 Research
 Open Access
 Published:
Positive solutions of discrete Neumann boundary value problems with signchanging nonlinearities
Boundary Value Problems volume 2015, Article number: 231 (2015)
Abstract
Our concern is the existence of positive solutions of the discrete Neumann boundary value problem
where \(f: [1,T]_{\mathbb{Z}}\times\mathbb{R}^{+}\to\mathbb{R}\) is a signchanging function. By using the GuoKrasnosel’skiĭ fixed point theorem, the existence and multiplicity of positive solutions are established. The nonlinear term \(f(t,z)\) may be unbounded below or nonpositive for all \((t,z)\in[1,T]_{\mathbb{Z}}\times\mathbb{R}^{+}\).
Introduction
For \(a, b\in\mathbb{Z}\) with \(a< b\), let \([a,b]_{\mathbb{Z}}=\{a, a+1, a+2,\ldots,b1, b\}\). We consider the following discrete Neumann boundary value problem:
where \(T>1\) is a given positive integer, \(\Delta u(t)=u(t+1)u(t)\). Our purpose is to establish existence results for positive solutions of (1.1) when the nonlinearity term \(f: [1,T]_{\mathbb{Z}}\times \mathbb{R}^{+}\to\mathbb{R}\) is a signchanging function.
In recent years, positive solutions of boundary value problems for difference equations have been widely studied. See [1–14] and the references therein. However, little work has been done that has referred to the existence of positive solutions for discrete boundary value problems with signchanging nonlinearities (see [15]).
Usually, in order to obtain positive solutions of semipositone problems for ordinary differential equations or difference equations by using fixed point methods, the nonlinearity terms need to be bounded below and ultimately positive. For example, Anuradha et al. [16] studied the following problem:
where \(g: [a,b]\times\mathbb{R}^{+}\rightarrow\mathbb{R}\) is continuous, bounded below (i.e., \(g(t,z)+M>0\) for some \(M>0\)), and \(\lim_{z\rightarrow \infty}\frac{g(t,z)}{z}=\infty\) uniformly for \(t\in[\alpha, \beta]\subset(a,b)\). Motivated by the method in [16], the first author and Xu [15] discussed its discrete analog and the nonlinearity term also required boundedness below, as well as a superlinear condition at ∞. We also refer to [17–26] for some references.
In this paper, our interest is with the existence and multiplicity of positive solutions of (1.1), where \(f(t,z)\) may be nonpositive or unbounded below for all \((t,z)\in[1,T]_{\mathbb{Z}}\times\mathbb {R}^{+}\). For this purpose, we make our basic assumptions as follows.
 (C1):

\(f: [1,T]_{\mathbb{Z}}\times\mathbb{R}^{+}\to\mathbb{R}\) is continuous;
 (C2):

there exists a function \(h:[1,T]_{\mathbb{Z}}\to\mathbb {R}^{+}\) with \(h(t)\not\equiv0\) on \([1,T]_{\mathbb{Z}}\), and a constant number \(L>0\), such that
$$\begin{aligned} f(t,z)+Lz+h(t)\geq0,\quad (t,z)\in[1,T]_{\mathbb{Z}}\times \mathbb{R}^{+}. \end{aligned}$$(1.2)
Under (C1) and (C2), we give some sufficient conditions such that (1.1) has at least one positive solution and two positive solutions, respectively. Under these conditions, \(f(t,z)\) is allowed to meet one of the following cases:

(1)
\(f(t,z)\) may be unbounded below and even be nonpositive for all \((t,z)\in[1,T]_{\mathbb{Z}}\times\mathbb{R}^{+}\) (see the first parts of Theorems 3.1 and 3.3, in which the existence of at least one positive solution is presented);

(2)
\(f(t,z)\) is ultimately nonpositive, i.e., \(f(t,z)\leq 0\) for all \(t\in[1,T]_{\mathbb{Z}}\) and \(z>0\) sufficiently large (see the second part of Theorem 3.1, in which the existence of at least two positive solutions is presented);

