- Research
- Open access
- Published:
Local well-posedness of generalized BBM equations with generalized damping on 1D torus
Boundary Value Problems volume 2015, Article number: 227 (2015)
Abstract
We consider the periodic initial value problem associated to the generalized Benjamin-Bona-Mahony equation with generalized damping on the one dimensional torus. In contrast to the classical BBM equation, the main difference is that the generalized equation contains two nonlocal operators, and the main difficulty comes from two nonlocal operators. By the fixed point theorem, we prove that the periodic initial value problem is locally well-posed. We also prove that if the solution exists globally in time, it exhibits some asymptotic behavior.
1 Introduction
The classical Benjamin-Bona-Mahony (BBM) equation
was proposed in [1] as a model for propagation of long waves which incorporates nonlinear dispersive and dissipative effects. It has extensively been studied in the recent literature; see for example [1–10] on the existence and uniqueness of solutions and [11–17] on the global attractors and references therein.
In this paper, we consider the periodic initial value problem of generalized BBM equations with generalized damping on the 1D torus \(\mathbb{T}=\mathbb{R}/2\pi\mathbb{Z}\):
where the two nonlocal operators are defined by
and \(\widehat{u}(k)\) is the kth Fourier coefficient of \(u(t,x)\) in x.
For \(\alpha=1\), the generalized damping becomes a parabolic damping,
For \(\alpha=0\), it is a weak damping,
For example, Wang [18] considered the damped BBM equation \(u_{t}-u_{txx}+\gamma(u-u_{xx})+uu_{x}=f(x)\) (Introduction, p.134) and the BBM equation with different damping coefficients \(u_{t}-u_{txx}+\gamma u-\nu u_{xx}+uu_{x}=f(x)\) (Remark 3.2, p.142).
In fact, one can consider more general damping terms. For example, Chehab et al. [19] studied the long-time behavior of the solution of a damped BBM equation
with
and \((\gamma_{k})_{k\in\mathbb{Z}}\) are positive real numbers.
In the absence of fractional damping \(M_{\alpha}u\), Carvajal and Panthee [20] proved that the Cauchy problem
is ill-posed for data with lower order Sobolev regularity and in a certain range of the Sobolev regularity, even if the solution exists globally in time, it fails to be smooth.
In this paper we study the generalized BBM equations with the fractional damping terms. In contrast to the classical BBM equation, the main difference is that equation (1.2) contains two nonlocal operators, its dissipation is weaker than the classical BBM equation. In the study of the periodic initial value problem (1.2), the main difficulty is that \(L_{p}\) and \(M_{\alpha}\) are nonlocal operators. By the fixed point theorem and the Fourier analysis method, similar to [21–23], we prove the local well-posedness of the solution to the problem (1.2).
2 Local well-posedness
We define a space
with the norm
Then we can obtain the local existence and uniqueness of the solution to the periodic initial value problem (1.2).
Theorem 2.1
Assume \(\alpha\in(\frac{1}{2}, \frac {p+1}{2}]\). If \(u_{0}(x)\in\dot{H}^{\alpha}(\mathbb{T})\), there exist a constant \(T=C_{0}(|u_{0}|_{\alpha})>0\) and a unique solution \(u(t,x)\in C([0,T], \dot{H}^{\alpha}(\mathbb{T}))\). Moreover, for any constant \(M>0\), \(|u_{0}|_{\alpha}\leq M\), \(|v_{0}|_{\alpha}\leq M\), there exists a constant \(C_{1}>0\) such that the solutions \(u(t,x)\), \(v(t,x)\) of the periodic initial value problem (1.2) with the initial data \(u_{0}(x)\in\dot{H}^{\alpha}(\mathbb{T})\) and \(v_{0}(x)\in\dot{H}^{\alpha}(\mathbb{T})\), respectively, satisfy
Proof
We first write equation (1.2) in the following form:
where
Then we get
where
We define a map
and a closed ball
We now prove that Φ has a unique fixed point in \(\overline {B}(\mathbb{T})\).
Step one: Φ is onto, that is, for \(u(t)\in\overline{B}(\mathbb {T})\) we have \(\Phi(u(t))\in\overline{B}(\mathbb{T})\).
According to the definition of the norm \(|u(t)|_{\alpha}\), we get
and
the last inequality comes from the fact that \(\dot{H}^{\alpha}(\mathbb {T})\) is an algebra for \(\alpha>\frac{1}{2}\).
Putting the above two inequalities into (2.6) we have
Since \(u(t)\in\overline{B}(\mathbb{T})\) and
we have \(|u(t)|_{\alpha}\leq4|u_{0}|_{\alpha}\) and
Therefore, for \(T\in(0,\frac{1}{16C|u_{0}|_{\alpha}})\), we have \(\Phi (u(t))\in\overline{B}(\mathbb{T})\) for \(u(t)\in\overline{B}(\mathbb{T})\).
