- Research
- Open access
- Published:
Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
Boundary Value Problems volume 2016, Article number: 59 (2016)
Abstract
In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in \(L^{2}\)-\(H^{1}\) norms for the Neumann boundary optimal control problems governed by semilinear elliptic equations. We also give \(L^{2}\)-\(L^{2}\) a posteriori error estimates for the optimal control problems. Such estimates, which are apparently not available in the literature, can be used to construct reliable adaptive finite element approximations for the semilinear Neumann boundary optimal control problems.
1 Introduction
In this paper, we study residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary optimal control problems. We consider the following semilinear elliptic optimal control problems:
where the bounded open set \(\Omega\subset{\mathbb{R}^{2}}\) is a convex polygon with the boundary ∂Ω, \(K=\{u\in U=L^{2}(\partial\Omega):\int_{\partial\Omega}u\, dx \geq0\}\), \(f\in L^{2}(\Omega)\), \(z_{0}\in L^{2}(\partial\Omega)\), n is the outward normal on ∂Ω. For \(1\leq p<\infty\) and m any nonnegative integer let \(W^{m,p}(\Omega)=\{v\in L^{p}(\Omega); D^{\alpha}v\in L^{p}(\Omega) \text{ if } |\alpha|\leq m\} \) denote the Sobolev spaces endowed with the norm \(\| v \|_{m,p}^{p}=\sum\limits_{|\alpha|\leq m}\| D^{\alpha}v\|_{L^{p}(\Omega)}^{p}\), and the semi-norm \(| v|_{m,p}^{p}=\sum\limits_{|\alpha|= m}\| D^{\alpha}v\|_{L^{p}(\Omega)}^{p}\). We set \(W_{0}^{m,p}(\Omega)=\{v\in W^{m,p}(\Omega): v|_{\partial\Omega}=0\}\). For \(p=2\), we denote \(H^{m}(\Omega)=W^{m,2}(\Omega)\), \(H_{0}^{m}(\Omega)=W_{0}^{m,2}(\Omega)\), and \(\|\cdot\|_{m}=\|\cdot\|_{m,2}\), \(\|\cdot\|=\|\cdot\|_{0,2}\). Furthermore, we assume that the coefficient matrix \(A(x)=(a_{i,j}(x))_{2\times2}\in (W^{1,\infty}({\Omega}))^{2\times2}\) is a symmetric positive definite matrix and there is a constant \(c>0\) satisfying for any vector \(\mathbf{X}\in\mathbb{R}^{2}\), \(\mathbf{X}^{t}A\mathbf{X}\geq c\|\mathbf{X}\|_{\mathbb{R}^{2}}^{2}\). The function \(\phi(\cdot)\in W^{1,\infty}(-R,R)\) for any \(R>0\), \(\phi^{\prime}(y)\in L^{2}(\Omega)\) for any \(y\in H^{1}(\Omega)\), and \(\phi^{\prime}\geq0\). Let g and j be strictly convex functions which are continuously differentiable on the space \(L^{2}(\partial\Omega)\), and K be a closed convex set in the control space U. We further assume that \(j(u)\rightarrow+\infty\) as \(\|u\|_{U}\rightarrow\infty\) and \(g^{\prime}(\cdot)\) is a locally Lipschitz continuous function.
Optimal control problems have attracted substantial interest in recent years due to their applications in aero-hydrodynamics, atmospheric, hydraulic pollution problems, combustion, exploration and extraction of oil and gas resources, and engineering. They must be solved successfully with efficient numerical methods. Among these numerical methods, finite element methods are a successful choice for solving the optimal control problems. There have been extensive studies of the convergence of the finite element approximation for optimal control problems. Let us mention two early papers devoted to linear optimal control problems by Falk [1] and Geveci [2]. A systematic introduction of the finite element method for optimal control problems can be found in [3–12], but there are very less published results for optimal control problems by using hp finite element methods. Recently, the adaptive finite element methods have been investigated extensively and became one of the most popular methods in scientific computation. In [13], the authors studied a posteriori error estimates for adaptive finite element discretizations of boundary control problems. A posteriori error estimates and adaptive finite element approximations for parameter estimation problems have been obtained in [14, 15]. There are three main versions in adaptive finite element approximation, i.e., the p-version, the h-version, and the hp-version. The p-version of finite element methods uses a fixed mesh and improves the approximation of the solution by increasing degrees of piecewise polynomials. The h-version is based on mesh refinement and piecewise polynomials of low and fixed degrees. In the hp-version adaptation, one has the option to split an element (h-refinement) or to increase its approximation order (p-refinement). Generally, a local p-refinement is the more efficient method on regions where the solution is smooth, while a local h-refinement is the strategy suitable on elements where the solution is not smooth. There have been many theoretical studies as regards the hp finite element method in [16, 17]. An adaptive finite element approximation ensures a higher density of nodes in a certain area of the given domain, where the solution is more difficult to approximate, indicated by a posteriori error estimators. Hence it is an important approach to boost the accuracy and efficiency of finite element discretizations.
