}{\partial n} \, dr \\& \quad \leq MKR^{\rho(R)-\aleph^{+}}. \end{aligned}
(3.3)

Notice that

$$d_{1}+\frac{d_{2}}{R^{\chi}} \leq MKR^{\rho(R)-\aleph^{+}}.$$
(3.4)

Hence from (3.1), (3.2), (3.3) and (3.4) we have

$$\chi\int_{S_{n}(\Omega;R)}\frac{u^{-}\varphi}{R^{1-\aleph^{-}}} \, d S_{R} \leq MKR^{\rho(R)-\aleph^{+}}$$
(3.5)

and

$$\int_{S_{n}(\Omega;(1,R))}u^{-} \biggl(\frac{1}{t^{-\aleph^{-}}}- \frac {t^{\aleph^{+}}}{R^{\chi}} \biggr) \frac{\partial\varphi}{\partial n} \, d\sigma_{Q} \leq MKR^{\rho(R)-\aleph^{+}}.$$
(3.6)

And (3.6) gives

\begin{aligned}& \int_{S_{n}(\Omega;(1,R))}u^{-}t^{\aleph^{-}}\frac{\partial \varphi}{\partial n} \, d\sigma_{Q} \\& \quad \leq MK \frac{(\rho(R)+1)^{\chi}}{(\rho(R)+1)^{\chi}-(\rho(R))^{\chi}} \biggl(\frac{\rho(R)+1}{\rho(R)}R \biggr)^{\rho(\frac{\rho(R)+1}{\rho (R)}R)-\aleph^{+}}. \end{aligned}

Thus

$$\int_{S_{n}(\Omega;(1,R))}u^{-}t^{\aleph^{-}}\frac{\partial\varphi }{\partial n} \, d\sigma_{Q} \leq MK\rho(R)R^{\rho(R)-\aleph^{+}}.$$
(3.7)

By the Riesz decomposition theorem (see ), for any $$P=(r,\Theta)\in C_{n}(\Omega;(0,R))$$, we have

\begin{aligned} -u(P) =&\int_{S_{n}(\Omega;(0,R))}\mathcal{PI}_{\Omega}(P,Q)-u(Q)\, d \sigma _{Q} \\ &{}+\int_{S_{n}(\Omega;R)}\frac{\partial G_{\Omega,R}(P,Q)}{\partial R}-u(Q)\, dS_{R}. \end{aligned}
(3.8)

Now we distinguish three cases.

Case 1. $$P=(r,\Theta)\in C_{n}(\Omega;(\frac {5}{4},\infty))$$ and $$R=\frac{5}{4}r$$.

Since $$-u(x)\leq u^{-}(x)$$, we obtain

$$-u(P)=\sum_{i=1}^{4} I_{i}(P)$$
(3.9)

from (3.8), where

\begin{aligned}& I_{1}(P)=\int_{S_{n}(\Omega;(0,1])}\mathcal {PI}_{\Omega}(P,Q)-u(Q) \, d\sigma_{Q}, \\& I_{2}(P)=\int_{S_{n}(\Omega;(1,\frac{4}{5}r])}\mathcal {PI}_{\Omega}(P,Q)-u(Q) \, d\sigma_{Q}, \\& I_{3}(P)=\int_{S_{n}(\Omega;(\frac{4}{5}r,R))}\mathcal {PI}_{\Omega}(P,Q)-u(Q) \, d\sigma_{Q}, \\& I_{4}(P)=\int_{S_{n}(\Omega;R)}\mathcal {PI}_{\Omega}(P,Q)-u(Q) \, d\sigma_{Q}. \end{aligned}

Then from (2.1) and (3.7) we have

$$I_{1}(P)\leq MK\varphi(\Theta)$$
(3.10)

and

$$I_{2}(P) \leq MK\rho(R)R^{\rho(R)}\varphi(\Theta).$$
(3.11)

