- Research
- Open access
- Published:
Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions
Boundary Value Problems volume 2016, Article number: 63 (2016)
Abstract
In this paper, the existence and uniqueness of solutions for an impulsive mixed boundary value problem of nonlinear differential equations of fractional order are obtained. Our results are based on some fixed point theorems. Some examples are also presented to illustrate the main results.
1 Introduction
Recently, boundary value problems of nonlinear fractional differential equations have been addressed by several researchers. Fractional differential equations arise in many engineering and scientific disciplines as the mathematical modeling of systems and processes in the fields of physics, chemistry, control theory, biology, economics, blood flow phenomena, signal and image processing, biophysics, aerodynamics, fitting of experimental data, etc. For details, see [1–13] and the references therein.
Impulsive differential equations, which provide a natural description of observed evolution processes, are regarded as important mathematical tools for a better understanding of several real world problems in the applied sciences. Recently, the boundary value problems of impulsive differential equations of integer order have been studied extensively in the literature (see [1, 3–7, 9–13]). In [4, 13], Wang et al. gave a new concept of some impulsive differential equations with fractional derivative, which is a correction of that of piecewise continuous solutions used in [3, 7, 10–12].
This paper is strongly motivated by the above research papers. We investigate the existence and uniqueness of solutions for a mixed boundary value problem of nonlinear impulsive differential equations of fractional order given by
where \(^{C}D_{0^{+} }^{q}\) is the Caputo fractional derivative of order \(q \in(1, 2)\), \(f\in C(J\times R, R)\). \(I_{k}, J_{k}\in C(R, R)\), \(J=[0, 1]\), \(J'=J\setminus\{t_{1}, t_{2}, \ldots, t_{p}\} \), the \(\{t_{k}\}\) satisfy \(0=t_{0}< t_{1}< t_{2}<\cdots<t_{p}<t_{p + 1}=1\), \(p\in N\), \(\Delta u(t_{k}) = u(t_{k}^{+} ) - u(t_{k}^{-} )\), \(\Delta u'(t_{k})=u'(t_{k}^{+} ) - u'(t_{k}^{-} )\), where \(u(t_{k}^{+} )\) and \(u(t_{k}^{-} )\) represent the right and left limits of \(u(t)\) at \(t=t_{k}\).
A function \(u \in PC(J, R)\) is said to be a solution of problem (1.1) if \(u(t) = u_{k}(t)\) for \(t \in(t_{k}, t_{k+1})\) and \(u_{k} \in C([0, t_{k+1}], R)\) satisfies \(^{C}D_{0^{+}}^{q} u(t)=f(t,u(t))\) a.e. on \((0, t_{k+1})\) with the restriction that \(u_{k}(t)\) on \([0, t_{k})\) is just \(u_{k-1}(t)\) and the conditions \(\Delta u(t_{k})=I_{k}(u(t_{k}))\), \(\Delta u'(t_{k})=J_{k}(u(t_{k}))\), \(k=1, 2, \ldots, p\) with \(u(0) + u'(0)=0\), \(u(1) + u'(1)=0\).
The rest of this paper is organized as follows. In Section 2, we give some notations, recall some concepts and preparation results. In Section 3, we give the main results, the first result based on Banach contraction principle, the second result based on Krasnoselskii’s fixed point theorem. Two examples are given in Section 4 to demonstrate the application of our main results.
2 Preliminaries
In this section, we introduce preliminary facts which are used throughout this paper.
Let \(J_{0}=[0, t_{1}], J_{1}=(t_{1}, t_{2}], \ldots, J_{p - 1}=(t_{p - 1}, t_{p}], J_{p}=(t_{p}, 1]\). We have
Obviously, \(PC(J)\) is a Banach space with the norm
Definition 2.1
The fractional integral of order q of a function \(f: [0, \infty) \to R\) is defined as
provided the right side is point-wise defined on \((0, \infty)\), where \(\Gamma(\cdot)\) is the gamma function.
Definition 2.2
The Caputo derivative of fractional order q for a function \(f: [0, \infty) \rightarrow R\) is defined as
where \([q]\) denotes the integer part of the real number q.
Remark 2.1
In the case \(f(t) \in C^{n}[0, +\infty)\), there is \(^{C}D_{0^{+}}^{q} f(t) = I_{0+}^{n-q}f^{(n)}(t)\). That is to say that Definition 2.2 is just the usual Caputo’s fractional derivative. In this paper, we consider an impulsive problem, so Definition 2.2 is appropriate.