Actually, there are many h-versions of adaptive finite element methods for optimal control problems in [18–20]. But for a high order element such as a hp-version of the finite element method for optimal control problems they are very few. More recently, in [21], for the constrained optimal control problem governed by linear elliptic equations, the authors have derived a posteriori error estimates for the hp finite element solutions. Inspired by the work of [21], we consider a posteriori error estimates in \(L^{2}\)-\(H^{1}\) norms and \(L^{2}\)-\(L^{2}\) norms for hp finite element solutions of general semilinear Neumann boundary optimal control problems. To the best of our knowledge for optimal control problems, these a posteriori error estimates for the general semilinear boundary optimal control problems are new.
The paper is organized as follows. In Section 2, we discuss the hp finite element approximation for the semilinear Neumann boundary optimal control problems. In Section 3, we derive both \(L^{2}\)-\(H^{1}\) a posteriori upper error bounds for the error estimates of the control, the state, and the co-state. Then we also obtain sharper a posteriori error estimates for the control approximation and error estimates in the \(L^{2}\) norm for the state and co-state on the boundary. Finally, we give a conclusion and some possible future work in Section 4.
2 Finite element methods of boundary optimal control
In this section, we study the hp finite element approximation of semilinear convex optimal control problems where the control appears in the Neumann boundary conditions. To consider the hp finite element approximation of the semilinear boundary optimal control problems, we have to give a weak formula for the state equation. Let the state space be \(V=H^{1}(\Omega)\) and \(H=L^{2}(\Omega)\). Let
It follows from the assumptions on A that there are constants c and \(C>0\) such that
Then the standard weak formula for the state equation reads as follows: find \(y(u)\in V\) such that
Therefore, the above semilinear Neumann boundary optimal control problems can be restated as follows:
It is well known (see [20]) that the boundary optimal control problems (2.3)-(2.4) has a solution \((y,u)\) and that if a pair \((y,u)\) is the solution of (2.3)-(2.4), then there is a co-state \(p\in V\) such that the triplet \((y,p,u)\) satisfies the following optimality conditions:
Now, we consider the hp finite element approximation for the boundary optimal control problem. We consider the triangulation \(\mathcal{T}\) of the set \(\Omega\subset \mathbb{R}^{2}\) which is a collection of elements \(\tau\in \mathcal{T}\) (τ is a triangle); associated with each element τ is an affine element map \(F_{\tau}:\hat{\tau}\rightarrow \tau\), where the reference element is the reference triangle \(T=\{(x,y)\in\mathbb{R}^{2} : 0< x<1,0<y<\min(x,1-x)\}\). We consider the triangulation \(\mathcal{T}\) which satisfies the standard conditions defined in [22]. We write \(h_{\tau}=\operatorname{diam}\tau\). Assume that the triangulation \(\mathcal{T}\) is γ-shape regular, i.e.,
This implies (see [22]) that there exists a constant \(C>0\) that depends solely on γ such that
and there exists a constant \(M\in\mathbb{N}\) that depends solely on γ such that no more than M elements share a common vertex. We further assume the triangulation \(\mathcal{T}\) satisfies the relation between the patch and the reference patch. Let \(\mathcal{T}_{U}\) be a partition of ∂Ω into disjoint regular 1-simplices s, so that \(\partial\Omega=\bigcup\limits_{s\in\mathcal{T}_{U}}\bar{s}\). Associated with every s is an affine map \(F_{s}:\hat{s}\rightarrow s\), where \(\hat{s}=[-1,1]\). Assume that s̄ and \(\bar{s}^{\prime}\) have either only one common vertex or are disjoint if s and \(s^{\prime}\in\mathcal{T}_{U}\).