(3)
\(f(t,z)\) is ultimately nonnegative, i.e., \(f(t,z)\geq 0\) for all \(t\in[1,T]_{\mathbb{Z}}\) and \(z>0\) sufficiently large, which implies that \(f(t,z)\) is bounded below (see the second part of Theorem 3.3, in which the existence of at least two positive solutions is presented);

(4)
\(\lim_{z\rightarrow \infty}\frac{f(t,z)}{z}=0\) uniformly for \(t\in[1,T]_{\mathbb{Z}}\), which implies that \(f(t,z)\) may be either bounded or unbounded below, and that \(f(t,z)\) may be ultimately nonpositive or nonnegative or oscillating (see Corollary 3.2, in which the existence of at least two positive solutions is presented);

(5)
\(\lim_{z\rightarrow \infty}\frac{f(t,z)}{z}=\infty\) uniformly for \(t\in[1,T]_{\mathbb {Z}}\), which is a special case of (3) and implies that \(f(t,z)\) is bounded below (see Corollary 3.4, in which the existence of at least two positive solutions is presented).
The idea of this paper comes from the method in [27] by Henderson and Kosmatov, in which the Neumann boundary value problem of ordinary differential equation at resonance
was first studied. The nonlinear term \(f(t,z)\) satisfied a similar inequality as (1.2). The problem (1.3) was transformed into a nonresonant positone problem and an existence result for at least one positive solution was obtained by means of the GuoKrasnosel’skiĭ fixed point theorem. In our results, we present not only the existence, but also the multiplicity of positive solutions for the discrete Neumann boundary value problem (1.1).
The remaining part of this paper is organized as follows. In Section 2, we provide some preliminary results for later use. Then, in Section 3, we show and prove the existence and multiplicity of positive solutions for boundary value problem (1.1).
Preliminaries
For convenience, let
Consider the linear Neumann boundary value problem
The following lemma is easy to check.
Lemma 2.1
Problem (2.1) has unique solution
where
In addition, \(G(t,s)>0\) for all \((t,s)\in[0,T+1]_{\mathbb{Z}}\times [1,T]_{\mathbb{Z}}\).
Let
It is easy to see that \(0< q(t)<1\), \(t\in[1,T]_{\mathbb{Z}}\).
Lemma 2.2
\(q(t)G(t,s)\leq G(t,s)\leq G(s,s)\), \((t,s)\in[0,T+1]_{\mathbb{Z}}\times [1,T]_{\mathbb{Z}}\).
Proof
If \(s\leq t\), we have, for \((t,s)\in[0,T+1]_{\mathbb{Z}}\times [1,T]_{\mathbb{Z}}\),
If \(t\leq s\), we have, for \((t,s)\in[0,T+1]_{\mathbb{Z}}\times [1,T]_{\mathbb{Z}}\),
Therefore, \(q(t)G(t,s)\leq G(t,s)\leq G(s,s)\), \((t,s)\in[0,T+1]_{\mathbb{Z}}\times[1,T]_{\mathbb{Z}}\). The proof is complete. □
Lemma 2.3
\(q(t)\geq\mu u_{0}(t)\), \(t\in[1,T]_{\mathbb{Z}}\), where \(\mu=\frac{(A^{2}1)(A^{T}A^{T})}{(A^{T}+A^{T+1})^{2}\sum_{s=1}^{T}h(s)}\).
Proof
On the one hand, for \(t\in[1,T]_{\mathbb{Z}}\),
On the other hand,
Thus, \(q(t)\geq\mu u_{0}(t)\), \(t\in[1,T]_{\mathbb{Z}}\). The proof is complete. □
Define
and consider
It is easy to check that the following lemma holds.
Lemma 2.4
u is a positive solution of the boundary value problem (1.1) if and only if \(v=u+u_{0}\) is a solution of the boundary value problem (2.3) with \(v(t)>u_{0}(t)\) in \([1,T]_{\mathbb{Z}}\).
The proofs of our main results are based on the GuoKrasnosel’skiĭ fixed point theorem [28].
Lemma 2.5
Let X be a Banach space and \(K\subset X\) be a cone. Assume \(\Omega_{1}\), \(\Omega_{2}\) are open sets of X with \(\overline{\Omega}_{1}\subset\Omega_{2}\), and let \(T:K\cap(\overline{\Omega}_{2}\setminus\Omega_{1})\longrightarrow K\) be a completely continuous operator such that

