Open Access

Singular boundary value problems of fractional differential equations with changing sign nonlinearity and parameter

Boundary Value Problems20162016:8

https://doi.org/10.1186/s13661-016-0523-9

Received: 23 October 2015

Accepted: 4 January 2016

Published: 12 January 2016

Abstract

In this paper, we consider singular boundary value problems for the following nonlinear fractional differential equations with delay:
$$\left \{ \textstyle\begin{array}{l@{\quad}l} D^{\alpha}x(t)+\lambda f (t,x(t-\tau) )=0, &t\in(0,1)\backslash \{\tau\}, \\ x(t)=\eta(t), &t\in[-\tau,0], \\ x'(1)=x'(0)=0, \end{array}\displaystyle \right . $$
where \(2<\alpha\leq3\), \(D^{\alpha}\) denotes the Riemann-Liouville fractional derivative, λ is a positive constant, \(f(t,x)\) may change sign and be singular at \(t=0\), \(t=1\), and \(x=0\). By means of the Guo-Krasnoselskii fixed point theorem, the eigenvalue intervals of the nonlinear fractional functional differential equation boundary value problem are considered, and some positive solutions are obtained, respectively.

Keywords

fractional functional differential equation delay boundary value problems singular positive solutions

MSC

34A08 34K37

1 Introduction

Fractional differential equations have been of increasing importance for the past decades due to their diverse applications in science and engineering, we can describe natural phenomena and mathematical models more accurately. Many researchers have shown their interest in fractional differential equations. The motivation for those works stems from both the intensive development of the theory of fractional calculus itself and the applications such as in economics, engineering and other fields. Fractional differential equations have received much attention, the theory and its applications have been greatly developed; see [15].

There have been many papers dealing with boundary value problems of fractional differential equations [622] and initial value problems of fractional differential equations [2331].

However, the results focused on the singular boundary value problems of fractional differential equations with delay are relatively scarce [3237]. It is well known that in practical problems, the behavior of systems not only depends on the status just at the present, but also on the status in the past.

Thus, in many cases, we must study fractional differential equations with delay in order to solve practical problems. Consequently, our aim in the paper is to consider the existence of solutions for singular boundary value problems of fractional differential equations with delay.

In 2004, by means of the fixed point index theorem, Yu et al. [38] investigate the existence of multiple positive solutions for the third-order three-point singular semipositone boundary value problem
$$\left \{ \textstyle\begin{array}{l@{\quad}l} x'''(t)-\lambda f(t,x)=0, & t\in(0,1), \\ x(0)=x'(\eta)=x''(1)=0, \end{array}\displaystyle \right . $$
where \(\frac{1}{2}<\eta<1\), \(f(t,x):(0,1)\times(0,+\infty)\rightarrow (-\infty,+\infty)\) is continuous and may be singular at \(t=0\), \(t=1\), and \(x=0\) and also may be negative for some values of t and x; λ is a positive parameter.
In 2011, Zhao et al. [12] studied the existence on multiple positive solutions for the nonlinear fractional differential equation boundary value problem
$$\left \{ \textstyle\begin{array}{l@{\quad}l} D^{\alpha}_{0+}u(t)+f(t,u(t))=0, & t\in(0,1), \\ u(0)=u'(0)=u'(1)=0, \end{array}\displaystyle \right . $$
where \(2<\alpha\leq3\), \(D_{0+}^{\alpha}\) is the Riemann-Liouville fractional derivative. By the lower and upper solutions method and the fixed point theorem, they obtained some new existence criteria for singular and nonsingular fractional differential equation boundary value problems.
In 2012, Su [37] studied the boundary value problem for a singular fractional differential equation with delay
$$\left \{ \textstyle\begin{array}{l@{\quad}l} D^{\alpha}x(t)+f (t,x(t-\tau) )=0, &t\in(0,1)\backslash\{\tau\}, \\ x(t)=\eta(t), &t\in[-\tau,0], \\ x(1)=0, \end{array}\displaystyle \right . $$
where \(1<\alpha\leq2\), \(D^{\alpha}\) is the Riemann-Liouville fractional derivative, \(\tau\in(0,1)\), \(f(t,x)\in C ((0,1)\times\mathbb{R}^{+},\mathbb{R} )\) is continuous and may be singular at \(t=0\), \(t=1\), and \(x=0\) and may have negative values, where \(\mathbb{R}^{+}=(0,+\infty)\). By the Guo-Krasnoselskii fixed point theorem, one obtained the existence results for positive solutions.
In 2013, Vong [39] considered the fractional differential equation with an integral boundary condition
$${}^{\mathrm{c}} D^{\alpha}_{0^{+}} u(t)+f\bigl(t,u(t)\bigr)=0, \qquad u'(0)=\cdots=u^{n-1}(0)=0,\qquad u(1)= \int^{1}_{0} u(s)\,d\mu(s), $$
where \(n\geq2\), \(n-1<\alpha< n\), \({}^{\mathrm{c}} D^{\alpha}_{0^{+}}\) is the Caputo fractional derivative, \(\mu(s)\) is a function of bounded variation, f may have a singularity at \(t=1\). The existence of positive solutions is obtained by the method of upper and lower solutions together with the Schauder fixed point theorem.
Motivated by the work mentioned above, in this paper, we study the existence of positive solutions of singular boundary value problems for nonlinear fractional functional differential equation
$$ \left \{ \textstyle\begin{array}{l@{\quad}l} D^{\alpha}x(t)+\lambda f (t,x(t-\tau) )=0, &t\in(0,1)\backslash \{\tau\}, \\ x(t)=\eta(t), &t\in[-\tau,0], \\ x'(1)=x'(0)=0, \end{array}\displaystyle \right . $$
(1.1)
where \(2<\alpha\leq3\), \(D^{\alpha}\) denote the Riemann-Liouville fractional derivative, λ is a positive parameter, \(\tau\in (0,1)\), \(\eta(t)\in C([-\tau,0])\), and \(\eta(t)>0\) for \(t\in [\tau,0)\), \(\eta(0)=0\), f is a continuous functional defined on \((0,1)\times\mathbb{R}^{+}\) and which may be singular at \(t=0\), \(t=1\), and \(x=0\).

When \(\tau=0\) and \(\lambda=1\), problem (1.1) is reduced to the problem of fractional differential equations and has been studied by Zhao et al. [12]. To the best of our knowledge, no one has studied the existence of positive solutions for singular boundary value problem (1.1). Key tools in finding our main results are the Guo-Krasnoselskii fixed point theorem, and our main results of this paper are to extend and supplement some results in [12, 37, 38].

The paper is organized as follows. In Section 2, we shall introduce some definitions and lemmas to prove our main results. In Section 3, we investigate the existence of positive solution for boundary value problem (1.1) by the Guo-Krasnoselskii fixed point theorem.

2 Preliminaries

In the following section, we introduce the definitions and lemmas which are used throughout the paper. This material can be found in [1, 2].

The Riemann-Liouville fractional derivative of order α (\(n-1<\alpha<n\)) of a function \(f:(t_{0},+\infty)\to\mathbb{R}\) is given by
$$D^{\alpha}_{0^{+}} f(t)=\frac{1}{\Gamma(n-\alpha)}\biggl(\frac{d}{dt} \biggr)^{n} \int^{t}_{t_{0}}\frac {f(s)}{(t-s)^{\alpha-n+1}}\, ds,\quad t>t_{0}, $$
where n is the smallest integer than or equal to α and \(\Gamma (\cdot)\) is the gamma function, provided that the right side is point wise defined on \((t_{0},+\infty)\).
The Riemann-Liouville fractional integral of order α (\(\alpha>0\)) of a function \(f:(t_{0},+\infty)\to\mathbb{R}\) is given by
$$I^{\alpha}f(t)=\frac{1}{\Gamma{(\alpha)}} \int_{t_{0}}^{t}\frac {f(s)}{(t-s)^{1-\alpha}}\, ds, \quad t>t_{0}, $$
where \(\Gamma(\cdot)\) is the gamma function, provided that the right side is point-wise defined on \((t_{0},+\infty)\).

