- Research
- Open access
- Published:
Successively iterative method for a class of high-order fractional differential equations with multi-point boundary value conditions on half-line
Boundary Value Problems volume 2016, Article number: 5 (2016)
Abstract
In this paper, we study the existence of the positive solutions for a class of high-order differential equations with multi-point boundary value conditions involving the Caputo fractional derivative on infinite interval. Moreover, we develop two computable explicit monotone iterative sequences for approximating the two minimal and maximal positive solutions. An example is given to show the applicability of our main results.
1 Introduction
In this paper, we investigate the multi-point boundary value problem for the fractional differential equation
where \({}^{c}D^{\alpha}_{0^{+}}\) and \({}^{c}D^{\alpha-1}_{0^{+}}\) are the Caputo fractional derivatives, \(n-1<\alpha\leq n\) (\(n>2\)), \(q=2,3,\ldots,n-1\), \(0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<+\infty\), and \(\beta_{i}>0\), \(i=1,2,\ldots,m-2\), \(m\geq3\), satisfy \(0<\sum^{m-2}_{i=1}\beta_{i}\xi_{i}^{\alpha-1}<\Gamma(\alpha)\).
Recently, the theory on existence of positive solutions of fractional differential equations is a rapidly growing area of research. For more details on the basic theory of fractional calculus and fractional differential equations, one can see the monographs of [1–6] and the references therein. However, the theory of the boundary value problem for nonlinear fractional differential equations is still limited to the finite interval [7–11], and many aspects of this theory need to be explored. In the near future, there has been a significant development on boundary value problems for fractional differential equations on infinite intervals [12–22]. To the best of our knowledge, results as regards the boundary problem referring to the differential equations involving the Caputo fractional derivative on infinite interval are relatively scarce.
Liang et al. [19] discussed the following nonlinear fractional differential equations with multi-point boundary value problem on an unbounded domain:
where \(D^{\alpha}_{0^{+}}\) and \(D^{\alpha-1}\) are the Riemann-Liouville fractional derivatives, \(2<\alpha\leq3\), \(0<\xi _{1}<\xi_{2}<\cdots<\xi_{m-2}<+\infty\), and \(\beta_{i}>0\), \(i=1,2,\ldots,m-2\), satisfy \(0<\sum^{m-2}_{i=1}\beta _{i}\xi_{i}^{\alpha-1}<\Gamma(\alpha)\). By using a fixed point theorem on a cone, they obtained the existence of multiple positive solutions.
Assia et al. [20] considered the following fractional boundary value problem on the half-line:
where \({}^{c}D^{q}_{0^{+}}\) and \({}^{c}D^{q-1}\) are the Caputo fractional derivatives, \(2< q<3\). By using the nonlinear alternative of Leray-Schauder and the Guo-Krasnosel’skii fixed point theorem on a cone, they obtained the existence of positive solutions.
Liang et al. [21] investigated the following fractional boundary value problem on an infinite interval:
where \(D^{\alpha}_{0^{+}}\) is the standard Riemann-Liouville fractional derivatives, \(2<\alpha\leq3\), \(0<\gamma\leq1\), \(i=1,2,\ldots,m-2\), \(0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<+\infty\), \(\phi_{p}(s)=|s|^{p-2}s\), \(p>1\). They established solvability of the above fractional boundary value problems by means of the properties of the Green function and some fixed-point theorems.
Wang et al. [22] also investigated the problem (1.3)-(1.4), the difference is in using monotone iterative method to develop two computable explicit monotone iterative sequences for approximating the minimal and maximal positive solutions.
Our main results of this paper are in extending the results in [19] from the low order to the high order case. In addition, our research topic involves the Caputo fractional derivative, which is different from [19]. We employ the monotone iterative method [22–25], which is indeed an important and useful contribution to the ones used in relevant papers.
The plan of this paper is as follows. In Section 2, we shall give some definitions and lemmas to prove our main results. In Section 3, we employ the monotone iterative method to establish the two computable explicit monotone iterative sequences for approximating the minimal and maximal positive solutions of boundary value problems (1.1) and (1.2). In Section 4, an example is presented to illustrate the main results.
In order to facilitate our study, we make the following assumptions:
- (H1):
-
\(f\in C([0,+\infty)\times[0,+\infty),[0,+\infty))\), \(f(t,0)\not \equiv0\) on any subinterval of \([0,+\infty)\), and \(f(t,(1+t^{\alpha-1})u)\) is bounded when u is bounded on \([0,+\infty)\);
- (H2):
-
\(a(\cdot):[0,+\infty)\rightarrow[0,+\infty)\) does not identically vanish on any subinterval of \([0,+\infty)\) and \(0<\int^{+\infty}_{0}a(t)\,dt<\infty\).