For each element \(\tau\in\mathcal{T}\), we denote \(\mathcal {E}(\tau)\) the set of edges of Ï„ and by \(\mathcal{N}(\tau)\) the set of vertices of Ï„, and choose a polynomial degree \(p_{\tau}\in\mathbb{N}\) and collect these numbers in the polynomial degree vector \(\mathbf{p}_{1}=(p_{\tau})_{\tau\in\mathcal{T}}\). Similarly, for each \(s\in\mathcal{T}_{U}\), we choose a polynomial degree vector \(\mathbf{p}_{2}=(p_{s})_{s\in\mathcal{T}_{U}}\) (\(p_{s}\in\mathbb{N}\)). \(\mathcal{N}(\mathcal{T})\) denotes the set of all vertices of \(\mathcal{T}\), \(\mathcal{E}(\mathcal{T})\) denotes the set of all edges. Additionally, we introduce the following notation (\(V\in\mathcal{N}(\mathcal{T})\), \(e\in\mathcal {E}(\mathcal{T})\)):
where \(\chi^{0}\) denotes the interior of the set χ. We denote by \(h_{e}\) (\(h_{s}\)) the length of the edge e (s). Additionally, c or C denotes a general positive constant independent of \(h_{\tau}\), \(p_{\tau}\), \(h_{e}\), \(p_{e}\), \(h_{s}\), and \(p_{s}\).
Next, we define the hp-FEM space \(S^{\mathbf{p}_{1}}(\mathcal {T})\subset H^{1}(\Omega)\) and the hp-DGFEM space \(U^{\mathbf{p}_{2}}(\mathcal{T}_{U})\subset L^{2}(\partial\Omega)\) by
where \({P}_{p_{\tau}}(\hat{\tau}):=\operatorname{span}\{ x^{i}y^{j}:0\leq i+j\leq p_{\tau}\}\), \({P}_{p_{s}}(\hat{s}):=\operatorname{span}\{x^{i}:0\leq i\leq p_{s}\}\). We assume that the polynomial degree vector \(\mathbf{p}_{1}\) satisfies
Let \(K_{hp}=K\cap U^{\mathbf{p}_{2}}(\mathcal{T}_{U})\) and \(V_{hp}=S^{\mathbf{p}_{1}}(\mathcal{T})\), then for the finite element approximation of (2.3)-(2.4):
It is well known that the boundary optimal control problem (2.11)-(2.12) has a solution \((y_{hp},u_{hp})\) and that if a pair \((y_{hp},u_{hp})\in V_{hp}\times K_{hp}\) is the solution of (2.11)-(2.12), then there is a co-state \(p_{hp}\in V_{hp}\) such that the triplet \((y_{hp},p_{hp},u_{hp})\) satisfies the following optimality conditions:
The following lemmas are important in deriving hp a posteriori error estimates of residual type.
Lemma 2.1
There exist a constant \(C>0\) independent of v, \(h_{s}\), and \(p_{s}\) and a mapping \(\pi_{p_{s}}^{h_{s}}:H^{1}(s)\rightarrow P_{p_{s}}(s)\) such that \(\forall v\in H^{1}(s)\), \(s\in\mathcal{T}_{U}\) the following inequality is valid:
where \(P_{p_{s}}(s):=\operatorname{span}\{x^{i}y^{j}:0\leq i+j\leq p_{s}\}\).