From the definition of the Riemann-Liouville derivative, we have the following statements.

Let \(\alpha>0\). If we assume \(u\in C(0,1)\cap L(0,1)\), then the fractional differential equation
$$D^{\alpha}_{0^{+}}u(t)=0 $$
has \(u(t)=c_{1}t^{\alpha-1}+c_{2}t^{\alpha-2}+\cdots+c_{N} t^{\alpha-N}\), \(c_{i}\in\mathbb{R}\), \(i=1,2,\ldots,N\), as unique solutions, where N is the smallest integer greater than or equal to α.
Assume \(u\in C(0,1)\cap L(0,1)\) with a fractional derivative of order \(\alpha>0\). Then
$$I^{\alpha}_{0^{+}}D^{\alpha}_{0^{+}}u(t)=f(t)+c_{1}t^{\alpha-1}+c_{2}t^{\alpha -2}+ \cdots+c_{n}t^{\alpha-n} $$
for some \(c_{i}\in\mathbb{R}\), \(i=1,2,\ldots,n\), where n is the smallest integer greater than or equal to α.

Next we introduce the Green function of boundary value problems for fractional differential equations.

Lemma 2.1

[12]

Let \(2<\alpha\leq3\) and \(h:[0,1]\) be continuous. Then the unique solution of the boundary value problem
$$ D^{\alpha}_{0^{+}}u(t)+\lambda h(t)=0, \quad t\in(0,1), \qquad u(0)=u'(0)=u'(1)=0 $$
(2.1)
is
$$u(t)= \int_{0}^{1}\lambda G(t,s)h(s)\,ds, \quad t \in[0,1], $$
where
$$ G(t,s)=\frac{1}{\Gamma(\alpha)} \left \{ \textstyle\begin{array}{l@{\quad}l} t^{\alpha-1}(1-s)^{\alpha-2}-(t-s)^{\alpha-1},& 0\leq s\leq t\leq1, \\ t^{\alpha-1}(1-s)^{\alpha-2},& 0\leq t\leq s\leq1. \end{array}\displaystyle \right . $$
(2.2)

The following properties of the Green function play important roles in this paper.

Lemma 2.2

[12]

The function \(G(t,s)\) defined by (2.2) satisfies the following conditions:
  1. (1)

    \(G(t,s)>0\) for \(t,s\in(0,1)\);

     
  2. (2)

    \(q(t)G(1,s)\leq G(t,s)\leq G(1,s)\) for \(t,s\in(0,1)\), where \(q(t)=t^{\alpha-1}\).

     

Lemma 2.3

The function \(G^{*}(t,s):=t^{5-\alpha}G(t,s)\) satisfies the following conditions:
$$\frac{1}{\Gamma(\alpha)}t^{4}s(1-s)^{\alpha-2}\leq G^{*}(t,s) \leq \frac{1}{\Gamma(\alpha)}t^{5-\alpha}s(1-s)^{\alpha-2} \quad \textit{for } t,s\in(0,1). $$

Proof

The proof can be obtained easily by Lemma 2.2, so we omit it here. □

The following lemma is fundamental in the proofs of our main results.

Lemma 2.4

[40]

Let E be a Banach space, and let \(K\subset E\) be a cone. Assume \(\Omega_{1}\), \(\Omega_{2}\) are open and bounded subset of E with \(0\in\Omega_{1}\), \(\bar{\Omega}_{1}\subset\Omega_{2}\), and let \(T:K\cap(\bar{\Omega}_{2}\backslash\Omega_{1})\rightarrow K\) be a completely continuous operator such that
  1. (i)

    \(\|Tu\|\leq\|u\|\), \(u\in K\cap\partial\Omega_{1}\), and \(\|Tu\|\geq\|u\|\), \(u\in K\cap\partial\Omega_{2}\); or

     
  2. (ii)

    \(\|Tu\|\geq\|u\|\), \(u\in K\cap\partial\Omega_{1}\), and \(\|Tu\|\leq\|u\|\), \(u\in K\cap\partial\Omega_{2}\).

     
Then T has a fixed point in \(K\cap (\bar{\Omega}_{2}\backslash\Omega_{1})\).

3 Main results

In this section, we discuss the existence of positive solutions for boundary value problem (1.1). For convenience, we give some conditions, which will play roles in this paper.
(H1): 
There exists a nonnegative function \(\rho\in C(0,1)\cap L(0,1)\) such that
$$\varphi_{2}(t)h_{2}(x)\leq f\bigl(t,v(t)x\bigr)+\rho(t) \leq\varphi_{1}(t) \bigl(g(x)+h_{1}(x)\bigr) $$
for all \((t,x)\in(0,1)\times\mathbb{R}^{+}\), where \(\varphi_{1},\varphi _{2}\in L(0,1)\) are nonnegative for \(t\in(0,1)\), \(h_{1},h_{2}\in C(\mathbb{R}_{0}^{+},\mathbb {R}_{0}^{+})\) are nondecreasing, \(g\in C(\mathbb{R}^{+},\mathbb{R}_{0}^{+})\) is nonincreasing, \(\mathbb{R}_{0}^{+}=[0,+\infty)\), and
$$v(t)= \left \{ \textstyle\begin{array}{l@{\quad}l} 1, & t\in(0,\tau], \\ (t-\tau)^{\alpha-5},& t\in(\tau,1). \end{array}\displaystyle \right . $$
(H2): 
$$0< \int_{0}^{\tau}s(1-s)^{\alpha-2} \varphi_{1}(s)g\bigl(\eta(s-\tau)\bigr)\,ds< +\infty, $$
and there exists a constant \(k>0\) such that
$$\int_{\tau}^{1}s(1-s)^{\alpha-2} \varphi_{1}(s)g\biggl(\frac{k}{2}(s-\tau )^{2}\biggr) \,ds< +\infty. $$
(H3): 

There exists a subinterval \([a,b]\subset(\tau,1)\) such that \(\int_{a}^{b}s(1-s)^{\alpha-1}\varphi_{2}(s)\,ds>0\).