2 Preliminaries
For convenience of the reader, we present here some necessary definitions and lemmas from the fractional calculus theory.
Definition 2.1
([3])
The fractional integral of order α (\(\alpha>0\)) of a function \(f:(0, +\infty)\to\mathbb{R}\) is given by
where \(\Gamma(\cdot)\) is the Gamma function, provided that the right side is point-wise defined on \((0,+\infty)\).
Definition 2.2
([3])
The Caputo fractional derivative of order \(\alpha>0\) of a continuous function \(f:(0,+\infty)\to\mathbb{R}\) is given by
where \(\Gamma(\cdot)\) is the Gamma function, provided that the right side is point-wise defined on \((0,+\infty)\), and \(n=\lceil\alpha\rceil \), where \(\lceil\alpha\rceil\) is the ceiling function of α.
Definition 2.3
([3])
Let E be a real Banach space. A nonempty closed convex set \(K\subset E \) is called cone if
-
(1)
if \(x\in K\) and \(\lambda>0\), then \(\lambda x\in K\);
-
(2)
if \(x\in K\) and \(-x\in K\), then \(x=0\).
Lemma 2.1
([3])
Let \(\alpha,\beta>0\) and \(n=\lceil\alpha\rceil\). Then
Lemma 2.2
([3])
Let \(\operatorname{Re}\alpha,\operatorname{Re}\beta>0\), \(f\in L^{p}(a,b)\) (\(1\leq p\leq\infty\)). Then
for all \(t\in[a,b]\). If \(\alpha+\beta>1\), then the relation holds at any point of \([a,b]\).
Lemma 2.3
([3])
Let \(\operatorname{Re}\alpha>0\) and \(f\in L^{p}(a,b)\) (\(1\leq p\leq\infty\)). Then
for all \(t\in[a,b]\).
Lemma 2.4
([4])
For \(\alpha>0\), \(g\in C([0,+\infty ))\), the homogeneous fractional differential equation \({}^{c}D_{0^{+}}^{\alpha}g(t)=0\) has a solution
where \(c_{i}\in\mathbb{R}\), \(i=1,\ldots,n\), and \(n=\lceil\alpha\rceil\).
Lemma 2.5
([4])
Assume that \(u(t)\in C[0,\infty )\cap L^{1}[0,\infty)\) with the derivative of order n that belongs to \(C[0,\infty)\cap L^{1}[0,\infty)\), let the Caputo fractional derivative of order \(\alpha>0\). Then
where \(c_{i}\in\mathbb{R}\), \(i=1,2,\ldots,n\), and \(n=\lceil\alpha\rceil\).
The following lemma is fundamental in the proofs of our main results.
Lemma 2.6
([26])
Let \(V=\{u\in C_{\infty },\|u\|< l,\textit{ where }l>0\}\), \(V(t)=\{\frac{u(t)}{1+t^{\alpha -1}},u\in V\}\). Then V is relatively compact on \(C_{\infty}\), if \(V(t)\) is equicontinuous on any finite subinterval of \([0,+\infty)\) and equiconvergent at infinity, that is, for any \(\varepsilon>0\), there exists \(N=N(\varepsilon)>0\) such that
where \(C_{\infty}=\{u\in C([0,+\infty), \mathbb{R}):\sup_{t\in [0,+\infty)}\frac{|u(t)|}{1+t^{\alpha-1}}<+\infty\}\) and for all \(u\in V\), \(t_{1},t_{2}\geq N\).
3 Main results
Lemma 3.1
Let \(h(t)\in L^{1}[0,\infty)\) be a nonnegative continuous function. Then the boundary value problem of fractional differential equation
has a unique solution
where
Proof
In view of Lemma 2.4, it is clear that equation (3.1) is equivalent to the integral form
for some \(c_{i}\in \mathbb{R}\), \(i=1,2,\ldots,n\), \(n=\lceil\alpha\rceil\).