(i)
\(\Tu\\leq\u\\), \(u\in K\cap\partial\Omega_{1}\), and \(\Tu\\geq\u\\), \(u\in K\cap\partial\Omega_{2}\); or

(ii)
\(\Tu\\geq\u\\), \(u\in K\cap\partial\Omega_{1}\), and \(\Tu\\leq\u\\), \(u\in K\cap\partial\Omega_{2}\).
Then T has a fixed point in \(K\cap(\overline{\Omega}_{2}\setminus\Omega_{1})\).
Main results
In this section, we show the existence and multiplicity of positive solutions for (1.1). Let \(q_{0}=\min_{t\in[1, T]_{\mathbb{Z}}}q(t)\) and define
and
Theorem 3.1
Assume that (C1) and (C2) hold. Suppose that there exist \(r, R>0\) such that \(\frac{1}{\mu}< r< R\) and
 (C3):

\(\phi(r)\leq\frac{r}{\max_{t\in[1,T]_{\mathbb {Z}}}\sum_{s=1}^{T}G(t,s)}\) and \(\psi(R)\geq \frac{R}{\max_{t\in[1,T]_{\mathbb{Z}}}\sum_{s=1}^{T}G(t,s)}\).
 (C4):

\(f(t,z)\leq0\) for all \(t\in[1,T]_{\mathbb{Z}}\) and \(z>0\) sufficiently large, and
 (C5):