Let \(X:=\{x(t):x\in C([-\tau,1],\mathbb{R}),x(t)=0 \text{ for } t\in [-\tau,0],x'(1)=x'(0)=0\}\) be a Banach space with the maximum norm \(\|x\|_{[-\tau,1]}=\max_{-\tau\leq t\leq1}|x(t)|=\max_{0\leq t\leq1}|x(t)|\) for \(x\in X\). Let K be a cone in X defined by
$$K=\bigl\{ x\in X; x(t)\geq0 \text{ for } t\in[-\tau,1]\bigr\} . $$
Define
$$\begin{aligned}& \bar{\eta}(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} \eta(t), &t\in[-\tau,0], \\ 0, &t\in(0,1], \end{array}\displaystyle \right . \\& \omega(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} 0, &t\in[-\tau,0], \\ \int_{0}^{1}\lambda G(t,s)\rho(s)\,ds, &t\in(0,1], \end{array}\displaystyle \right . \end{aligned}$$
and
$$\begin{aligned} x^{*}(t)&=\max\bigl\{ x(t)+\bar{\eta}(t)-\omega(t),0\bigr\} \\ &= \left \{ \textstyle\begin{array}{l@{\quad}l} \eta(t), & t\in[-\tau,0], \\ \max\{x(t)-\omega(t),0\}, & t\in(0,1] \end{array}\displaystyle \right . \end{aligned}$$
for any \(x\in K\).
It is easy to know that the restriction \(\omega|_{[0,1]}\) of ω on \([0,1]\) is exactly the solution of
$$\left \{ \textstyle\begin{array}{l@{\quad}l} D^{\alpha}x(t)+\lambda\rho(t)=0, & t\in(0,1), \alpha\in (2,3], \\ x'(1)=x'(0)=x(0)=0. \end{array}\displaystyle \right . $$
Since \(f:[0,1]\times C[-\tau,1]\rightarrow\mathbb{R}\) is a continuous function, setting \(f(t,x(t-\tau)):=h(t)\) in Lemma 2.1, we see by Lemma 2.1 that a function x is a solution of boundary value problem (1.1) if and only if it satisfies
$$x(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} \int_{0}^{1}\lambda G(t,s)f(s,x(s-\tau))\,ds, &t\in(0,1), \\ \eta(t), &t\in[-\tau,0]. \end{array}\displaystyle \right . $$
Consider the following operator:
$$ (Tx) (t)= \left \{ \textstyle\begin{array}{l@{\quad}l} \int_{0}^{1}\lambda G(t,s) (f(s,x^{*}(s-\tau))+\rho(s) )\,ds, &t\in(0,1], \\ 0, &t\in[-\tau,0]. \end{array}\displaystyle \right . $$
(3.1)
Set
$$y(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} t^{5-\alpha}x(t), &t\in(0,1), \\ 0, &t\in[-\tau,0] \end{array}\displaystyle \right . $$
and
$$y^{*}(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} \max\{t^{\alpha-5}y(t)-\omega(t),0\}, &t\in(0,1], \\ \eta(t), &t\in[-\tau,0]. \end{array}\displaystyle \right . $$
Then (3.1) is equivalent to
$$ (Ty) (t)= \left \{ \textstyle\begin{array}{l@{\quad}l} \int_{0}^{1}\lambda G^{*}(t,s) (f(s,y^{*}(s-\tau))+\rho(s) )\,ds, &t\in(0,1], \\ 0, &t\in[-\tau,0]. \end{array}\displaystyle \right . $$
(3.2)
Obviously, if is a fixed point of operator T in (3.2), then
$$\tilde{x}(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} t^{\alpha-5}\tilde{y}(t), &t\in(0,1], \\ 0, &t\in[-\tau,0], \end{array}\displaystyle \right . $$
is a fixed point of operator T defined by (3.1). Lemma 2.1 implies that
$$\left \{ \textstyle\begin{array}{l@{\quad}l} D^{\alpha}\tilde{x}(t)+\lambda f ((t,\tilde{x}^{*}(t-\tau))+\rho (t) )=0, &t\in(0,1)\backslash\{\tau\}, \\ \tilde{x}(t)=0, &t\in[-\tau,0], \\ \tilde{x}'(1)=\tilde{x}'(0)=0. \end{array}\displaystyle \right . $$
Thus if
$$ \tilde{x}(t-\tau)+\bar{\eta}(t-\tau)-\omega(t-\tau)\geq0\quad \text{for } t\in[0,1], $$
(3.3)
then
$$\tilde{x}^{*}(t-\tau)=\tilde{x}(t-\tau)+\bar{\eta}(t-\tau)-\omega(t-\tau). $$
Let
$$x(t)=\tilde{x}(t)+\bar{\eta}(t)-\omega(t). $$
Then one can verify easily that the function x satisfied boundary value problem (1.1). As a result, in the following we will concentrate our study on finding the fixed points of operator T defined by (3.2).
Define the cone
$$K_{1}=\bigl\{ y\in K: y(t)\geq t^{2}\|y\| \text{ for } t \in[0,1]\bigr\} $$
and
$$\begin{aligned}& \Omega_{1}=\bigl\{ y\in K_{1}:\Vert y\Vert < r_{1}\bigr\} , \\& \Omega_{2}=\bigl\{ y\in K_{1}:\Vert y\Vert < r_{2}\bigr\} , \\& \Omega_{3}=\bigl\{ y\in K_{1}:\Vert y\Vert < R_{2}\bigr\} , \\& \Omega_{4}=\bigl\{ y\in K_{1}:\Vert y\Vert < R_{1}\bigr\} \end{aligned}$$
for any \(r_{2}>r_{1}\geq\max\{k,2c\}\), \(R_{2}>R_{1}\geq\max\{k,2c\}\), where
$$ c:=\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1}s(1-s)^{\alpha-2}\rho (s)\,ds< + \infty $$
(3.4)
and k is the constant in (H2).

Lemma 3.1

Let (H1) and (H2) hold. Then the operator \(T:K_{1}\cap(\bar{\Omega}_{2}\backslash\Omega_{1})\rightarrow K_{1}\) is completely continuous.

Proof

First we show that operator T is well defined on \(K_{1}\cap(\bar{\Omega}_{2} \backslash\Omega_{1})\). For any \(y\in K_{1}\cap(\bar{\Omega}_{2} \backslash\Omega_{1})\), we know that
$$r_{1}\leq\|y\|\leq r_{2} $$
and
$$y(t)\geq t^{2}\|y\|\geq t^{2} r_{1} \quad \text{for } t\in[0,1]. $$
Then, for \(t\in[0,1]\), we get
$$\begin{aligned} t^{5-\alpha}\omega(t)&=t^{5-\alpha} \int_{0}^{1}\lambda G(t,s)\rho(s)\,ds \\ &\leq\frac{t^{5-\alpha}}{\Gamma(\alpha)} \int_{0}^{1}\lambda s(1-s)^{\alpha -2}\rho(s)\,ds \\ &\leq\frac{t^{2}}{\Gamma(\alpha)} \int_{0}^{1}\lambda s(1-s)^{\alpha-2}\rho (s) \,ds \\ &\leq t^{2}c, \end{aligned}$$
(3.5)
where c is defined as (3.4). Thus, for \(t\in[0,1]\),
$$\begin{aligned} \begin{aligned}[b] y(t)-t^{5-\alpha}\omega(t)&\geq t^{2}(r_{1}-c) \\ &\geq\frac{r_{1}}{2}t^{2}. \end{aligned} \end{aligned}$$
(3.6)
In view of (H1), (H2), and Lemma 2.3, we show
$$\begin{aligned} (Ty) (t) =& \int_{0}^{\tau}\lambda G^{*}(t,s) \bigl(f\bigl(s,\eta(s- \tau)\bigr)+\rho(s) \bigr)\,ds \\ &{} + \int_{\tau}^{1}\lambda G^{*}(t,s) \bigl(f\bigl(s,(s- \tau)^{\alpha-5}y(s-\tau )-\omega(s-\tau)\bigr)+\rho(s) \bigr)\,ds \\ \leq&\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{0}^{\tau }s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \\ &{}\times\biggl(g \biggl(\frac{r_{1}}{2}(s-\tau)^{2} \biggr)+h_{1} \bigl(y(s-\tau)-(s-\tau )^{5-\alpha}\omega(s-\tau) \bigr) \biggr)\,ds \\ \leq&\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{0}^{\tau }s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \biggl(g \biggl(\frac{r_{1}}{2}(s-\tau)^{2} \biggr)+h_{1} \bigl(y(s-\tau) \bigr) \biggr)\,ds \\ \leq&\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{0}^{\tau }s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \biggl(g \biggl(\frac{k}{2}(s-\tau)^{2} \biggr)+h_{1}(r_{2}) \biggr)\,ds \\ < &+\infty. \end{aligned}$$
Hence, T is uniformly bounded and T is well defined.
In fact, for \(y\in K_{1}\cap(\bar{\Omega}_{2} \backslash\Omega_{1})\), \(t\in[0,1]\), in view of Lemma 2.3, we have
$$\begin{aligned} \|Ty\|&\leq\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int _{0}^{1}s(1-s)^{\alpha-2} \bigl(f \bigl(s,y^{*}(s-\tau)\bigr)+\rho(s) \bigr)\,ds \\ &\leq\frac{\lambda t^{2}}{\Gamma(\alpha)} \int_{0}^{1}s(1-s)^{\alpha-2} \bigl(f \bigl(s,y^{*}(s-\tau)\bigr)+\rho(s) \bigr)\,ds \end{aligned}$$
and
$$\begin{aligned} (Ty) (t)&\geq\frac{\lambda t^{4}}{\Gamma(\alpha)} \int_{0}^{1}s(1-s)^{\alpha -2} \bigl(f \bigl(s,y^{*}(s-\tau)\bigr)+\rho(s) \bigr)\,ds \\ &\geq t^{2}\|Ty\|. \end{aligned}$$
Hence, \(T: K_{1}\cap(\bar{\Omega}_{2}\backslash\Omega_{1})\rightarrow K_{1}\).
Next we show \(T:K_{1}\cap(\bar{\Omega}_{2}\backslash\Omega_{1})\rightarrow K_{1}\) is continuous and compact. For any \(y_{n}, y\in K_{1}\cap(\bar{\Omega}_{2}\backslash\Omega_{1})\), \(n=1,2,\ldots\) with \(\|y_{n}-y\|_{[-\tau,1]}\rightarrow0\) as \(n\rightarrow\infty\). Since \(r_{1}\leq\|y_{n}\|\leq r_{2}\) and \(r_{1}\leq\| y\|\leq r_{2}\), for \(t\in(0,1)\), we know
$$y_{n}(t)-t^{5-\alpha}\omega(t)\geq\frac{r_{1}}{2}t^{2} $$
and
$$y(t)-t^{5-\alpha}\omega(t)\geq\frac{r_{1}}{2}t^{2}. $$
Then, for \(t\in[0,1]\), we have
$$\begin{aligned} \bigl\vert (Ty_{n}) (t)-(Ty) (t)\bigr\vert =&\biggl\vert \int_{\tau}^{1}\lambda G^{*}(t,s) \bigl(f\bigl(s,(s- \tau)^{\alpha-5}y_{n}(s-\tau )-\omega(s-\tau)\bigr)+\rho(s) \\ &{}-f\bigl(s,(s-\tau)^{\alpha-5}y(s-\tau)-\omega(s-\tau)\bigr)-\rho(s) \bigr)\,ds\biggr\vert \\ \leq&\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{\tau }^{1}s(1-s)^{\alpha-2}\bigl\vert f \bigl(s,(s-\tau)^{\alpha-5}y_{n}(s-\tau)-\omega(s-\tau)\bigr) \\ &{}-f\bigl(s,(s-\tau)^{\alpha-5}y(s-\tau)-\omega(s-\tau)\bigr)\bigr\vert \,ds \\ \leq&\frac{2\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{\tau }^{1}s(1-s)^{\alpha-2} \varphi_{1}(s) \biggl(g\biggl(\frac{k}{2}(s-\tau )^{2} \biggr)+h_{1}(r_{2}) \biggr)\,ds \\ < &+\infty. \end{aligned}$$
This implies that \(\|Ty_{n}-Ty\|_{[-\tau,1]}\rightarrow0\) as \(n\rightarrow\infty\). Hence T is continuous.