By the boundary value conditions \(u(0)=0\), \(u^{(q)}(0)=0\), we imply that
and
Applying Lemma 2.1 and the boundary condition \({}^{c}D^{\alpha -1}_{0^{+}}u(+\infty)=\sum^{m-2}_{i=1}\beta_{i}u(\xi_{i})\), we obtain
consequently
Substituting \(c_{2}\) by its value, it yields
The proof is completed. □
Define \(C_{\infty}=\{u\in C([0,+\infty), \mathbb{R}):\sup_{t\in [0,+\infty)}\frac{|u(t)|}{1+t^{\alpha-1}}<+\infty\}\) endowed with the norm
Lemma 3.2
([27])
\(C_{\infty}\) is a Banach space.
Define a cone \(K\subset C_{\infty}\) by
Define an operator \(T:K\rightarrow C_{\infty}\) as follows:
Set \(h(t)=a(t)f(t,u(t))\) in Lemma 3.1. We deduce that u is a solution of the boundary value problem (1.1)-(1.2) if and only if it is a fixed point of the operator T.
Lemma 3.3
The function \(G(t, s)\) in Lemma 3.1 satisfies the following properties:
-
(i)
\(G(t, s)\) is continuous on \([0,+\infty)\times[0,+\infty)\);
-
(ii)
\(G(t, s)> 0\), for any \(t,s\in(0,+\infty)\);
-
(iii)
\(0< \frac{G(t, s)}{1+t^{\alpha-1}} \leq\frac{2}{\sum^{m-2}_{i=1}\beta_{i}}\), for any \(t,s\in(0, +\infty)\).
Proof
It is easy to see that (i) holds. So we prove that the rest are true. Let
Let \(g_{k}(t, s)\) (\(k=1, 2, 3, 4,5,6\)) be defined by the above formulas. We will show that
Since
we deduce
By using an analogous argument, we can conclude that
and
Therefore, we get \(G(t, s)>0\), for any \(t,s\in(0,+\infty)\).
Next, we will prove (iii) is true. We will show that \(\frac {g_{2}(t,s)}{1+t^{\alpha-1}}\leq\frac{2}{\sum^{m-2}_{i=1}\beta _{i}}\), \(0\leq\xi_{m-2}\leq s\leq t<\infty\).
so we have \(0\leq\frac{g_{2}(t,s)}{1+t^{\alpha-1}} \leq\frac{2}{\sum^{m-2}_{i=1}\beta_{i}}\), \(0\leq\xi_{m-2}\leq s\leq t<\infty\).
By using an analogous argument, we can conclude that
\(\kappa=2,3,\ldots,m-2\), and
Therefore, we get \(0<\frac{G(t, s)}{1+t^{\alpha-1}}\leq\frac{2}{\sum^{m-2}_{i=1}\beta_{i}}\), for any \(s,t\in(0,+\infty)\). The proof is completed. □
Lemma 3.4
If (H1) and (H2) hold, the operator \(T:K\rightarrow K\) is completely continuous.
Proof
We divide the proof into the following five steps.
Step 1: We show that \(T: K\rightarrow K\).
In view of the continuous and nonnegative of \(G(t,s)\), \(f\in C([0,+\infty)\times[0,+\infty),[0,+\infty))\), and \(a(t)\in L^{1}[0,\infty)\) is nonnegative, it is easy to see that \(Tu(t)\geq0\) for \(t\in[0,+\infty)\).
By condition (H1) and Lemma 3.3, for any fixed \(u\in K\), we have
and there exists \(\Upsilon_{u}\) such that
so \(T(K)\subset K\).
Step 2: We show that \(T: K\rightarrow K\) is continuous.
Let \(u_{n}\rightarrow u\) as \(n\rightarrow+\infty\) in K. Then \(\frac{u_{n}(s)}{1+s^{\alpha-1}}\rightrightarrows \frac{u(s)}{1+s^{\alpha-1}}\) as \(n\rightarrow+\infty\) on \([0,\infty)\). Hence
With the help of Lebesgue’s dominated convergence theorem and the continuity of f, we have
that is, T is continuous.
Now take \(\Omega\subset K\) be bounded, i.e., there exists a positive constant l such that \(\|u\|_{C_{\infty}}\leq l\) for all \(u\in\Omega\).
Step 3: \(T(\Omega)\) is uniformly bounded.
By condition (H1), let
For any \(u\in\Omega\), by Lemma 3.3, we have
therefore \(T(\Omega)\) is uniformly bounded.
Step 4: We show that \(T(\Omega)\) is locally equicontinuous on any finite subinterval of \([0,+\infty)\).
For any \(\theta>0\), \(t_{1},t_{2}\in[0,\theta]\) and \(u\in\Omega\), without loss of generality, we assume that \(t_{2}>t_{1}\). Then
Furthermore, we deduce that
Since \(0<\int^{+\infty}_{0}a(s)\,ds<\infty\), by the integration of Cauchy’s test for convergence, we can get
uniformly as \(t_{1}\rightarrow t_{2}\).