\(L<\frac{1}{\max_{t\in[1,T]_{\mathbb{Z}}}\sum_{s=1}^{T}G(t,s)}\),
Proof
Assume (C3) holds. We first prove by Lemma 2.5 that problem (2.3) has at least one positive solution v. In the Banach space \(\mathbb{E}=\{v: [0,T+1]_{\mathbb{Z}}\to\mathbb {R}\}\) endowed with the norm \(\v\=\max_{[0,T+1]_{\mathbb{Z}}}v(t)\), define
Then by (C1), \(F: \mathbb{E}\to\mathbb{E}\) is completely continuous. Define the cone
By Lemma 2.2, \(F(P)\subset P\). Thus, a fixed point of F in P is a positive solution of problem (2.3).
Let
For \(v\in P\cap\partial\Omega_{1}\), we have \(v(s)u_{0}(s)\geq q(s)\v\u_{0}(s)\geq(\mu r1)u_{0}(s)> 0\), \(s\in[1,T]_{\mathbb{Z}}\). It follows that \(\tilde{f}(s, v(s)u_{0}(s))\leq\phi(r)\), \(s\in[1,T]_{\mathbb{Z}}\). Notice that \(G(0, s)=G(1,s)\) and \(G(T,s)=G(T+1,s)\), \(s\in[1,T]_{\mathbb {Z}}\). Then, by (C3), we have
That is, \(\Fv\\leq\v\\) for \(v\in P\cap\partial\Omega_{1}\).
For \(v\in P\cap\partial\Omega_{2}\), we have by Lemma 2.3, for \(s\in[1, T]\),
This implies \(\tilde{f}(s, v(s)u_{0}(s))\geq\psi(R)\) for \(s\in[1, T]\), \(v\in P\cap\partial\Omega_{2}\). Then, by (C3), we have, for \(v\in P\cap \partial\Omega_{2}\),
That is, \(\Fv\\geq\v\\) for \(v\in P\cap\partial\Omega_{2}\).
Therefore, by Lemma 2.5, F has a fixed point \(v_{1}\in P\) satisfying \(r\leq\v_{1}\\leq R\), which is a positive solution of problem (2.3). By Lemma 2.3, \(u_{1}(t)=v_{1}(t)u_{0}(t)\geq q(t)\v_{1}\u_{0}(t)\geq(\mu r1)u_{0}(t)>0\), \(t\in[1,T]_{\mathbb{Z}}\). Therefore, by Lemma 2.4, \(u_{1}\) is a positive solution of problem (1.1).
Now, let (C4) and (C5) also hold. We prove that problem (1.1) has a distinct second positive solution \(u_{2}(t)\). By (C4), there exists \(D>0\) such that, for \(z>D\),
By (C5), we can choose \(R_{\infty}>\max \{R, \frac{D}{q_{0}}+\frac{1}{\mu} \}\) such that
where \(\bar{h}=\max_{t\in[1,T]_{\mathbb{Z}}}h(t)\). Let \(\Omega_{3}=\{ v\in\mathbb{E}: \v\< R_{\infty}\}\). For \(v\in P\cap\partial\Omega_{3}\), similar to (3.4), we have
which implies that
Thus, by (3.5), we have, for \(v\in P\cap\partial\Omega_{3}\),
That is, \(\Fv\\leq\v\\) for \(v\in P\cap\partial\Omega_{3}\).
Therefore, by Lemma 2.5, F has a fixed point \(v_{2}\in P\) such that \(R\leq\v_{2}\\leq R_{\infty}\). By Lemma 2.4, \(u_{2}(t)=v_{2}(t)u_{0}(t)\) is a second positive solution of problem (1.1). The proof is complete. □
Corollary 3.2
Let (C1) and (C2) hold. Assume that there exist \(\frac{1}{\mu}< r< R\) such that (C3) hold. Then, if \(\lim_{z\to\infty}\frac {f(t,z)}{z}=0\) uniformly for \(t\in[1,T]_{\mathbb{Z}}\) and \(L<\frac{1}{\max_{t\in[1,T]_{\mathbb{Z}}}\sum_{s=1}^{T}G(t,s)}\), problem (1.1) has at least two positive solutions.
Proof
Let F, P, and \(\Omega_{1}\), \(\Omega_{2}\) be defined as (3.1), (3.2), and (3.3), respectively. From the proof of Theorem 3.1, we know by (C3) that F has a fixed point \(v_{1}\) such that \(r\leq\v_{1}\\leq R\) and \(u_{1}(t)=v_{1}(t)u_{0}(t)\) is a positive solution of (1.1). Now, we prove that F has a second fixed point \(v_{2}\in P\).
Take \(\epsilon>0\) sufficiently small such that \(L+\epsilon\leq\frac {1}{\max_{t\in[1,T]_{\mathbb{Z}}}\sum_{s=1}^{T}G(t,s)}\). Note that \(\lim_{z\to\infty}\frac{f(t,z)}{z}=0\) implies
uniformly for \(t\in[1,T]_{\mathbb{Z}}\). Then there exists \(D>0\) such that, for \(z>D\), \(\tilde{f}(t,z)\leq(L+\epsilon)z\) holds for all \(t\in [1,T]_{\mathbb{Z}}\). Choose \(R_{\infty}=\max \{R, \frac{D}{q_{0}}+\frac{1}{\mu} \}+1\) and \(\Omega_{3}=\{v\in\mathbb{E}: \v\< R_{\infty}\}\). For \(v\in P\cap\partial\Omega_{3}\), we see that (3.6) holds and hence \(\tilde{f}(t, v(t)u_{0}(t))\leq(L+\epsilon)(v(t)u_{0}(t))\leq (L+\epsilon)R_{\infty}\) for \(t\in[1,T]_{\mathbb{Z}}\). Thus, for \(v\in P\cap\partial\Omega_{3}\),
That is, \(\Fv\\leq\v\\) for \(v\in P\cap\partial\Omega_{3}\). Therefore, by Lemma 2.5, F has a fixed point \(v_{2}\in P\) such that \(R\leq\v_{2}\\leq R_{\infty}\), and hence \(u_{2}(t)=v_{2}(t)u_{0}(t)\) is a second positive solution of problem (1.1). The proof is complete. □
Theorem 3.3
Assume that (C1) and (C2) hold. Suppose that there exist \(r, R>0\) such that \(\frac{1}{\mu}< r< R\) and
 (C3)^{∗} :

\(\phi(R)\leq\frac{R}{\max_{t\in[1,T]_{\mathbb {Z}}}\sum_{s=1}^{T}G(t,s)}\) and \(\psi(r)\geq \frac{r}{\max_{t\in[1,T]_{\mathbb{Z}}}\sum_{s=1}^{T}G(t,s)}\).
 (C4)^{∗} :