Next we prove T is equicontinuous.

Since \(G^{*}\) in uniformly continuous for \(t\in(0,1)\), that is, for any \(\epsilon>0\), there exists \(\xi_{0}>0\), when \(t_{1},t_{2}\in[0,1]\) and \(|t_{1}-t_{2}|<\xi_{0}\), we have
$$\begin{aligned} \bigl\vert G^{*}(t_{1},s)-G^{*}(t_{2},s)\bigr\vert =& \frac{\epsilon}{2} \biggl( \int_{0}^{\tau}\lambda\varphi_{1}(s) \bigl(g \bigl(\eta (s-\tau)\bigr)+h_{1}\bigl(\eta(s-\tau)\bigr) \bigr)\,ds \\ &{}+ \biggl.\biggl.\int_{\tau}^{1}\lambda\varphi_{1}(s) \biggl(g \biggl(\frac{k}{2}(s-\tau )^{2}\biggr)+h_{1}(r_{2}) \biggr)\,ds \biggr)\biggr.^{-1}. \end{aligned}$$
Thus, for any \(y\in K_{1}\cap(\bar{\Omega}_{2}\backslash\Omega_{1})\), we get
$$\begin{aligned} \bigl\vert (Ty) (t_{1})-(Ty) (t_{2})\bigr\vert \leq& \int_{0}^{\tau}\lambda\bigl\vert G^{*}(t_{1},s)-G^{*}(t_{2},s)\bigr\vert \varphi_{1}(s) \bigl(g\bigl(\eta(s-\tau)\bigr)+h_{1}\bigl(\eta(s-\tau)\bigr) \bigr) \,ds \\ &{} + \int_{\tau}^{1}\lambda\bigl\vert G^{*}(t_{1},s)-G^{*}(t_{2},s) \bigr\vert \varphi_{1}(s) \biggl(g\biggl(\frac{k}{2}(s- \tau)^{2}\biggr)+h_{1}(r_{2}) \biggr)\,ds \\ < &\frac{\epsilon}{2}+\frac{\epsilon}{2} \\ =&\epsilon. \end{aligned}$$
Thus T is equicontinuous. Accordingly to the Ascoli-Arzelà theorem, T is completely continuous. The proof is completed. □

Now we prove the existence of positive solutions for boundary value problem (1.1) by using the Guo-Krasnoselskii fixed point theorem.

For convenience, we denote
$$\begin{aligned} \xi_{1} :=&\frac{1}{\Gamma(\alpha)} \biggl( \int_{0}^{\tau}s(1-s)^{\alpha -2} \varphi_{1}(s) \bigl(g\bigl(\eta(s-\tau)\bigr) \\ &{}+h_{1}\bigl(\eta(s-\tau)\bigr) \bigr)\,ds+ \int_{\tau}^{1}s(1-s)^{\alpha-2}\varphi _{1}(s) \biggl( g\biggl(\frac{k}{2}(s-\tau)^{2} \biggr)+\epsilon r_{2} \biggr)\,ds \biggr) \\ >&0, \end{aligned}$$
and there exists a subinterval \([\beta,\gamma]\subset(\tau,1)\),
$$\begin{aligned}& \zeta_{1}:=\min_{t\in[\beta,\gamma]}(t-\tau)^{2}, \qquad \zeta _{2}:=\min_{t\in[\beta,\gamma]}t^{4}, \\& \xi_{2}(t):=\frac{\zeta_{2}}{\Gamma(\alpha)}h_{2}\biggl( \frac{r_{1}\zeta_{1}}{2}\biggr) \int _{\beta}^{\gamma} s(1-s)^{\alpha-2} \varphi_{2}(s)\,ds>0. \end{aligned}$$

Theorem 3.1

Let (H1), (H2), and \(\xi_{2}^{-1}r_{1}<\xi_{1}^{-1}r_{2}\) hold. Then the boundary value problem (1.1) has at least one positive solution if
$$ \lim_{y\rightarrow+\infty}\frac{h_{1}(y)}{y}=0 $$
(3.7)
for each
$$\lambda\in\bigl(\xi_{2}^{-1}r_{1}, \xi_{1}^{-1}r_{2}\bigr). $$