Proof
It follows easily from Proposition A.2 in [22] and the scaling argument. □
Lemma 2.2
[22]
Let \(\mathbf{p}_{1}\) be an arbitrary polynomial degree distribution satisfies (2.10). Then there exists a linear operator \(E_{1}:H^{1}(\Omega)\rightarrow S^{\mathbf{p}_{1}}(\mathcal{T})\), and there exists a constant \(C>0\) depending solely on γ such that for every \(v\in H^{1}(\Omega)\) and all elements \(\tau\in\mathcal{T}\) and all edges \(e\in\mathcal{E}(\mathcal{T})\),
Lemma 2.3
Let \(\mathbf{p}_{1}\) be an arbitrary polynomial degree distribution satisfying (2.10) and \(p_{\tau}\geq2\), \(\forall \tau\in\mathcal{T}\). Then there exists a bounded linear operator \(E_{2}:H^{2}(\Omega)\rightarrow S^{\mathbf{p}_{1}}(\mathcal{T})\), and there exists a constant \(C>0\) that depends solely on γ such that for every \(v\in H^{2}(\Omega)\) and all elements \(\tau\in\mathcal {T}\) and all edges \(e\in\mathcal{E}(\mathcal{T})\),
For \(\varphi\in W_{h}\), we shall write
where
are bounded functions in Ω̄ [23].
3 Residual-based a posteriori error estimators
In this section, we discuss residual-based a posteriori error estimates for the semilinear Neumann boundary optimal control problems. First of all, we use the \(L^{2}\) norm for estimating the control approximation error on the boundary, and the \(H^{1}\) norm for the state and co-state approximation error on the domain. For simplicity of presentation, let
Then the optimal control problems of (2.3) and (2.11) read
and
It can be shown that
where \(p(u_{hp})\) is the solution of the auxiliary equations:
In order to estimate the control u, we introduce the \(L^{2}(\partial\Omega)\)-projection of u into \(U^{\mathbf {p}_{2}}(\mathcal{T}_{U})\), i.e., let \(P_{hp}u\in U^{\mathbf{p}_{2}}(\mathcal {T}_{U})\) be the function defined by
Theorem 3.1
Let \((y,u)\) and \((y_{hp},u_{hp})\) be the solutions of (2.3)-(2.4) and (2.11)-(2.12). Let p and \(p_{hp}\) be the solutions of the co-state equations (2.6) and (2.14), respectively. Assume that
Moreover, we assume \(j^{\prime}(u_{hp})+p_{hp}\in H^{1}(\Omega)\). Then we have
where
and \(p(u_{hp})\) is the solution of the system (3.3)-(3.4).
Proof
It follows from (2.7), (2.15), and (3.6) that
Setting \(w_{hp}=1\) in (3.5), we have \(\int_{\partial\Omega}P_{hp}u=\int_{\partial\Omega}u\geq0\). Thus, we have \(P_{hp}u\in K_{hp}\). Let \(v_{hp}=P_{hp}u\in K_{hp}\). It follows from (3.5) and Lemma 2.1 that
By using (3.8) and (3.9), we have
Then (3.7) follows from (3.10). □
In the following theorem we estimate \(\|p_{hp}-p(u_{hp})\|_{H^{1}(\Omega)}^{2}\) and then obtain the desired hp a posteriori error estimates.
Theorem 3.2
Let \((y,p,u)\) and \((y_{hp},p_{hp},u_{hp})\) be the solutions of (2.5)-(2.7) and (2.13)-(2.15), respectively. Assume that all the conditions in Theorem 3.1 hold. Then we have
where \(\eta_{1}^{2}\) is defined in Theorem 3.1 and
Proof
Let \(e_{p}=p_{hp}-p(u_{hp})\) and \(E_{1}\) be the linear operator defined in Lemma 2.2, we have
It follows from (2.1), (2.14), (2.16)-(2.17), and (3.12) that
Therefore, noting that \(g^{\prime}\) is locally Lipschitz continuous, we have
Similarly, it can be proved that
It follows from (3.14), (3.15), and the trace theorem that
Note that
and
Combining (3.7), (3.14)-(3.16), and (3.17)-(3.20), we derive
Then we have proved (3.11). □
Next, we shall derive sharper a posteriori error estimates for the control approximation and error estimates in the \(L^{2}\) norm for the state and co-state on the boundary. We introduce a subset of Ω: \(\Omega_{d}=\{\tau\in\mathcal {T}:\bar{\tau}\cap\bar{\Omega}_{d}^{-}\neq\emptyset\}\), where \(\Omega_{d}^{-}=\{x\in\Omega:\operatorname{dist}(x,\partial\Omega)< d\}\) and d is a constant independent of \(h_{\tau}\), \(p_{\tau}\), \(h_{e}\), and \(p_{e}\). Then we have the following improved residual-based a posteriori error estimates.