Step two: Φ is a contractive mapping on \(\overline{B}(\mathbb{T})\).
Let \(u(t), v(t)\in\overline{B}(\mathbb{T})\). Since
due to \(u(t), v(t)\in\overline{B}(\mathbb{T})\), we have
that is,
Therefore, Φ is a contractive mapping on \(\overline{B}(\mathbb {T})\) if \(4\sqrt{2CT(|u_{0}|^{2}_{\alpha}+|v_{0}|^{2}_{\alpha})}<1\), that is,
Thanks to the Banach fixed point theorem, Φ has a unique fixed point \(u(t)\) such that \(u(t)=\Phi(u(t))\), that is, there exists a unique solution of the periodic initial value problem (1.2).
Step three: the continuity of solution with the initial data.
Let \(u(t)\) and \(v(t)\) be solutions of the periodic initial value problem (1.2) with the initial data \(u_{0}\) and \(v_{0}\), respectively, such that \(|u_{0}|_{\alpha}\leq M\), \(|v_{0}|_{\alpha}\leq M\). For \(t\in[0,T]\), the Duhamel principle gives us the following formula:
hence
if \(T<\frac{1}{8C_{0}M}\), there exists a constant \(C_{1}=\frac {1}{1-8C_{0}MT}>0\) such that
The proof is complete. □
3 Asymptotic behavior of the solution
We first consider the corresponding problem with the linear equation
If \(u(t)\in L^{2}(\mathbb{T})\), \(\forall t>0\), then the kth Fourier coefficient \(\widehat{u}_{k}(t)\) of \(u(t,x)\) in x satisfies
that is,
Therefore, we have
Theorem 3.1
If \(u_{0}(x)\in\dot{H}^{\frac {p+1}{2}}(\mathbb{T})\), then the unique solution \(u(t,x)\) of the periodic initial value problem (3.1) satisfies
Furthermore, we have
Proof
Equation (3.2) implies that
On the other hand, for \(0<\alpha<\frac{p+1}{2}\) we have
where
Since the function \(xe^{-xt}\) is uniformly bounded by \(\frac{1}{et}\), we have
For \(\alpha=\frac{p+1}{2}\), we have
The proof is complete. □
We now deal with the nonlinear equation (1.2), that is, \(u_{t}+L_{p}u_{t}+u_{x}+uu_{x}+M_{\alpha}u=0\). We can find similar kind of decreasing properties but less explicit than in the linear case.
Theorem 3.2
If \(u_{0}(x)\in\dot{H}^{\frac {p+1}{2}}(\mathbb{T})\), then the unique solution \(u(t,x)\) of the periodic initial value problem (1.2) satisfies
Proof
Since \(\int_{\mathbb{T}}uu_{x}\,dx=0\), \(\int_{\mathbb {T}}u^{2}u_{x}\,dx=0\), and
The equation and zero mean condition in (1.2) imply that
hence
It implies that \(\sum_{k\in\mathbb{Z}\setminus\{0\} }(1+|k|^{p+1})|\widehat{u}_{k}(t)|^{2}\) is decreasing in t, so we have
Therefore,
Equation (3.15) and \(u_{0}(x)\in\dot{H}^{\frac{p+1}{2}}\) lead to \(u(t)\in\dot{H}^{\frac{p+1}{2}}\) and then \(u(t)\in\dot{H}^{\alpha }\) for \(\frac{1}{2}<\alpha\leq\frac{p+1}{2}\).
On the other hand, (3.13) implies that \(\sum_{k\in\mathbb {Z}\setminus\{0\}}(1+|k|^{p+1})|\widehat{u}_{k}(t)|^{2}\) is decreasing in t and bounded below by zero, then the limit
exists, we denote it by A.
Denote
If \(B>0\), for large enough t, we have \(|u(t)|_{\alpha}^{2}>B/2\), then there is a constant \(T>0\) such that
hence
and then
This contradiction leads to \(\lim_{t\rightarrow+\infty}|u(t)|_{\alpha }^{2}=B=0\), that is,
then \(\forall k\in\mathbb{Z}\), \(\lim_{t\rightarrow+\infty}|\widehat {u}_{k}(t)|^{2}=0\), therefore we have
and
The proof is complete. □
Remark 3.1
This paper gives the local well-posedness for the subcritical index \(\alpha>\frac{1}{2}\). The interesting case would be to consider the supercritical case \(0<\alpha<\frac{1}{2}\) and the critical case \(\alpha=\frac{1}{2}\). In the supercritical case \(0<\alpha<\frac{1}{2}\), there will be less dissipation, so the dispersive part comes to play a principal role. In the cases \(0<\alpha <\frac{1}{2}\) and \(\alpha=\frac{1}{2}\), \(\dot{H}^{\alpha}(\mathbb{T})\) is not an algebra, we must find another way to establish the estimates on the nonlinear term. We will consider the supercritical case in future work.