Proof

Let \(\epsilon>0\). Then in view of (3.7), there exists a \(M>0\) such that
$$ h_{1}(y)\leq\epsilon y \quad \text{for } y>M. $$
(3.8)
Choose
$$r_{2}\geq\max\{M+1,r_{1}+1\}, $$
then for \(y\in\partial\Omega_{2}\), like for (3.6), for \(t\in [0,1]\), we obtain
$$\begin{aligned} y(t)-t^{5-\alpha}\omega(t)&\geq t^{2}(r_{2}-c) \\ &\geq\frac{r_{2}}{2}t^{2}. \end{aligned}$$
(3.9)
Then from (H1), (3.8), (3.9), and Lemma 2.3, we get
$$\begin{aligned} (Ty) (t) \leq&\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{0}^{\tau }s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \\ &{}\times\biggl(g \biggl(\frac{r_{2}}{2}(s-\tau)^{2} \biggr)+h_{1} \bigl(y(s-\tau)-(s-\tau )^{5-\alpha}\omega(s-\tau) \bigr) \biggr)\,ds \\ \leq&\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{0}^{\tau }s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \biggl(g \biggl(\frac{r_{2}}{2}(s-\tau)^{2} \biggr)+h_{1} \bigl(y(s-\tau) \bigr) \biggr)\,ds \\ \leq&\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{\tau}s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \biggl(g \biggl(\frac{k}{2}(s-\tau)^{2} \biggr)+h_{1}(r_{2}) \biggr)\,ds \\ \leq&\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{\tau}s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \biggl(g \biggl(\frac{k}{2}(s-\tau)^{2} \biggr)+\epsilon r_{2} \biggr)\,ds \\ \leq&\lambda\xi_{1}< r_{2}. \end{aligned}$$
Therefore, for \(y\in\partial\Omega_{2}\), we have \(\|Ty\|\leq\|y\|\).
On the other hand, for \(y\in\partial\Omega_{1}\), like for (3.6), for \(t\in[0,1]\), we obtain
$$\begin{aligned} y(t)-t^{5-\alpha}\omega(t)&\geq t^{2}(r_{1}-c) \\ &\geq\frac{r_{1}}{2}t^{2}. \end{aligned}$$
(3.10)
Thus from (H1), (3.10), and Lemma 2.3, we get
$$\begin{aligned} \|Ty\| \geq& \int_{\beta}^{\gamma}\lambda\min_{t\in[\beta,\gamma ]}G^{*}(t,s) \bigl(f\bigl(s,(s-\tau)^{\alpha-5}y(s-\tau)-\omega(s-\tau)\bigr)+\rho (s) \bigr)\,ds \\ \geq& \int_{\beta}^{\gamma}\lambda\min_{t\in[\beta,\gamma ]}G^{*}(t,s) \varphi_{2}(s)h_{2} \biggl(\frac{r_{1}}{2}(s- \tau)^{2} \biggr)\,ds \\ \geq&\frac{\lambda\zeta_{2}}{\Gamma(\alpha)}h_{2}\biggl(\frac{r_{1}\zeta _{1}}{2}\biggr) \int_{\beta}^{\gamma}s(1-s)^{\alpha-2} \varphi_{2}(s)\,ds \\ \geq&\lambda\xi_{2}>r_{1}. \end{aligned}$$
Therefore, for \(y\in\partial\Omega_{1}\), we have \(\|Ty\|\geq\|y\|\). Then T defined by (3.2) has a fixed point \(\tilde{y}\in K_{1}\cap(\bar{\Omega}_{2}\backslash\Omega _{1})\). In view of (3.10), we have
$$\begin{aligned} t^{\alpha-5}\tilde{y}(t)-\omega(t)&=t^{\alpha-5} \bigl(\tilde {y}(t)-t^{5-\alpha}\omega(t) \bigr) \\ &\geq\frac{r_{1}}{2}t^{\alpha-3} \\ &>0. \end{aligned}$$
It is easy to know (3.3) is satisfied. The proof is completed. □
Denote
$$\begin{aligned} \xi_{3} :=&\frac{1}{\Gamma(\alpha)} \biggl( \int_{0}^{\tau}s(1-s)^{\alpha -2} \varphi_{1}(s) \bigl(g\bigl(\eta(s-\tau)\bigr)+h_{1}\bigl(\eta(s-\tau)\bigr) \bigr)\,ds \\ &{}+ \int_{\tau}^{1}s(1-s)^{\alpha-2}\varphi _{1}(s) \biggl(g\biggl(\frac{k}{2}(s-\tau)^{2} \biggr)+h_{1}(R_{1}) \biggr)\,ds \biggr) \\ >&0. \end{aligned}$$

Theorem 3.2

Let (H1)-(H3) and
$$\frac{2\Gamma(\alpha)}{M^{*}A\zeta_{2}} \biggl( \int_{a}^{b}s(1-s)^{\alpha-2}\varphi _{2}(s)\,ds \biggr)^{-1}< \xi_{3}^{-1}R_{1} $$
hold. Then boundary value problem (1.1) has at least one positive solution if
$$ \lim_{y\rightarrow+\infty}\frac{h_{2}(y)}{y}=+\infty $$
(3.11)
for each
$$ \lambda\in \biggl(\frac{2\Gamma(\alpha)}{M^{*}A\zeta_{2}} \biggl( \int _{a}^{b}s(1-s)^{\alpha-2} \varphi_{2}(s)\,ds \biggr)^{-1},\xi_{3}^{-1}R_{1} \biggr), $$
(3.12)
where \(A:=\min_{t\in[a,b]}(t-\tau)^{2}\), \(M^{*}\) is a positive constant.

Proof

It follows from (3.11) that there exists a \(M^{*}>0\) such that
$$ h_{2}(y)\geq M^{*}y \quad \text{for } y>M^{*}. $$
(3.13)
Choose
$$R_{2}\geq\max\biggl\{ R_{1}+1,\frac{2M^{*}}{A}\biggr\} . $$
Then for \(y\in\partial\Omega_{3}\), like for (3.6), for \(t\in [0,1]\), we obtain
$$\begin{aligned} y(t)-t^{5-\alpha}\omega(t)&\geq t^{2}(R_{2}-c) \\ &\geq\frac{R_{2}}{2}t^{2}. \end{aligned}$$
(3.14)
Thus from (H1), (3.13), (3.14), and Lemma 2.3, we get
$$\begin{aligned} \|Ty\| \geq& \int_{a}^{b}\lambda\min_{t\in[a,b]}G^{*}(t,s) \bigl(f\bigl(s,(s-\tau)^{\alpha-5}y(s-\tau)-\omega(s-\tau)\bigr)+\rho(s) \bigr)\,ds \\ \geq& \int_{a}^{b}\lambda\min_{t\in[a,b]}G^{*}(t,s) \varphi_{2}(s)h_{2} \biggl(\frac{R_{2}}{2}(s- \tau)^{2} \biggr)\,ds \\ \geq& \int_{a}^{b}\lambda\min_{t\in[a,b]}G^{*}(t,s) \varphi _{2}(s)h_{2}\biggl(\frac{R_{2}A}{2}\biggr)\,ds \\ \geq&\frac{M^{*}A\lambda R_{2}}{2} \int_{a}^{b}\min_{t\in [a,b]}G^{*}(t,s) \varphi_{2}(s)\,ds \\ \geq&\frac{\lambda M^{*}AR_{2}\zeta_{2}}{2\Gamma(\alpha)} \int_{a}^{b} s(1-s)^{\alpha-2} \varphi_{2}(s)\,ds \\ \geq& R_{2}. \end{aligned}$$
Therefore, for \(y\in\partial\Omega_{3}\), we have \(\|Ty\|\geq\|y\|\).
On the other hand, for \(y\in\partial\Omega_{4}\), like for (3.6), for \(t\in[0,1]\), we obtain
$$\begin{aligned} y(t)-t^{5-\alpha}\omega(t)&\geq t^{2}(R_{1}-c) \\ &\geq\frac{R_{1}}{2}t^{2}. \end{aligned}$$
(3.15)
Thus from (H1), (3.12), and (3.15), we have
$$\begin{aligned} (Ty) (t) \leq&\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{0}^{\tau }s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \\ &{}\times\biggl(g \biggl(\frac{R_{1}}{2}(s-\tau)^{2} \biggr)+h_{1} \bigl(y(s-\tau)-(s-\tau )^{5-\alpha}\omega(s-\tau) \bigr) \biggr)\,ds \\ \leq&\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{\tau}s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \biggl(g \biggl(\frac{k}{2}(s-\tau)^{2} \biggr)+h_{1}(R_{1}) \biggr)\,ds \\ \leq&\lambda\xi_{3}< R_{1}. \end{aligned}$$
Therefore, for \(y\in\partial\Omega_{4}\), we have \(\|Ty\|\leq\|y\|\). Arguments similar to those at the end of the proof of Theorem 3.1 show that boundary value problem (1.1) has a positive solution. The proof is completed. □

Theorem 3.3

Let (H1) and (H2) hold. Furthermore assume that
(H4): 
there exists a subinterval \([\beta,\gamma]\subset(\tau,1)\) and a positive constant r such that
$$\begin{aligned} r >&\max\biggl\{ k,2c,\frac{\lambda}{\Gamma(\alpha)} \biggl( \int_{0}^{\tau }s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g\bigl(\eta(s-\tau)\bigr)+h_{1}\bigl( \eta(s-\tau)\bigr) \bigr)\,ds \\ &{} + \int_{\tau}^{1}s(1-s)^{\alpha-2} \varphi_{1}(s) \biggl(g\biggl(\frac {k}{2}(s-\tau)^{2} \biggr)+h_{1}(r)\,ds \biggr) \biggr)\biggr\} , \end{aligned}$$
where k is defined in (H2), c is defined as (3.4) and \(\lambda\in(0,+\infty)\).