By (2.2), we consider the inequality

$$I_{3}(P)\leq I_{31}(P)+I_{32}(P),$$
(3.12)

where

$$I_{31}(P)=M\int_{S_{n}(\Omega;(\frac{4}{5}r,R))}\frac{-u(Q) \varphi(\Theta)}{t^{n-1}} \frac{\partial\varphi( \Phi)}{\partial n_{\Phi}}\, d\sigma_{Q}$$

and

$$I_{32}(P)=Mr\varphi(\Theta)\int_{S_{n}(\Omega;(\frac{4}{5}r,R))} \frac{-u(Q) r\varphi(\Theta)}{|P-Q|^{n}} \frac{\partial\varphi( \Phi)}{\partial n_{\Phi}}\, d\sigma_{Q}.$$

We first have

$$I_{31}(P) \leq MK\rho(R)R^{\rho(R)}\varphi(\Theta)$$
(3.13)

from (3.7). Next, we shall estimate $$I_{32}(P)$$. Take a sufficiently small positive number k such that

$$S_{n}\biggl(\Omega;\biggl(\frac{4}{5}r,R\biggr)\biggr)\subset B \biggl(P,\frac{1}{2}r\biggr)$$

for any $$P=(r,\Theta)\in\Pi(k)$$, where

$$\Pi(k)=\Bigl\{ P=(r,\Theta)\in C_{n}(\Omega); \inf_{(1,z)\in\partial\Omega} \bigl\vert (1,\Theta)-(1,z)\bigr\vert < k, 0< r< \infty\Bigr\} ,$$

and divide $$C_{n}(\Omega)$$ into two sets $$\Pi(k)$$ and $$C_{n}(\Omega)-\Pi(k)$$.

If $$P=(r,\Theta)\in C_{n}(\Omega)-\Pi(k)$$, then there exists a positive $$k'$$ such that $$|P-Q|\geq{k}'r$$ for any $$Q\in S_{n}(\Omega)$$, and hence

$$I_{32}(P) \leq MK\rho(R)R^{\rho(R)}\varphi(\Theta),$$
(3.14)

which is similar to the estimate of $$I_{31}(P)$$.

We shall consider the case $$P=(r,\Theta)\in\Pi(k)$$. Now put

$$H_{i}(P)=\biggl\{ Q\in S_{n}\biggl(\Omega;\biggl( \frac{4}{5}r,R\biggr)\biggr); 2^{i-1}\delta(P) \leq|P-Q|< 2^{i}\delta(P)\biggr\} ,$$

where

$$\delta(P)=\inf_{Q\in \partial{C_{n}(\Omega)}}|P-Q|.$$

Since

$$S_{n}(\Omega)\cap\bigl\{ Q\in{\mathbf{R}}^{n}: |P-Q|< \delta(P)\bigr\} =\varnothing,$$

we have

$$I_{32}(P)=M\sum_{i=1}^{i(P)}\int _{H_{i}(P)}\frac{-u(Q)r\varphi(\Theta)}{|P-Q|^{n}}\frac {\partial \varphi( \Phi)}{\partial n_{\Phi}}\, d \sigma_{Q},$$

where $$i(P)$$ is a positive integer satisfying $$2^{i(P)-1}\delta(P)\leq\frac{r}{2}<2^{i(P)}\delta(P)$$.

Since $$r\varphi(\Theta)\leq M\delta(P)$$ ($$P=(r,\Theta)\in C_{n}(\Omega)$$), similar to the estimate of $$I_{31}(P)$$ we obtain

$$\int_{H_{i}(P)}\frac{-u(Q)r\varphi(\Theta)}{|P-Q|^{n}}\frac{\partial \varphi( \Phi)}{\partial n_{\Phi}}d \sigma_{Q}\leq MK\rho(R)R^{\rho(R)}\varphi^{1-n}(\Theta)$$

for $$i=0,1,2,\ldots,i(P)$$.