References
Benjamin, TB, Bona, JL, Mahony, JJ: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. 272, 47-78 (1972)
Avrin, J: The generalized Benjamin-Bona-Mahony equation in \(R^{n}\) with singular initial data. Nonlinear Anal. 11, 139-147 (1987)
Avrin, J, Goldstein, JA: Global existence for the Benjamin-Bona-Mahony equation in arbitrary dimensions. Nonlinear Anal. 9, 861-865 (1985)
Bona, JL, Bryant, PJ: A mathematical model for long waves generated by wavemakers in nonlinear dispersive systems. Proc. Camb. Philos. Soc. 73, 391-405 (1973)
Bona, JL, Dougalis, VA: An initial and boundary value problem for a model equation for propagation of long waves. J. Math. Anal. Appl. 75, 503-522 (1980)
Chen, YM: Remark on the global existence for the generalized Benjamin-Bona-Mahony equations in arbitrary dimension. Appl. Anal. 30, 1-15 (1988)
Goldstein, JA, Wichnoski, BJ: On the Benjamin-Bona-Mahony equation in higher dimensions. Nonlinear Anal. 4, 665-675 (1980)
Guo, YT, Wang, M, Tang, YB: Higher regularity of global attractor for a damped Benjamin-Bona-Mahony equation on R. Appl. Anal. 94(9), 1766-1783 (2015)
Medeiros, LA, Miranda, MM: Weak solutions for a nonlinear dispersive equation. J. Math. Anal. Appl. 59, 432-441 (1977)
Medeiros, LA, Menzala, GP: Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation. SIAM J. Math. Anal. 8, 792-799 (1977)
Astaburuaga, MA, Bisognin, E, Bisognin, V, Fernandez, C: Global attractors and finite dimensionality for a class of dissipative equations of BBM’s type. Electron. J. Differ. Equ. 1998, 25 (1998)
Celebi, AO, Kalantarov, VK, Polat, M: Attractors for the generalized Benjamin-Bona-Mahony equation. J. Differ. Equ. 157, 439-451 (1999)
Chueshov, I, Polat, M, Siegmund, S: Gevrey regularity of global attractor for generalized Benjamin-Bona-Mahony equation. Mat. Fiz. Anal. Geom. 11, 226-242 (2004)
Stanislavova, M, Stefanov, A, Wang, B: Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on \(R^{3}\). J. Differ. Equ. 219, 451-483 (2005)
Wang, B: Regularity of attractors for the Benjamin-Bona-Mahony equation. J. Phys. A 31, 7635-7645 (1998)
Wang, B, Fussner, DW, Bi, C: Existence of global attractors for the Benjamin-Bona-Mahony equation in unbounded domains. J. Phys. A 40, 10491-10504 (2007)
Wang, B, Yang, W: Finite dimensional behaviour for the Benjamin-Bona-Mahony equation. J. Phys. A 30, 4877-4885 (1997)
Wang, M: Long time dynamics for a damped Benjamin-Bona-Mahony equation in low regularity. Nonlinear Anal. TMA 105, 134-144 (2014)
Chehab, JP, Garnier, P, Mammeri, Y: Long-time behavior of solutions of a BBM equation with generalized damping (2014) arXiv:1402.5009
Carvajal, X, Panthee, M: On ill-posedness for the generalized Benjamin-Bona-Mahony equation. Discrete Contin. Dyn. Syst. 34(11), 4565-4576 (2014)
Wang, M, Tang, YB: Attractors in \(H^{2}\) and \(L^{2p-2}\) for reaction diffusion equations on unbounded domains. Commun. Pure Appl. Anal. 12(2), 1111-1121 (2013)
Wang, M, Tang, YB: On dimension of the global attractor for 2D quasi-geostrophic equations. Nonlinear Anal., Real World Appl. 14, 1887-1895 (2013)
Wang, M, Tang, YB: Long time dynamics of 2D quasi-geostrophic equations with damping in \(L^{p}\). J. Math. Anal. Appl. 412, 866-877 (2014)
Acknowledgements
The authors are grateful to the anonymous referees for helpful comments and suggestions that greatly improved the presentation of this paper. This work was supported by National Natural Science Foundation of China (Grant Nos. 11471129 and 11272277).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
JK carried out the nonlocal operator, YG carried out the Benjamin-Bona-Mahony equation, and YT carried out the well-posedness. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Kang, J., Guo, Y. & Tang, Y. Local well-posedness of generalized BBM equations with generalized damping on 1D torus. Bound Value Probl 2015, 227 (2015). https://doi.org/10.1186/s13661-015-0494-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-015-0494-2