Then boundary value problem (1.1) has at least one positive solution y with \(0<\|y\|<r\).

Proof

In view of (H4), we choose \(n_{0}\in\{1,2,\ldots\}\) such that
$$\begin{aligned} r >&\frac{\lambda}{\Gamma(\alpha)} \biggl( \int_{0}^{\tau}s(1-s)^{\alpha -2} \varphi_{1}(s) \bigl(g\bigl(\eta(s-\tau)\bigr)+h_{1}\bigl( \eta(s-\tau)\bigr)\bigr)\,ds \\ &{} + \int_{\tau}^{1}s(1-s)^{\alpha-2} \varphi_{1}(s) \biggl(g\biggl(\frac{k}{2}(s-\tau )^{2} \biggr)+h_{1}(r)\biggr)\,ds \biggr)+\frac{1}{n_{0}}. \end{aligned}$$
Let \(N_{0}=\{n_{0},n_{0}+1,\ldots\}\). Fix \(n\in N_{0}\) and consider the family of integral equations
$$ y(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} \kappa\int_{0}^{1}\lambda G^{*}(t,s) (f_{n}(s,y^{*}(s-\tau))+\rho(s) )\,ds+\frac{1}{n}, & t\in(0,1), \\ \frac{1}{n}, & t\in[-\tau,0], \end{array}\displaystyle \right . $$
(3.16)
where \(\kappa\in(0,1)\),
$$f_{n}\bigl(t,y^{*}(t-\tau)\bigr)+\rho(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} f(t,y^{*}(t-\tau))+\rho(t), & y^{*}(t-\tau)\geq\frac{1}{n}, \\ f(t,\frac{1}{n})+\rho(t), & y^{*}(t-\tau)< \frac{1}{n}. \end{array}\displaystyle \right . $$
We claim that any solution y of (3.16) for any \(\kappa\in (0,1)\) must satisfy \(\|y\|\neq r\). Otherwise, assume that y is a solution of (3.16) for some \(\kappa\in(0,1)\) such that \(\|y\|=r\). Then \(y^{*}(t-\tau)\geq\frac{1}{n}\) for \(t\in(0,1)\). In view of Lemma 2.3, we have
$$ \|y\|\leq\frac{\kappa\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int _{0}^{1}s(1-s)^{\alpha-2} \bigl(f_{n}\bigl(s,y^{*}(s-\tau)\bigr)+\rho(s) \bigr)\,ds+ \frac{1}{n}. $$
(3.17)
Thus, for \(t\in(0,1)\), we have
$$\begin{aligned} y(t) \geq&\frac{1}{n}+\frac{\kappa\lambda t^{4}}{\Gamma(\alpha)} \int _{0}^{1}s(1-s)^{\alpha-2} \bigl(f_{n}\bigl(s,y^{*}(s-\tau)\bigr)+\rho(s) \bigr)\,ds \\ \geq&\frac{1}{n}+t^{\alpha-1}\biggl(\|y\|-\frac{1}{n}\biggr) \\ \geq&\bigl(1-t^{\alpha-1}\bigr)\frac{1}{n}+t^{\alpha-1}\|y\| \\ \geq& t^{\alpha-1}\|y\| \geq t^{2}r. \end{aligned}$$
Then like for (3.6), for \(t\in(0,1)\), we have
$$\begin{aligned} y(t)-t^{5-\alpha}\omega(t)&\geq t^{2}(r-c) \\ &\geq\frac{r}{2}t^{2}. \end{aligned}$$
Then from (H1), for \(t\in(0,1)\), \(\kappa\in(0,1)\), we have
$$\begin{aligned} y(t) =&\frac{1}{n}+\kappa\lambda \int_{0}^{1}G^{*}(t,s) \bigl(f_{n} \bigl(s,y^{*}(s-\tau )\bigr)+\rho(s) \bigr)\,ds \\ =&\frac{1}{n}+\kappa\lambda \int_{0}^{1}G^{*}(t,s) \bigl(f\bigl(s,y^{*}(s-\tau) \bigr)+\rho (s) \bigr)\,ds \\ \leq&\frac{1}{n}+\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int _{0}^{1}s(1-s)^{\alpha-2} \bigl(f \bigl(s,y^{*}(s-\tau)\bigr)+\rho(s) \bigr)\,ds \\ \leq&\frac{1}{n_{0}}+\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{\tau }s(1-s)^{\alpha-2} \bigl( \varphi_{1}(s) \bigl(g\bigl(\eta(s-\tau)\bigr)+h_{1}\bigl( \eta(s-\tau)\bigr) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda}{\Gamma(\alpha)} \int_{\tau}^{1}s(1-s)^{\alpha-2} \\ &{}\times \biggl( \varphi_{1}(s) \biggl(g\biggl(\frac{r}{2}(s-\tau)^{2} \biggr) +h_{1}\bigl(y(s-\tau)-(s-\tau)^{5-\alpha}\omega(s-\tau) \bigr) \biggr) \biggr)\,ds. \end{aligned}$$
Hence we obtain
$$\begin{aligned} r =&\bigl\Vert y(t)\bigr\Vert \\ \leq&\frac{1}{n_{0}}+\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{\tau }s(1-s)^{\alpha-2} \bigl( \varphi_{1}(s) \bigl(g\bigl(\eta(s-\tau)\bigr)+h_{1}\bigl( \eta(s-\tau)\bigr) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda}{\Gamma(\alpha)} \int_{\tau}^{1}s(1-s)^{\alpha-2} \\ &{}\times \biggl( \varphi_{1}(s) \biggl(g\biggl(\frac{r}{2}(s-\tau)^{2} \biggr) +h_{1}\bigl(y(s-\tau)-(s-\tau)^{5-\alpha}\omega(s-\tau) \bigr) \biggr) \biggr)\,ds. \end{aligned}$$
This is a contradiction and the claim is proved.
Now the Leray-Schauder nonlinear alternative theorem guarantees that the equation
$$y(t)= \int_{0}^{1}\lambda G^{*}(t,s) \bigl(f_{n} \bigl(s,y^{*}(s-\tau)\bigr)+\rho(s) \bigr)\,ds+\frac{1}{n} $$
has a solution \(y_{n}\), in \(\bar{\Omega}_{r}=\{y\in C[0,1]:\|y\|\leq r\}\), for \(t\in(0,1)\).
Next we claim that \(y_{n}(t)\) has a uniform sharper lower bound. In view of (H1) and \(\|y_{n}(t)\|\leq r\), we obtain
$$\begin{aligned} y_{n}(t) =&\frac{1}{n}+\lambda \int_{0}^{1}G^{*}(t,s) \bigl(f_{n} \bigl(s,y^{*}_{n}(s-\tau )\bigr)+\rho(s) \bigr)\,ds \\ \geq&\frac{1}{n}+\lambda \int_{\beta}^{\gamma}G^{*}(t,s) \bigl(f\bigl(s,y^{*}_{n}(s- \tau)\bigr)+\rho(s) \bigr)\,ds \\ \geq&\frac{\lambda t^{4}}{\Gamma(\alpha)} \int_{\beta}^{\gamma} s(1-s)^{\alpha-2} \bigl(f \bigl(s,y^{*}_{n}(s-\tau)\bigr)+\rho(s) \bigr)\,ds \\ \geq&\frac{\lambda t^{4}}{\Gamma(\alpha)} \int_{\beta}^{\gamma }s(1-s)^{\alpha-2} \biggl( \varphi_{2}(s)h_{2}\biggl(\frac{r}{2}(s- \tau)^{2}\biggr) \biggr)\,ds \\ \geq&\frac{\lambda t^{4}}{\Gamma(\alpha)}h_{2}\biggl(\frac{r\zeta_{1}}{2}\biggr) \int _{\beta}^{\gamma}s(1-s)^{\alpha-2} \varphi_{2}(s)\,ds. \end{aligned}$$
Choosing \(\delta(t)=\frac{\lambda t^{4}}{\Gamma(\alpha)}h_{2}(\frac{r\zeta _{1}}{2})\int_{\beta}^{\gamma}s(1-s)^{\alpha-2}\varphi_{2}(s)\,ds\). Then we conclude that there exists a function \(\delta\in C(0,1)\) that is unrelated to n such that \(\delta(t)>0\) for a.e. \(t\in(0,1)\) and for any \(n\in N_{0}\),
$$y_{n}(t)\geq\delta(t). $$
Then we prove \(\{y_{n}\}_{n\in N_{0}}\) is an equicontinuous family on \((0,1)\). Since \(G^{*}\) in uniformly continuous for \(t\in(0,1)\), that is, for any \(\epsilon>0\), there exists \(\zeta _{0}>0\), when \(t_{1},t_{2}\in[0,1]\) and \(|t_{1}-t_{2}|<\zeta_{0}\), we have
$$\begin{aligned} \bigl\vert G^{*}(t_{1},s)-G^{*}(t_{2},s)\bigr\vert =& \frac{\epsilon}{2\lambda} \biggl( \int_{0}^{\tau}\varphi_{1}(s) \bigl(g\bigl( \eta (s-\tau)\bigr)+h_{1}\bigl(\eta(s-\tau)\bigr) \bigr)\,ds \\ &{} +\biggl.\biggl. \int_{\tau}^{1}\varphi_{1}(s) \biggl(g\biggl( \frac{k}{2}(s-\tau)^{2}\biggr)+h_{1}(r) \biggr)\,ds \biggr)\biggr.^{-1}. \end{aligned}$$
Thus
$$\begin{aligned} \bigl\vert (y_{n}) (t_{1})-(y_{n}) (t_{2})\bigr\vert \leq&\lambda \int_{0}^{\tau}\bigl\vert G^{*}(t_{1},s)-G^{*}(t_{2},s) \bigr\vert \varphi_{1}(s) \bigl(g\bigl(\eta (s-\tau) \bigr)+h_{1}\bigl(\eta(s-\tau)\bigr) \bigr)\,ds \\ &{} +\lambda \int_{\tau}^{1}\bigl\vert G^{*}(t_{1},s)-G^{*}(t_{2},s) \bigr\vert \varphi_{1}(s) \biggl(g\biggl(\frac{k}{2}(s- \tau)^{2}\biggr)+h_{1}(r) \biggr)\,ds \\ < &\frac{\epsilon}{2}+\frac{\epsilon}{2} \\ =&\epsilon. \end{aligned}$$
Therefore, \(\{y_{n}\}_{n\in N_{0}}\) is an equicontinuous family on \((0,1)\). By the Arzelà-Ascoli theorem, there exist a subsequence \(N_{1}\) of \(N_{0}\) and \(y\in C(0,1)\) such that \(\{y_{n}\}_{n\in N_{1}}\) is uniformly convergent to y and y satisfies \(\delta(t)\leq y(t)\leq r\) for any \(t\in(0,1)\). By the Lebesgue dominated convergence theorem, in view of
$$y_{n}(t)= \int_{0}^{1}\lambda G^{*}(t,s) \bigl(f_{n} \bigl(s,y^{*}_{n}(s-\tau)\bigr)+\rho(s) \bigr)\,ds, $$
we have
$$y(t)= \int_{0}^{1}\lambda G^{*}(t,s) \bigl(f\bigl(s,y^{*}(s- \tau)\bigr)+\rho(s) \bigr)\,ds. $$
Then boundary value problem (1.1) has one positive solution with \(0<\|y\|<r\). The proof is completed. □

