- Research
- Open Access
- Published:
The global attractor of the 2D Boussinesq system with fractional vertical dissipation
Boundary Value Problems volume 2016, Article number: 105 (2016)
Abstract
The 2D incompressible Boussinesq system with partial or fractional dissipation have recently attracted considerable attention. In this paper, we study the Cauchy problem for the 2D Boussinesq system in a periodic domain with fractional vertical dissipation in the subcritical case, and we prove the global well-posedness of strong solutions. Based on this, we also discuss the existence of the global attractor.
1 Introduction
This paper studies the 2D incompressible Boussinesq system with fractional vertical dissipation. The model reads
where \(\Omega:=[0,L]^{2}\) is the periodic domain. \(u=(u_{1},u_{2})\) is the velocity vector field, \(u_{i}=u_{i}(x,t)\) (\(i=1,2\)), \((x,t)\in \Omega\times\mathbb{R}_{+}\); \(\theta(x,t)\) and \(P(x,t)\) denote the scalar temperature and pressure of the fluid, respectively. The constant \(\nu> 0\) is the viscosity, and \(\kappa>0\) is the thermal diffusivity. \(e_{2}=(0,1)\) is the unit vector in the vertical direction, and the unknown function \(\theta e_{2}\) is the buoyancy force. \(F(x)\) is a time-independent forcing term. For the sake of simplicity, we denote \(\Lambda_{V}:=\sqrt{-\partial_{x_{2}}^{2}}\), the vertical dissipation, \(\Lambda_{H}:=\sqrt{-\partial_{x_{1}}^{2}}\), the horizontal dissipation, \(\Lambda:=\sqrt{-\Delta}=\sqrt{\Lambda_{V}^{2}+\Lambda_{H}^{2}}\), the square root of the negative Laplacian. When \(\nu=0\) and \(\kappa=0\), (1.1) reduces to the inviscid 2D Boussinesq equations. If θ is identically zero, (1.1) degenerates to the 2D incompressible Euler equations. In this paper, we assume that the exponents α and β satisfy
As suggested by Jiu et al. in [1], we classify the parameters α and β into three categories:
-
(1)
the subcritical case, \(\alpha+\beta>1\);
-
(2)
the critical case, \(\alpha+\beta=1\);
-
(3)
the supercritical case, \(\alpha+\beta<1\).
Throughout this paper, \(\Vert \cdot \Vert _{L^{p}}\), \(\Vert \cdot \Vert _{W^{s,p}}\), and \(\Vert \cdot \Vert _{L^{\infty}}\) denote the norms of \(L^{p}(\Omega)\), \(W^{s,p}(\Omega)\), and \(L^{\infty}(\Omega)\), respectively. When \(p=2\), we denote the norms \(\Vert \cdot \Vert _{L^{2}}\) and \(\Vert \cdot \Vert _{W^{s,2}}\) by \(\Vert \cdot \Vert \) and \(\Vert \cdot \Vert _{H^{s}}\), respectively.
In the past decades, there were a lot of literature about the mathematical theory of the Boussinesq equations (1.1). In the case when ν and κ are positive constants, Cannon and DiBenedetto [2] studied the Cauchy problem for the Boussinesq system, and further proved the existence of a unique global in time weak solution. Furthermore, they established the regularity of the solutions when initial data are smooth. In [3], the global well-posedness was established (see also [4]) for this case. In contrast, in the case when \(\nu=\kappa=0\), the global regularity problem turns out to be extremely difficult and remains open. For this case, we only have the local existence and uniqueness results due to [5] and [6]. Recently, there were many works devoted to the study of the Boussinesq system with partial viscosity or diffusivity (i.e., the zero diffusivity case, \(\nu>0\) and \(\kappa=0\), or the zero viscosity case, \(\nu=0\) and \(\kappa>0\)). Actually, Chae [7], and Hou and Li [8] independently proved the global well-posedness; see also [9, 10] for the global well-posedness in the critical spaces and [11, 12] for the case of bounded domain. More precisely, Chae [7] showed the global existence for \((u_{0},\theta_{0})\in H^{3}\times H^{3}\) while Hou and Li [8] proved the same result for initial data in \(H^{3}\times H^{2}\). Zhao [13] generalized the case in [7] to a bounded domain with typical physical boundary conditions \(u\cdot\mathbf{n}|_{\partial\Omega}=0\) and \(\theta|_{\partial\Omega}=\overline{\theta}\), where n is the unit outward normal to ∂Ω and \(\overline{\theta}>0\) is a constant, and further proved that there exists a unique global smooth solution with smooth initial data. Jin and Fan [14] proved a global uniform regularity in the vanishing viscosity limit in a domain \(\Omega=(-\infty,+\infty)\times(0,1)\) with a slip boundary condition. Hu, Kukavica and Ziane [15] proved that for the initial data \((u_{0},\theta_{0}) \in H^{2}\times H^{1}\), there exists a global in time solution \((u,\theta)\) which is a locally in time bounded function in \(H^{2}\times H^{1}\), and in [16], proved the persistence of regularity holds, i.e., the solution \((u,\theta)\) exists and belongs to \(H^{s}\times H^{s-1}\) for data \((u_{0},\theta_{0})\in H^{s}\times H^{s-1}\), where \(1< s<2\).
When ν and κ depend on the temperature, Lorca and Boldrini [17] proved the global existence of strong solutions for small initial data, and in [18], obtained the global existence of weak solutions and the local existence of strong solutions for general initial data. Recently, Wang and Zhang [19] proved the global well-posedness. Sun and Zhang [20] obtained the existence of global strong solutions to the initial boundary value problem. Li, Pan and Zhang [21, 22] proved the existence of a unique global smooth solution to the initial boundary value problem of 2D inviscid heat conductive Boussinesq equations with nonlinear heat diffusion over a bounded domain with smooth boundary. Moreover, Huang [23] addressed the well-posedness of the 2D (Euler)-Boussinesq equations with zero viscosity positive diffusivity in the polygonal-like domains with Yudovich’s type data and in [24] proved the global well-posedness of strong solutions and existence of the global attractor to the initial and boundary value problem in a periodic channel with non-homogeneous boundary conditions for the temperature and viscosity and thermal diffusivity depending on the temperature.