Lemma 2.1
([13])
Let M be a closed, convex, and nonempty subset of a Banach space X, and A, B the operators such that
-
(1)
\(Ax + By\in M\) whenever \(x, y\in M\);
-
(2)
A is compact and continuous;
-
(3)
B is a contraction mapping.
Then there exists \(z\in M\) such that \(z=Az + Bz\).
Lemma 2.2
([2])
The set \(F \subset PC([0,T], R^{n})\) is relatively compact if and only if:
-
(i)
F is bounded, that is, \(\|x\|\leq C\) for each \(x\in F\) and some \(C>0\);
-
(ii)
F is quasi-equicontinuous in \([0,T]\). That is to say that for any \(\epsilon>0\) there exists \(\delta>0\) such that if \(x \in F\); \(k \in N\); \(\tau_{1}, \tau_{2} \in(t_{k - 1}, t_{k}]\), and \(|\tau_{1} - \tau_{2}|<\delta\), we have \(|x(\tau_{1}) - x(\tau_{2})|<\epsilon\).
Lemma 2.3
([13])
For \(q>0\), the general solution of the fractional differential equation \(^{C}D_{0^{+}}^{q} u(t)=0\) is given by
where \(c_{i} \in R\), \(i=0, 1, 2, \ldots, n - 1\), \(n=-[-q]\).
In view of Lemma 2.3, it follows that
where \(c_{i} \in R\), \(i=0, 1, 2, \ldots, n - 1\), \(n=-[-q]\).
Lemma 2.4
Let \(q\in(1, 2)\) and \(h: J\rightarrow R\) be continuous. A function u given by
is a unique solution of the following impulsive problem:
Proof
With Lemma 2.3, a general solution u of the equation \(^{C}D_{0^{+}}^{q} u(t)=h(t)\) on each interval \((t_{k}, t_{k + 1}]\) (\(k=0, 1, 2, \ldots, p\)) is given by
where \(t_{0}=0\) and \(t_{p + 1}=1\). Then we have
We have
So applying the boundary conditions (2.4), we have
Furthermore, using the impulsive condition \(\Delta u'(t_{k})=u'(t_{k}^{+} ) - u'(t_{k}^{-} )=J_{k}(u(t_{k}))\), we derive
In the same way, using the impulsive condition \(\Delta u(t_{k})=u(t_{k}^{+} ) - u(t_{k}^{-} )=I_{k}(u(t_{k}))\), we derive
which by (2.9) implies that
Thus
Combining (2.7), (2.8), (2.10) with (2.13) yields
Furthermore, by (2.10), (2.13), (2.14), (2.15) we have
Hence for \(k=0, 1, 2, \ldots, p-1\), (2.16) and (2.17) imply
For \(k=p\), (2.14) and (2.15) imply
Now it is clear that (2.5), (2.18), (2.19) imply that (2.3) holds.
Conversely, assume that u satisfies (2.3). By a direct computation, it follows that the solution given by (2.3) satisfies (2.4). □
3 Main results
This section deals with the existence and uniqueness of solutions to problem (1.1).
Theorem 3.1
Let \(f: J\times R\rightarrow R\) be a continuous function. Suppose there exist positive constants \(L_{1}\), \(L_{2}\), \(L_{3}\), \(M_{2}\), \(M_{3}\) such that
-
(A1)
\(|f(t,x) - f(t,y)|\leq L_{1} |x - y|\), for all \(t\in J\), \(x, y\in R\);
-
(A2)
\(|I_{k} (x) - I_{k} (y)|\leq L_{2} |x - y|\), \(|J_{k} (x) - J_{k} (y)|\leq L_{3}|x - y|\), \(|I_{k} (x)|\leq M_{2}\), \(|J_{k}(x)|\leq M_{3}\), \(x, y\in R\), \(k=1, 2, \ldots, p\),
with
Then problem (1.1) has a unique solution on J.
Proof
Define an operator \(T: PC(J)\rightarrow PC(J)\)
Let \(\sup_{t\in J}|f(t,0)|=M\), and \(B_{r} =\{u\in PC(J,R)\mid\|u\| _{PC}\leq r\}\), where
Step 1. We show that \(TB_{r} \subset B_{r} \).
For \(u\in B_{r}\), \(t\in J\), we have
Since
we have
Step 2. T is a contraction mapping.