Theorem 3.4

Let (H1) and (H2) hold. Assume that there exists a subinterval \([\beta,\gamma]\subset(\tau,1)\) satisfying
$$\begin{aligned}& \max g(\cdot)+\max h_{1}(\cdot)\leq\frac{r_{2}}{\frac{\lambda}{\Gamma (\alpha)}\int_{0}^{1}s(1-s)^{\alpha-2}\varphi_{1}(s)\,ds}, \\ & \min_{0\leq y\leq r_{1}} h_{2}(y)\geq\frac{r_{1}}{\frac{\lambda\zeta _{2}}{\Gamma(\alpha)}\int_{\beta}^{\gamma}s(1-s)^{\alpha-2}\varphi_{2}(s)\,ds}, \end{aligned}$$
where \(\lambda\in(0,+\infty)\). Then boundary value problem (1.1) has at least one positive solution.

Proof

In view of Theorem 3.1, for \(y\in\partial\Omega _{2}\), \(t\in[0,1]\), we obtain
$$ y(t)-t^{5-\alpha}\omega(t)\geq\frac{r_{2}}{2}t^{2}. $$
(3.18)
Then from (H1), (3.18), and Lemma 2.3, we get
$$\begin{aligned} (Ty) (t) \leq&\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{0}^{\tau }s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \\ &{}\times\biggl(g \biggl(\frac{r_{2}}{2}(s-\tau)^{2} \biggr)+h_{1} \bigl(y(s-\tau)-(s-\tau )^{5-\alpha}\omega(s-\tau) \bigr) \biggr)\,ds \\ \leq&\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{0}^{\tau }s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda t^{5-\alpha}}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \biggl(g \biggl(\frac{r_{2}}{2}(s-\tau)^{2} \biggr)+h_{1} \bigl(y(s-\tau) \bigr) \biggr)\,ds \\ \leq&\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{\tau}s(1-s)^{\alpha-2} \varphi_{1}(s) \bigl(g \bigl(\eta(s-\tau) \bigr)+h_{1} \bigl( \eta(s-\tau) \bigr) \bigr)\,ds \\ &{} +\frac{\lambda}{\Gamma(\alpha)} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s) \biggl(g \biggl(\frac{k}{2}(s-\tau)^{2} \biggr)+h_{1}(r_{2}) \biggr)\,ds \\ \leq&\frac{\lambda}{\Gamma(\alpha)}\frac{r_{2}}{\frac{\lambda}{\Gamma (\alpha)}\int_{0}^{1}s(1-s)^{\alpha-2}\varphi_{1}(s)\,ds} \int_{0}^{\tau }s(1-s)^{\alpha-2} \varphi_{1}(s)\,ds \\ &{} +\frac{\lambda}{\Gamma(\alpha)}\frac{r_{2}}{\frac{\lambda}{\Gamma (\alpha)}\int_{0}^{1}s(1-s)^{\alpha-2}\varphi_{1}(s)\,ds} \int_{\tau}^{1} s(1-s)^{\alpha-2} \varphi_{1}(s)\,ds \leq r_{2}. \end{aligned}$$
Therefore, for \(y\in\partial\Omega_{2}\), we have \(\|Ty\|\leq\|y\|\).
On the other hand, for \(y\in\partial\Omega_{1}\), like for (3.6), for \(t\in[0,1]\), we obtain
$$\begin{aligned} y(t)-t^{5-\alpha}\omega(t)&\geq t^{2}(r_{1}-c) \\ &\geq\frac{r_{1}}{2}t^{2}. \end{aligned}$$
(3.19)
Thus from (H1), (3.19), and Lemma 2.3, we get
$$\begin{aligned} \|Ty\| \geq& \int_{\beta}^{\gamma}\lambda\min_{t\in[\beta,\gamma ]}G^{*}(t,s) \bigl(f\bigl(s,(s-\tau)^{\alpha-5}y(s-\tau)-\omega(s-\tau)\bigr)+\rho (s) \bigr)\,ds \\ \geq& \int_{\beta}^{\gamma}\lambda\min_{t\in[\beta,\gamma ]}G^{*}(t,s) \varphi_{2}(s)h_{2} \biggl(\frac{r_{1}}{2}(s- \tau)^{2} \biggr)\,ds \\ \geq&\frac{\lambda\zeta_{2}}{\Gamma(\alpha)}\frac{r_{1}}{\frac{\lambda \zeta_{2}}{\Gamma(\alpha)}\int_{\beta}^{\gamma}s(1-s)^{\alpha-2}\varphi_{2}(s)\,ds} \int_{\beta}^{\gamma}s(1-s)^{\alpha-2} \varphi_{2}(s)\,ds \\ \geq& r_{1}. \end{aligned}$$
Therefore, for \(y\in\partial\Omega_{1}\), we have \(\|Ty\|\geq\|y\|\). Arguments similar to those at the end of the proof of Theorem 3.1 show that boundary value problem (1.1) has a positive solution. The proof is completed. □