Similar to (3.3), we can deduce that
uniformly as \(t_{1}\rightarrow t_{2}\).
Thus, we conclude that
uniformly as \(t_{1}\rightarrow t_{2}\), and hence \(T(\Omega)\) is locally equicontinuous on any finite subinterval of \([0,+\infty)\).
Step 5: We show that \(T:K\rightarrow K\) is equiconvergent at ∞.
For convenience, we denote \(\Delta=\frac{\sum^{m-2}_{i=1}\beta_{i}(\xi_{i}-s)^{\alpha-1}}{\Gamma (\alpha)\sum^{m-2}_{i=1}\beta_{i}\xi_{i}}\) and \(\Lambda=\sum^{m-2}_{i=1}\beta_{i}\xi_{i}\).
Since \(\lim_{t\rightarrow\infty}\frac{t}{1+t^{\alpha-1}}=0\), there exists \(N_{1}>0\) such that
for any \(t_{2}>t_{1}>N_{1}\), \(\varepsilon_{1}>0\).
Similarly, there exist \(M>0\), \(N_{2}>0\) such that \(\lim_{t\rightarrow \infty}\frac{(t-M)^{\alpha-1}}{1+t^{\alpha-1}}=1\) and
for any \(t_{2}>t_{1}>N_{2}\), \(\varepsilon_{2}>0\) and \(0\leq s\leq M\).
Let \(N>\max\{N_{1},N_{2}\}\). For any \(u\in\Omega\), by (3.4) and (3.5), we have
uniformly as \(t_{1}\rightarrow t_{2}\).
In conclusion, for any \(\varepsilon>0\), there exists a sufficiently large \(N>0\) such that for any \(u\in\Omega\),
\(\forall t_{1},t_{2}>N\).
This implies that \(T:K\rightarrow K\) is equiconvergent at ∞.
By the Arzela-Ascoli theorem, we see that \(T:K\rightarrow K\) is completely continuous. The proof is completed. □
Now we will list the following condition in this section:
- (H3):
-
\(f(t,\cdot)\) is nondecreasing for any \(t\in[0,+\infty)\), and there exists a constant \(b>0\), such that \(f(t,(1+t^{\alpha-1})u)\leq \frac{b\sum^{m-2}_{i=1}\beta_{i}}{2\int^{+\infty}_{0}a(s)\,ds}\) for \((t,u)\in[0,+\infty)\times[0,b]\).
Theorem 3.1
Assume (H1), (H2), and (H3) hold. Then the multi-point boundary value problem (1.1)-(1.2) has the minimal and maximal positive solutions \(v^{\ast}\), \(u^{\ast}\) in \((0,b]\), which can be obtained by the following two explicit monotone iterative sequences:
with initial value \(v_{0}(t)=0\),
with initial value \(u_{0}(t)=b\). Moreover,
Proof
Denote \(\Phi=\{u\in K,\|u\|_{C_{\infty}}\leq b\}\). Then we have \(T(\Phi)\subset\Phi\). In fact, let \(u\in\Phi\). Then by (H1), (H3), and Lemma 3.3, we get
So \(T(\Phi)\subset\Phi\).
Denote that \(v_{0}(t)=0\), \(v_{1}=Tv_{0}\), and \(v_{2}=T^{2}v_{0}=Tv_{1}\), for all \(t\in[0,+\infty)\). Since \(v_{0}(t)=0\in\Phi\) and \(T:\Phi\rightarrow\Phi\), \(v_{1}\in T(\Phi)\subset\Phi\) and \(v_{2}\in T(\Phi)\subset\Phi\). We have
for all \(t\in[0,+\infty)\).
By (H3), for \(u,v\in\Phi\) and \(u\geq v\), we deduce
We know that T is a nondecreasing operator.
So we have
for all \(t\in[0,+\infty)\).
By the induction, define \(v_{n+1}=Tv_{n}\), \(n=0,1,2,\ldots \) . The sequence \(\{v_{n}\}^{\infty}_{n=1}\subset T(\Phi)\subset\Phi\) and satisfies the following relation:
for all \(t\in[0,+\infty)\), \(n=0,1,2,\ldots\) .