So

$$I_{32}(P)\leq MK\rho(R)R^{\rho(R)}\varphi^{1-n}( \Theta).$$
(3.15)

From (3.12), (3.13), (3.14) and (3.15) we see that

$$I_{3}(P)\leq MK\rho(R)R^{\rho(R)}\varphi^{1-n}( \Theta).$$
(3.16)

On the other hand, we have from (2.3) and (3.5) that

$$I_{4}(P) \leq MKR^{\rho(R)}\varphi(\Theta).$$
(3.17)

We thus obtain from (3.10), (3.11), (3.16) and (3.17) that

$$-u(P)\leq MK\bigl(1+\rho(R)R^{\rho(R)}\bigr)\varphi^{1-n}(\Theta).$$
(3.18)

Case 2. $$P=(r,\Theta)\in C_{n}(\Omega;(\frac{4}{5},\frac{5}{4}])$$ and $$R=\frac{5}{4}r$$.

Equation (3.8) gives that $$-u(P)= I_{1}(P)+I_{5}(P)+I_{4}(P)$$, where $$I_{1}(P)$$ and $$I_{4}(P)$$ are defined in Case 1 and

$$I_{5}(P)=\int_{S_{n}(\Omega;(1,R))}\mathcal {PI}_{\Omega}(P,Q)-u(Q) \, d\sigma_{Q}.$$

Similar to the estimate of $$I_{3}(P)$$ in Case 1 we have

$$I_{5}(P)\leq MK\rho(R)R^{\rho(R)}\varphi^{1-n}( \Theta),$$
(3.19)

which together with (3.10) and (3.17) gives (3.18).

Case 3. $$P=(r,\Theta)\in C_{n}(\Omega;(0,\frac{4}{5}])$$.

It is evident from (1.4) that we have $$-u\leq K$$, which also gives (3.18).

From (3.18) we finally have

$$u(P)\geq -KM\bigl(1+\rho(R)R^{\rho(R)}\bigr)\varphi^{1-n}\theta,$$

which is the conclusion of Theorem 1.

## Change history

• ### 14 April 2020

The Editors-in-Chief have retracted this article  because it significantly overlaps with a previously published article by Pang et al. . The article also shows evidence of authorship manipulation. The identity of the corresponding author could not be verified; the University of Ioannina have confirmed that Mohamed Vetro has not been affiliated with their institution. The authors have not responded to correspondence regarding this retraction.

## References

1. 1.

Levin, B: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150. Am. Math. Soc., Providence (1996)

2. 2.

Pan, G, Qiao, L, Deng, G: A lower estimate of harmonic functions. Bull. Iran. Math. Soc. 40(1), 1-7 (2014)

3. 3.

Azarin, V: Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone. Transl. Am. Math. Soc. 80(2), 119-138 (1969)

4. 4.

Qiao, L, Deng, GT: Growth properties of modified α-potentials in the upper-half space. Filomat 27(4), 703-712 (2013)

5. 5.

Qiao, L, Deng, GT: Growth of certain harmonic functions in an n-dimensional cone. Front. Math. China 8(4), 891-905 (2013)

6. 6.

Qiao, L: Integral representations for harmonic functions of infinite order in a cone. Results Math. 61(1), 63-74 (2012)

7. 7.

Rashkovskii, A, Ronkin, L: Subharmonic functions of finite order in a cone. I. General theory. Teor. Funkc. Funkc. Anal. Ih Prilozh. 54(3), 74-89 (1990)

8. 8.

Yoshida, H: Harmonic majorant of a radial subharmonic function on a strip and their applications. Int. J. Pure Appl. Math. 30(2), 259-286 (2006)

## Acknowledgements

This paper was written while the corresponding author was at the Department of Mathematics of the University of Ioannina, as a visiting professor.

## Author information

Authors

### Corresponding author

Correspondence to Mohamed Vetro.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

The authors read and approved the final manuscript.

The Editors-in-Chief have retracted this article because it significantly overlaps with a previously published article by Pang et al. The article also shows evidence of authorship manipulation. The identity of the corresponding author could not be verified; the University of Ioannina have confirmed that Mohamed Vetro has not been affiliated with their institution. The authors have not responded to correspondence regarding this retraction.

## Rights and permissions 