Declarations

Acknowledgements

This research is supported by the Natural Science Foundation of China (11572205, 61374002, 61374074), and supported by Shandong Provincial Natural Science Foundation (ZR2013AL003).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Basic Courses, Shandong Women’s University
(2)
School of Mathematical Sciences, University of Jinan

References

  1. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999) Google Scholar
  2. Kilbas, A, Srivastava, H, Trujillo, J: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) MATHGoogle Scholar
  3. Zhou, Y: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014) View ArticleMATHGoogle Scholar
  4. Miller, K, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) MATHGoogle Scholar
  5. Samko, S, Kilbas, A, Marichev, O: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993) MATHGoogle Scholar
  6. Agarwal, RP, Zhou, Y, Wang, JR, Luo, X: Fractional functional differential equations with causal operators in Banach spaces. Math. Comput. Model. 54, 1440-1452 (2011) MathSciNetView ArticleMATHGoogle Scholar
  7. Agarwal, RP, Benchohra, M, Hamani, A: Boundary value problems for fractional differential equations. Georgian Math. J. 16, 401-411 (2009) MathSciNetMATHGoogle Scholar
  8. Agarwal, RP, Zhou, Y, He, Y: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59, 1095-1100 (2010) MathSciNetView ArticleMATHGoogle Scholar
  9. Lu, H, Han, Z, Sun, S: Multiplicity of positive solutions for Sturm-Liouville boundary value problems of fractional differential equations with p-Laplacian. Bound. Value Probl. 2014, 26 (2014) MathSciNetView ArticleGoogle Scholar
  10. Lakshmikantham, V, Devi, J: Theory of fractional differential equations in a Banach space. Eur. J. Pure Appl. Math. 1, 38-45 (2008) MathSciNetMATHGoogle Scholar
  11. Han, ZL, Pan, YY, Yang, DW: The existence and nonexistence of positive solutions to a discrete fractional boundary value problem with a parameter. Appl. Math. Lett. 36, 1-6 (2014) MathSciNetView ArticleGoogle Scholar
  12. Zhao, Y, Sun, S, Han, Z, Li, Q: The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(4), 2086-2097 (2011) MathSciNetView ArticleMATHGoogle Scholar
  13. Feng, W, Sun, S, Li, X, Xu, M: Positive solutions to fractional boundary value problems with nonlinear boundary conditions. Bound. Value Probl. 2014, 225 (2014) MathSciNetView ArticleGoogle Scholar
  14. Zhao, Y, Sun, S, Han, Z, Li, Q: Positive solutions to boundary value problems of nonlinear fractional differential equations. Abstr. Appl. Anal. 2011, Article ID 390543 (2011) MathSciNetGoogle Scholar
  15. Li, B, Sun, S, Li, Y: Multi-point boundary value problems for a class of Riemann-Liouville fractional differential equations. Adv. Differ. Equ. 2014, 151 (2014) View ArticleGoogle Scholar
  16. Zhao, Y, Sun, S, Han, Z, Zhang, M: Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl. Math. Comput. 217, 6950-6958 (2011) MathSciNetView ArticleMATHGoogle Scholar
  17. Feng, W, Sun, S, Han, Z, Zhao, Y: Existence of solutions for a singular system of nonlinear fractional differential equations. Comput. Math. Appl. 62(3), 1370-1378 (2011) MathSciNetView ArticleMATHGoogle Scholar
  18. Pan, Y, Han, Z, Sun, S, Zhao, Y: The existence of solutions to a system of discrete fractional boundary value problems. Abstr. Appl. Anal. 2012, Article ID 707631 (2012) MathSciNetGoogle Scholar
  19. Li, XH, Han, ZL, Li, XC: Boundary value problems of fractional q-difference Schrodinger equations. Appl. Math. Lett. 46, 100-105 (2015) MathSciNetView ArticleGoogle Scholar
  20. Han, ZL, Lu, HL, Zhang, C: Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian. Appl. Math. Comput. 257, 526-536 (2015) MathSciNetView ArticleGoogle Scholar
  21. Zhou, Y: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, Amsterdam (2015) Google Scholar
  22. Diethelm, K: The Analysis of Fractional Differential Equations. Springer, Berlin (2010) View ArticleMATHGoogle Scholar
  23. Benchohra, M, Henderson, J, Ntouyas, SK, Ouahab, A: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340-1350 (2008) MathSciNetView ArticleMATHGoogle Scholar
  24. Lakshmikantham, V, Vatsala, A: Basic theory of fractional differential equations. Nonlinear Anal. 69, 2677-2682 (2008) MathSciNetView ArticleMATHGoogle Scholar
  25. Lakshmikantham, V, Vatsala, A: Theory of fractional differential inequalities and applications. Commun. Appl. Anal. 11, 395-402 (2007) MathSciNetMATHGoogle Scholar
  26. Maraaba, T, Baleanu, D, Jarad, F: Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives. J. Math. Phys. 49(8), 1-11 (2008) MathSciNetGoogle Scholar
  27. Zhou, Y, Jiao, F, Li, J: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. TMA 71(7-8), 2724-2733 (2009) MathSciNetView ArticleMATHGoogle Scholar
  28. Zhou, Y, Jiao, F, Li, J: Existence and uniqueness for fractional neutral differential equations with infinite delay. Nonlinear Anal. TMA 71(7-8), 3249-3256 (2009) MathSciNetView ArticleMATHGoogle Scholar
  29. Wang, JR, Zhou, Y, Wei, W: A class of fractional delay nonlinear integrodifferential controlled systems in Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 16, 4049-4059 (2011) MathSciNetView ArticleMATHGoogle Scholar
  30. Li, X, Song, L, Wei, J: Positive solutions for boundary value problem of nonlinear fractional functional differential equations. Appl. Math. Comput. 217, 9278-9285 (2011) MathSciNetView ArticleMATHGoogle Scholar
  31. Zhao, Y, Chen, H, Huang, L: Existence of positive solutions for nonlinear fractional functional differential equation. Comput. Math. Appl. 64(10), 3456-3467 (2012) MathSciNetView ArticleMATHGoogle Scholar
  32. Zhou, Y, Tian, Y, He, Y: Floquet boundary value problems of fractional functional differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 50 (2010) MathSciNetGoogle Scholar
  33. Li, Y, Sun, S, Yang, D, Han, Z: Three-point boundary value problems of fractional functional differential equations with delay. Bound. Value Probl. 2013, 38 (2013) MathSciNetView ArticleGoogle Scholar
  34. Li, Y, Sun, S, Han, Z, Lu, H: The existence of positive solutions for boundary value problem of the fractional Sturm-Liouville functional differential equation. Abstr. Appl. Anal. 2013, Article ID 301560 (2013) MathSciNetGoogle Scholar
  35. Bai, C: Existence of positive solutions for a functional fractional boundary value problem. Abstr. Appl. Anal. 2010, Article ID 127363 (2010) Google Scholar
  36. Ouyang, Z, Chen, Y, Zou, S: Existence of positive solutions to a boundary value problem for a delayed nonlinear fractional differential system. Bound. Value Probl. 2011, Article ID 475126 (2011) MathSciNetView ArticleGoogle Scholar
  37. Su, X: Positive solutions to singular boundary value problem for fractional functional differential equations with changing sign nonlinearity. Comput. Math. Appl. 64, 3425-3435 (2012) MathSciNetView ArticleMATHGoogle Scholar
  38. Yu, H, Yan, L, Liu, Y: Multiple positive solutions to third-order three-point singular semipositone boundary value problem. Proc. Indian Acad. Sci. Math. Sci. 114, 409-422 (2004) MathSciNetView ArticleMATHGoogle Scholar
  39. Vong, S: Positive solutions of singular fractional differential equations with integral boundary conditions. Math. Comput. Model. 57, 1053-1059 (2013) MathSciNetView ArticleGoogle Scholar
  40. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cone. Academic Press, Orlando (1988) Google Scholar

Copyright

© Mu et al. 2016