\(f(t,z)\geq0\) for all \(t\in[1,T]_{\mathbb{Z}}\) and \(z>0\) sufficiently large, and
 (C5)^{∗} :

\(L> \frac{2}{q_{0}\max_{t\in[1,T]_{\mathbb{Z}}}\sum_{s=1}^{T}G(t,s)}\),
Proof
Let F, P, and \(\Omega_{1}\), \(\Omega_{2}\) be defined as (3.1), (3.2), and (3.3), respectively. Consider the fixed point of operator F in the cone P. Similar to the arguments in the proof of Theorem 3.1, if (C3)^{∗} holds, then we have \(\Fv\\geq\v\\) for \(v\in P\cap\partial\Omega_{1}\) and \(\Fv\\leq \v\\) for \(v\in P\cap\partial\Omega_{2}\). Thus, by Lemma 2.5, F has a fixed point \(v_{1}\in P\) satisfying \(r\leq\v_{1}\\leq R\), which is a positive solution of problem (2.3) and satisfies \(v_{1}(t)u_{0}(t)>0\), \(t\in[1,T]_{\mathbb{Z}}\). Therefore, by Lemma 2.4, \(u_{1}=v_{1}(t)u_{0}(t)\) is a positive solution of problem (1.1).
Now, let (C4)^{∗} and (C5)^{∗} hold. By (C4)^{∗}, there exists \(D>0\) such that, for \(z>D\),
By (C5)^{∗}, one can choose \(R_{\infty}>R+\max \{\frac{2D}{q_{0}}, \frac{2}{\mu} \}\) such that
where \(h_{0}=\min_{t\in[1,T]_{\mathbb{Z}}}h(t)\). Let \(\Omega_{3}=\{v\in\mathbb{E}: \v\< R_{\infty}\}\). Then, for \(v\in P\cap\partial\Omega_{3}\), we have
which implies that
Thus, by (3.7), we have, for \(v\in P\cap\partial\Omega_{3}\),
That is, \(\Fv\\geq R_{\infty}=\v\\) for \(v\in P\cap\partial\Omega_{3}\). Therefore, F has another fixed point \(v_{2}\in P\) such that \(r\leq \v_{1}\\leq R\leq\v_{2}\\leq R_{\infty}\). By Lemma 2.4, problem (1.1) has two positive solutions \(u_{1}(t)=v_{1}(t)u_{0}(t)\) and \(u_{2}(t)=v_{2}(t)u_{0}(t)\). The proof is complete. □
The following result can be obtained directly from Theorem 3.3.
Corollary 3.4
Let (C1) and (C2) hold. Assume that there exist \(\frac{1}{\mu}< r< R\) such that (C3)^{∗} hold. Then, if \(\lim_{z\to\infty}\frac {f(t,z)}{z}=\infty\) uniformly for \(t\in[1,T]_{\mathbb{Z}}\) and \(L> \frac{2}{q_{0}\max_{t\in[1,T]_{\mathbb{Z}}}\sum_{s=1}^{T}G(t,s)}\), problem (1.1) has at least two positive solutions.
References
 1.
Agarwal, RP, Perera, K, O’Regan, D: Multiple positive solutions of singular discrete pLaplacian problems via variational methods. Adv. Differ. Equ. 2, 9399 (2005)
 2.
Anderson, DR: Discrete thirdorder threepoint rightfocal boundary value problems. Comput. Math. Appl. 45, 861871 (2003)
 3.
Anderson, D, Avery, RI: Multiple positive solutions to a thirdorder discrete focal boundary value problem. Comput. Math. Appl. 42, 333340 (2001)
 4.
Aykut, N: Existence of positive solutions for boundary value problems of second order functional difference equations. Comput. Math. Appl. 48, 517527 (2004)
 5.
Bai, D: A global result for discrete ϕLaplacian eigenvalue problems. Adv. Differ. Equ. 2013, 264 (2013)
 6.
Bai, D, Xu, Y: Nontrivial solutions of boundary value problems of second order difference equations. J. Math. Anal. Appl. 326(1), 297302 (2007)
 7.
Bai, D, Xu, X: Existence and multiplicity of difference ϕLaplacian boundary value problems. Adv. Differ. Equ. 2013, 267 (2013)
 8.
Ji, D, Ge, W: Existence of multiple positive solutions for SturmLiouvillelike fourpoint boundary value problem with pLaplacian. Nonlinear Anal. 68, 26382646 (2008)
 9.
Jiang, L, Zhou, Z: Existence of nontrivial solutions for discrete nonlinear two point boundary value problems. Appl. Math. Comput. 180, 318329 (2006)
 10.