Theorem 3.3
Let \((y,p,u)\) and \((y_{hp},p_{hp},u_{hp})\) be the solutions of (2.5)-(2.7) and (2.13)-(2.15), respectively. Assume that \(j^{\prime}(u_{hp})+p_{hp}\in H^{1}(\Omega)\) and \((J^{\prime}(u)-J^{\prime}(v),u-v)_{U}\geq c\|u-v\|_{L^{2}(\Omega_{U})}^{2}\), \(\forall u,v\in U\). Moreover, \(p_{\tau}\geq2\), \(\forall\tau\in\mathcal{T}\) and \(g^{\prime}(\cdot)\) is locally Lipschitz continuous. Then
where
and
Proof
For the proof of this theorem, we estimate (3.22) in the following five parts, respectively.
Part I. First, we estimate \(\|p_{hp}-p(u_{hp})\|_{L^{2}(\partial\Omega)}\). Let \(e_{p}=p_{hp}-p(u_{hp})\) and \(e_{y}=y_{hp}-y(u_{hp})\), then there is some \(\xi\in C^{\infty}(\Omega_{d}^{-})\) satisfying \(\xi=0\) on \(\partial\Omega_{d}^{-}\backslash \partial\Omega\) and \(\xi=1\) on ∂Ω. It follows from the trace theorem that
By using the assumption of A, we have
Let \(v^{p}=\xi^{2} e_{p}\), and let \(E_{1}\) be the linear operator defined in Lemma 2.2. It follows from (2.1), (2.14), (3.4), and (3.24) that
By using Lemma 2.2, we have
where we use the property that \(\xi=0\) on \(\Omega/\Omega_{d}^{-}\). Noting that \(\|v^{p}\|_{H^{1}(\Omega)}^{2}\leq\|\xi e_{p}\|_{H^{1}(\Omega)}^{2}\), we have
It follows from (3.23) and (3.26) that
Part II. Now, we estimate \(\|p_{hp}-p(u_{hp})\|_{L^{2}(\Omega)}\). Let \(\varphi_{p}\) be the solution of the following equation:
Noting that Ω is convex [24], it has been shown that
Let \(E_{2}\) be the linear operator defined in Lemma 2.3. It follows from (2.1), (2.14), (3.28)-(3.29), and Lemma 2.3 that
By using Lemma 2.3, we have
Let δ be small enough, it follows from (3.29) that
Part III. Next, we estimate \(\|y_{hp}-y(u_{hp})\|_{L^{2}(\partial\Omega)}\). Let \(e_{y}=y_{hp}-y(u_{hp})\) and \(v^{y}=\xi^{2}e_{y}\), by using (2.1), (2.13), (3.3), and Lemma 2.2, then we have
Therefore, it follows from (3.31) and the trace theorem that
Part IV. Furthermore, we estimate \(\|y_{hp}-y(u_{hp}) \|_{L^{2}(\Omega)}\). Let \(\varphi_{y}\) be the solution of the equation
Then we have
Similarly, we have
Let δ be small enough, it follows from (3.33) that
It follows from (3.7), (3.27), (3.30), (3.32), and (3.34) that
Part V. Finally, it is easy to see that
and
It follows from (3.35) and (3.36)-(3.39) that
4 Conclusion and future work
In this paper, we use the hp finite element approximation for both the state and the co-state variables and the hp discontinuous Galerkin finite element approximation for the control variable. We derive residual-based a posteriori error estimates in \(L^{2}\)-\(H^{1}\) norms for the semilinear Neumann boundary optimal control problems. Then we also give sharper a posteriori error estimates for the control approximation and error estimates in the \(L^{2}\) norm for the state and co-state on the boundary. To the best of our knowledge in the context of optimal control problems, these a posteriori error estimates for the semilinear Neumann boundary optimal control problems are new.