In view of T is completely continuous and \(v_{n+1}=Tv_{n}\), \(\{v_{n}\}^{\infty}_{n=1}\) is relative compact. That is to say, \(\{v_{n}\}^{\infty}_{n=1}\) has a convergent subsequence \(\{v_{n_{k}}\}^{\infty}_{k=1}\) and there exists a \(v^{\ast}\in\Phi\) such that \(v_{n_{k}}\rightarrow v^{\ast}\) as \(k\rightarrow\infty\).
By the above part and \(v_{n+1}(t)\geq v_{n}(t)\), for all \(t\in [0,+\infty)\), \(n=0,1,2,\ldots \) , we can get \(\lim_{n\rightarrow\infty}v_{n}=v^{\ast}\).
Since T is continuous and \(v_{n+1}=Tv_{n}\), we have \(Tv^{\ast}=v^{\ast }\). That is to say, \(v^{\ast}\) is a fixed point of the operator T.
Denote \(u_{0}(t)=b\), \(u_{1}=Tu_{0}\), and \(u_{2}=T^{2}u_{0}=Tu_{1}\), for all \(t\in[0,+\infty)\). Since \(u_{0}(t)\in\Phi\) and \(T:\Phi\rightarrow\Phi\), \(u_{1}\in T(\Phi)\subset\Phi\), and \(u_{2}\in T(\Phi)\subset\Phi\).
By (H3), we deduce
for all \(t\in[0,+\infty)\).
Since T is a nondecreasing operator, we have
for all \(t\in[0,+\infty)\).
By the induction, define \(u_{n+1}=Tu_{n}\), \(n=0,1,2,\ldots \) . The sequence \(\{u_{n}\}^{\infty}_{n=1}\subset T(\Phi)\subset\Phi\) and satisfies the following relation:
for all \(t\in[0,+\infty)\), \(n=0,1,2,\ldots \) .
With an analysis exactly parallel to the proving process of \(\lim_{n\rightarrow\infty}v_{n}=v^{\ast}\), we see that there exists a \(u^{\ast}\in\Phi\) such that \(\lim_{n\rightarrow\infty}u_{n}=u^{\ast}\).
Since T is completely continuous and \(u_{n+1}=Tu_{n}\), we have \(Tu^{\ast}=u^{\ast}\). That is to say, \(u^{\ast}\) is a fixed point of the operator T.
Now, we will show that \(u^{\ast}\) and \(v^{\ast}\) are the maximal and minimal positive solutions of the boundary value problem (1.1)-(1.2) in \((0,b]\).
Let \(\phi\in[0,b]\) be any solution of the boundary value problem (1.1)-(1.2). That is, \(T\phi=\phi\). Noting that T is nondecreasing and \(v_{0}(t)=0\leq\phi(t)\leq b=u_{0}(t)\), we have \(v_{1}(t)=Tv_{0}(t)\leq\phi(t)\leq Tu_{0}(t)=u_{1}(t)\), for all \(t\in[0,+\infty)\).
Similarly, we can obtain
for all \(t\in[0,+\infty)\), \(n=0,1,2,\ldots\) .
Since \(\lim_{n\rightarrow\infty}u_{n}=u^{\ast}\) and \(\lim_{n\rightarrow\infty}v_{n}=v^{\ast}\), by the above formulas we obtain
Since \(f(t,0)\not\equiv0\), for all \(t\in[0,+\infty)\), 0 is not a solution of the boundary value problem (1.1)-(1.2). We know that \(u^{\ast}\) and \(v^{\ast}\) are the maximal and minimal positive solutions of the boundary value problem (1.1)-(1.2) in \((0,b]\), which can be obtained by the corresponding iterative sequences in
with initial value \(v_{0}(t)=0\),
with initial value \(u_{0}(t)=b\). The proof is completed. □
4 Examples
In this section, we will present an example to illustrate our main results.
Example 4.1
Consider the following boundary value problem:
where \(a(t)=e^{-t}\) and
Here \(\alpha=\frac{5}{2}\).
It is clear that \(f(t,0)\not\equiv0\) on any subinterval of \([0,+\infty )\) and \(f(t,(1+t^{\frac{3}{2}})u)\leq\frac{11}{100}\), so condition (H1) holds.
In view of \(\int^{+\infty}_{0}a(t)\,dt=\int^{+\infty}_{0}e^{-t}\,dt=1\), so condition (H2) holds.
Taking \(\omega(t)=\frac{1}{5}t\), \(\varphi(t)=e^{-t}\), \(b=1\), by a simple computation, we have
so condition (H3) holds.