For \(x, y\in B_{r} \) and \(t\in J\), we have
Since
T is a contraction mapping. Thus, the conclusion follows by the contraction mapping principle. □
Theorem 3.2
Assume that \(|f(t,u)|\leq\mu(t)\) for all \((t,u)\in J\times R\) where \(\mu\in L^{1/\sigma}(J,R)\) and \(\sigma\in(0, q - 1)\), furthermore, there exist positive constants \(L_{2}\), \(L_{3}\), \(M_{2}\), \(M_{3}\) such that \(|I_{k} (x) - I_{k} (y)|\leq L_{2} |x - y|\), \(|J_{k} (x) - J_{k} (y)|\leq L_{3}|x - y|\), \(|I_{k} (x)|\leq M_{2}\), \(|J_{k}(x)|\leq M_{3}\), \(x, y\in R\), \(k=1, 2, \ldots, p\), with \(3p(L_{2} + L_{3})<1\). Then problem (1.1) has at least one solution on J.
Proof
Choose
and denote
Define the operators P and Q on \(B_{r} \) as
For any \(u,v\in B_{r} \) and \(t\in J\), using the condition that \(|f(t,u)|\leq\mu(t)\) and the Hölder inequality,
Therefore,
Thus \(Pu + Qv\in B_{r} \). It is obvious that Q is a contraction mapping (the proof is just similar to Theorem 3.1). On the other hand, the continuity of f implies that the operator P is continuous. Also, P is uniformly bounded on \(B_{r} \) since
Now we prove the quasi-equicontinuity of the operator P.
Let \(\Omega=J\times B_{r}\), \(f_{\max}=\sup_{(t,u)\in\Omega}|f(t,u)|\). For any \(t_{k} <\tau_{2}<\tau_{1}\leq t_{k + 1}\), we have
which tends to zero as \(\tau_{2}\rightarrow\tau_{1}\). This shows that P is quasi-equicontinuous on the interval \((t_{k} ,t_{k + 1}]\). It is obvious that P is compact by Lemma 2.2, so P is relatively compact on \(B_{r} \).
Thus all the assumptions of Lemma 2.1 are satisfied and problem (1.1) has at least one solution on J. □
4 Example
Example 4.1
Consider the following impulsive fractional boundary value problem:
Obviously, \(L_{1} =1/9\), \(L_{2} =1/15\), \(L_{3}=1/17\), \(M_{2}=1/15\), \(M_{3}=1/17\), \(p=1\),
Thus, all the assumptions in Theorem 3.1 are satisfied. Hence, the impulsive fractional boundary value problem (4.1) has a unique solution on \([0,1]\).
Example 4.2
Consider the following impulsive fractional boundary value problem:
Set
Obviously,
Set
Thus, all the assumptions in Theorem 3.2 are satisfied. Hence, the impulsive fractional boundary value problem (4.2) has at least one solution on \([0,1]\).
References
Ahmad, B, Sivasundaram, S: Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal. Hybrid Syst. 3, 251-258 (2009)
Bainov, D, Simeonov, P: Impulsive Differential Equations: Periodic Solutions and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics (1993)
Benchohra, M, Seba, D: Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 2009, 8 (2009)
Feckan, M, Zhou, Y, Wang, JR: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050-3060 (2012)
Guo, TL, Jiang, W: Impulsive fractional functional differential equations. Comput. Math. Appl. 64, 3414-3424 (2012)
Jankowski, T: Initial value problems for neutral fractional differential equations involving a Riemann-Liouville derivative. Appl. Math. Comput. 219, 7772-7776 (2013)
Liang, SH, Zhang, JH: Existence and uniqueness of positive solutions to m-point boundary value problem for nonlinear fractional differential equations. J. Appl. Math. Comput. 38, 225-241 (2012)
Lin, X, Jiang, D: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations. J. Math. Anal. Appl. 321, 501-514 (2006)
Shen, J, Wang, W: Impulsive boundary value problems with nonlinear boundary conditions. Nonlinear Anal. 69, 4055-4062 (2008)
Wang, GT, Agarwal, RP, Cabada, A: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. Appl. Math. Lett. 25, 1019-1024 (2012)
Wang, GT, Ahmad, B, Zhang, LH, Nieto, JJ: Comments on the concept of existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 19, 401-403 (2014)
Wang, GT, Zhang, LH, Song, GX: Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions. Nonlinear Anal. TMA 74, 974-982 (2011)
Wang, JR, Zhou, Y, Feckan, M: On recent developments in the theory of boundary value problems for impulsive fractional differential equations. Comput. Math. Appl. 64, 3008-3020 (2012)
Acknowledgements
The authors express their sincere thanks to the anonymous reviews for their valuable suggestions and corrections for improving the quality of the paper. This work is supported by NSFC (11571207, 61503064), the Taishan Scholar project.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Bai, Z., Dong, X. & Yin, C. Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions. Bound Value Probl 2016, 63 (2016). https://doi.org/10.1186/s13661-016-0573-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-016-0573-z