Karaca, IY: Discrete thirdorder threepoint boundary value problem. J. Comput. Appl. Math. 205, 458468 (2007)
 11.
Liu, Y: Existence results for positive solutions of nonhomogeneous BVPs for second order difference equations with onedimensional pLaplacian. J. Korean Math. Soc. 47, 135163 (2010)
 12.
Yang, Y, Meng, F: Eigenvalue problem for finite difference equations with pLaplacian. J. Appl. Math. Comput. 40, 319340 (2012)
 13.
Yu, J, Guo, Z: On generalized discrete boundary value problems of EmdenFowler equation. Sci. China Ser. A 36, 721732 (2006)
 14.
Yu, J, Guo, Z: On boundary value problems for a discrete generalized EmdenFowler equation. J. Differ. Equ. 231, 1831 (2006)
 15.
Bai, D, Xu, Y: Positive solutions for semipositone BVPs of secondorder difference equations. Indian J. Pure Appl. Math. 39, 5968 (2008)
 16.
Anuradha, A, Hai, DD, Shivaji, R: Existence results for superlinear semipositone BVP’s. Proc. Am. Math. Soc. 124(3), 757763 (1996)
 17.
Anuradha, V, Maya, C, Shivaji, R: Positive solutions for a class of nonlinear boundary value problems with NeumannRobin boundary conditions. J. Math. Anal. Appl. 236, 94124 (1999)
 18.
Bai, D, Xu, Y: Existence of positive solutions for boundary value problems of secondorder delay differential equations. Appl. Math. Lett. 18, 621630 (2005)
 19.
Bai, D, Xu, Y: Positive solutions of secondorder twodelay differential systems with twinparameter. Nonlinear Anal. 63, 601617 (2005)
 20.
Bai, D, Yu, J: Semipositone problems of second order ordinary differential equations. Sciencepaper Online (10 October 2009); http://www.paper.edu.cn/
 21.
Castro, A, Gadam, S, Shivaji, R: Evolution of positive solution curves in semipositone problems with concave nonlinearities. J. Math. Anal. Appl. 245, 282293 (2000)
 22.
Hai, DD, Schmitt, K, Shivaji, R: Positive solutions of quasilinear boundary value problems. J. Math. Anal. Appl. 217, 672686 (1998)
 23.
Hai, DD, Shivaji, R: An existence result on positive solutions for a class of pLaplacian systems. Nonlinear Anal. 56, 10071010 (2004)
 24.
Ma, R: Multiple positive solutions for a semipositone fourthorder boundary value problem. Hiroshima Math. J. 33, 217227 (2003)
 25.
Maya, C, Shivaji, R: Multiple positive solutions for a class of semilinear elliptic boundary value problems. Nonlinear Anal. 38, 497504 (1999)
 26.
Sun, J, Wei, J: Existence of positive solutions of positive solution for semi positone secondorder threepoint boundaryvalue problems. Electron. J. Differ. Equ. 2008, 41 (2008)
 27.
Henderson, J, Kosmatov, N: Positive solutions of the semipositone Neumann boundary value problem. Math. Model. Anal. 20, 578584 (2015)
 28.
Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, Orlando (1988)
Acknowledgements
Supported partially by PCSIRT of China (No. IRT1226) and NSF of China (No. 11171078).
Author information
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors jointly worked on the results and they read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Bai, D., Henderson, J. & Zeng, Y. Positive solutions of discrete Neumann boundary value problems with signchanging nonlinearities. Bound Value Probl 2015, 231 (2015). https://doi.org/10.1186/s1366101505008
Received:
Accepted:
Published:
MSC
 39A12
 39A10
 34B09
Keywords
 difference equation
 Neumann boundary value problem
 positive solution
 fixed point