By Theorem 3.1, we see that the boundary value problem (4.1)-(4.2) has the minimal and maximal positive solutions in \((0,1]\), which can be obtained by two explicit monotone iterative sequences.
References
Oldham, K, Spanier, J: The Fractional Calculus. Academic Press, New York (1974)
Miller, K, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley, New York (1993)
Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
Kilbas, A, Srivastava, H, Trujillo, J: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Samko, S, Kilbas, A, Marichev, O: Fractional Integral and Derivative, Theory and Applications. Gordon and Breach, Yverdon (1993)
Zeidler, E: Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems. Springer, Berlin (1985)
Zhai, C, Xu, L: Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter. Commun. Nonlinear Sci. Numer. Simul. 19, 2820-2827 (2014)
Li, B, Sun, S, Li, Y: Multi-point boundary value problems for a class of Riemann-Liouville fractional differential equations. Adv. Differ. Equ. 2014, 151 (2014)
Zhao, Y, Sun, S, Han, Z, Zhang, M: Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl. Math. Comput. 217, 6950-6958 (2011)
Yan, R, Sun, S, Lu, H, Zhao, Y: Existence of solutions for fractional differential equations with integral boundary conditions. Adv. Differ. Equ. 2014, 25 (2014)
Yan, R, Sun, S, Sun, Y, Han, Z: Boundary value problems for fractional differential equations with nonlocal boundary conditions. Adv. Differ. Equ. 2013, 176 (2013)
Zhao, X, Ge, W: Unbounded solutions for a fractional boundary value problems on the infinite interval. Acta Appl. Math. 109, 495-505 (2010)
Su, X: Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal. 74, 2844-2852 (2011)
Liang, S, Zhang, J: Existence of three positive solutions for m-point boundary value problems for some nonlinear fractional differential equations on an infinite interval. Comput. Math. Appl. 61, 3343-3354 (2011)
Maagli, H: Existence of positive solutions for a nonlinear fractional differential equation. Electron. J. Differ. Equ. 2013, 29 (2013)
Su, X, Zhang, S: Unbounded solutions to a boundary value problem of fractional order on the half-line. Comput. Math. Appl. 61, 1079-1087 (2011)
Zhang, X: Existence and iteration of positive solutions for high-order fractional differential equations with integral conditions on a half-line. J. Appl. Math. Comput. 45, 137-150 (2014)
Arara, A, Benchohra, M, Hamidi, N, Nieto, JJ: Fractional order differential equations on an unbounded domain. Nonlinear Anal. 72, 580-586 (2010)
Liang, S, Zhang, J: Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval. Math. Comput. Model. 54, 1334-1346 (2011)
Lakoud, AG, Kcman, A: Unbounded solution for a fractional boundary value problem. Adv. Differ. Equ. 2014, 154 (2014)
Liang, S, Shi, S: Existence of multiple positive solutions for m-point fractional boundary value problems with p-Laplacian operator on infinite interval. J. Appl. Math. Comput. 38, 687-707 (2012)
Wang, G, Liu, S, Zhang, L: Iterative approximation of the minimal and maximal positive solutions for multipoint fractional boundary value problem on an unbounded domain. J. Funct. Spaces 2014, Article ID 469509 (2014)
Yao, S, Wang, G, Li, Z, Yu, L: Positive solutions for three-point boundary value problem of fractional differential equation with p-Laplacian operator. Discrete Dyn. Nat. Soc. 2013, Article ID 376938 (2013)
Jiang, M, Zhong, S: Successively iterative method for fractional differential equations with integral boundary conditions. Appl. Math. Lett. 38, 94-99 (2014)
Sun, Y, Zhao, M: Positive solutions for a class of fractional differential equations with integral boundary conditions. Appl. Math. Lett. 34, 17-21 (2014)
Corduneanu, C: Integral Equations and Stability of Feedback Systems. Academic Press, New York (1973)
Liu, YS: Boundary value problem for second order differential equations on unbounded domain. Acta Anal. Funct. Appl. 4, 211-216 (2002)
Acknowledgements
The authors sincerely thank the reviewers for their valuable suggestions and useful comments, which have lead to the present improved version of the original manuscript.
This research is supported by the Natural Science Foundation of China (11571202, 61374074, 61374002), and supported by Shandong Provincial Natural Science Foundation (ZR2013AL003).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Li, B., Sun, S. & Han, Z. Successively iterative method for a class of high-order fractional differential equations with multi-point boundary value conditions on half-line. Bound Value Probl 2016, 5 (2016). https://doi.org/10.1186/s13661-015-0512-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-015-0512-4