In future, we shall consider the hp finite element method for hyperbolic optimal control problems. Furthermore, we shall consider a posteriori error estimates and superconvergence of the hp finite element solutions for hyperbolic optimal control problems.
References
Falk, FS: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28-47 (1973)
Geveci, T: On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO. Anal. Numér. 13, 313-328 (1979)
Chen, Y, Lu, Z: Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problems. Comput. Methods Appl. Mech. Eng. 199, 1415-1423 (2010)
Chen, Y, Lu, Z: Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods. Finite Elem. Anal. Des. 46, 957-965 (2010)
Chen, Y, Lu, Z, Huang, Y: Superconvergence of triangular Raviart-Thomas mixed finite element methods for bilinear constrained optimal control problem. Comput. Math. Appl. 66, 1498-1513 (2013)
Chen, Y, Yi, N, Liu, W: A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46, 2254-2275 (2008)
Li, R, Liu, W, Ma, H, Tang, T: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321-1349 (2002)
Lions, JL: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)
Liu, W, Yan, N: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39, 73-99 (2001)
Lu, Z: A residual-based posteriori error estimates for hp finite element solutions of general bilinear optimal control problems. J. Math. Inequal. 9, 665-682 (2015)
Lu, Z, Chen, Y: A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems. Adv. Appl. Math. Mech. 1, 242-256 (2009)
Lu, Z, Chen, Y, Zheng, W: A posteriori error estimates of lowest order Raviart-Thomas mixed finite element methods for bilinear optimal control problems. East Asian J. Appl. Math. 2, 108-125 (2012)
Hoppe, RHW, Iliash, Y, Iyyunni, C, Sweilam, NH: A posteriori error estimates for adaptive finite element discretizations of boundary control problems. J. Numer. Math. 14, 57-82 (2006)
Kröner, A, Vexler, B: A priori error estimates for elliptic optimal control problems with a bilinear state equation. J. Comput. Appl. Math. 230, 781-802 (2009)
Kunisch, K, Liu, W, Chang, Y, Yan, N, Li, R: Adaptive finite element approximation for a class of parameter estimation problems. J. Comput. Math. 28, 645-675 (2001)
Babuska, I, Suri, M: The hp-version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 21, 199-238 (1987)
Babuska, I, Guo, B: Approximation properties of the h-p version of the finite element method. Comput. Methods Appl. Mech. Eng. 133, 319-346 (1996)
Chen, Y, Liu, W: A posteriori error estimates for mixed finite element solutions of convex optimal control problems. J. Comput. Appl. Math. 211, 76-89 (2008)
Liu, W, Yan, N: A posteriori error estimates for some model boundary control problems. J. Comput. Appl. Math. 120, 159-173 (2000)
Liu, W, Yan, N: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press, Beijing (2008)
Chen, Y, Lin, Y: A posteriori error estimates for hp finite element solutions of convex optimal control problems. J. Comput. Appl. Math. 235, 3435-3454 (2011)
Melenk, JM: hp-Interpolation of nonsmooth functions and an application to hp-a posteriori error estimation. SIAM J. Numer. Anal. 43, 127-155 (2005)
Milner, FA: Mixed finite element methods for quasilinear second-order elliptic problems. Math. Comput. 44, 303-320 (1985)
Lasyzhenskaya, O, Uraltseva, N: Linear and Quasilinear Elliptic Equations. Springer, Berlin (1972)
Acknowledgements
This work is supported by National Basic Research Program (2012CB955804), Major Research Plan of National Natural Science Foundation of China (91430108), National Science Foundation of China (11201510, 11171251), China Postdoctoral Science Foundation (2015M580197), Chongqing Research Program of Basic Research and Frontier Technology (cstc2015jcyjA20001), Ministry of education Chunhui projects (Z2015139), Major Program of Tianjin University of Finance and Economics (ZD1302) and Science and Technology Project of Wanzhou District of Chongqing (2013030050).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
ZL, SZ, CH, and HL participated in the sequence alignment and drafted the manuscript. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Lu, Z., Zhang, S., Hou, C. et al. Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems. Bound Value Probl 2016, 59 (2016). https://doi.org/10.1186/s13661-016-0562-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-016-0562-2