One main focus of recent research on the 2D Boussinesq equations has been on the global regularity issue when only fractional dissipation is present. Adhikari, Cao and Wu [25] aimed at the global regularity of classical solutions to the 2D Boussinesq equations with vertical dissipation and vertical thermal diffusion, and in [26], further studied the global regularity issue concerning the 2D Boussinesq equations with vertical dissipation and vertical thermal diffusion. Cao and Wu [27] established the global in time existence of classical solutions to the 2D anisotropic Boussinesq equations with vertical dissipation. Danchin and Paicu [28] studied the 2D Boussinesq system with horizontal viscosity in only one equation, they proved the global existence issue for possibly large initial data. Hmidi, Keraani and Rousset [29] investigated an Euler-Boussinesq system which couples the incompressible Euler equation with velocity and a transport model with fractional diffusion for the temperature. Jia, Peng and Li [30] proved the generalized 2D Boussinesq equation has a global and unique solution in suitable functional space. Jiu, Miao, Wu and Zhang [1, 31] established the global regularity to the 2D incompressible Boussinesq equations with general critical dissipation. Jiu, Wu and Yang [32] studied solutions of the 2D incompressible Boussinesq equations with fractional dissipation in the periodic box \(\mathbb{T}^{2}=[0,2\pi]^{2}\). KC, Regmi, Tao, and Wu [33, 34] studied the global (in time) regularity problem concerning the two-dimensional incompressible Boussinesq equations. Larios, Lunasin, and Titi [35] established the global existence and uniqueness theorems for the two-dimensional non-diffusive Boussinesq system with anisotropic viscosity acting only in the horizontal direction. Miao and Xue [36] proved the global well-posedness results for the rough initial data of a class of Boussinesq-Navier-Stokes systems. Stefanov and Wu [37] proved the global regularity problem on the two-dimensional incompressible Boussinesq equations with fractional dissipation. Using energy methods, the Fourier localization technique, and Bony’s paraproduct decomposition, Xiang and Yan [38] showed the global existence of the classical solutions to the Boussinesq equations with fractional diffusion. Wu and Xu [39] are concerned with the global well-posedness and inviscid limits of several systems of Boussinesq equations with fractional dissipation. Xu [40] proved the existence, the uniqueness and the regularity of solutions to the Boussinesq equations for an incompressible fluid in \(\mathbb{R}^{2}\), with diffusion modeled by fractional Laplacian. Xu and Xue [41] considered the Yudovich type solutions of the 2D inviscid Boussinesq system with critical and supercritical dissipation, and gave a refined blowup criterion in the supercritical case. Yang, Jiu and Wu [42] examined the global regularity issue on the 2D Boussinesq equations with fractional Laplacian dissipation and thermal diffusion, and further established the global well-posedness for the 2D Boussinesq equations with a new range of fractional powers of the Laplacian. Ye and Xu [43] studied the Cauchy problem to the 2D incompressible Boussinesq equations with fractional dissipation, and in [44] proved the global regularity of the smooth solutions of the 2D Boussinesq equations with a new range of fractional powers of the Laplacian. Using the Fourier localization method, Fang, Qian and Zhang [45] obtained the local and global well-posedness and gave some blowup criterion with the velocity or the temperature for the 2D incompressible generalized Boussinesq system with the general supercritical dissipation.
In this paper, we prove the existence of global attractor for the solution operator \(S(t)\) to the Boussinesq system (1.1) in the space \(H^{s}\times H^{s}\), where \(s\geq1\). First, we show the global existence of weak solutions to the Boussinesq system (1.1), that is, solutions satisfying Definition 1.1.
Definition 1.1
Let
and
Suppose \(F(x)\in H^{-\beta}\) and \((u_{0},\theta_{0})\in H_{1}\times H_{2}\). Then the pair \((u,\theta)\) is said to be a global weak solution of the Boussinesq system (1.1), if for any \(T\in(0,+\infty)\), and \(u \in C ([0,T];H_{1} )\cap L^{2} (0,T;H^{\alpha})\), \(\theta\in C ([0,T];H_{2} )\cap L^{2} (0,T;H^{\beta})\), such that for any \(\phi=(\phi_{1},\phi_{2}) \in C^{\infty}(\Omega )^{2}\), and for any \(\psi\in C^{\infty}_{0} (\Omega )\), we have
We omit the details for this part and refer the reader to [18].
The following is the main result of this paper.
Theorem 1.1
Let \(s\geq1\), and assume that \((u_{0},\theta_{0})\in H^{s}\times H^{s}\), and \(F(x)\in H^{s-\beta}\cap L^{p}\), where \(p\in (2,+\infty)\). Then there exists a unique strong solution \((u(t),\theta(t) )\) of the Boussinesq system (1.1), such that, for any \(0< T<+\infty\),
and
The main goal in this paper is to prove the existence of the global attractor for the Boussinesq system (1.1), so we have the following theorem.
Theorem 1.2
Let \(s\geq1\), and \(F(x)\in H^{s-\beta}\cap L^{p}\), where \(p\in[2,+\infty)\). Then, for all \(t\in[0,+\infty)\), the solution operator \(\{S(t)\}\) of the Boussinesq system (1.1):
defines a semigroup in the space \(H^{s}\times H^{s}\).
Moreover, the following statements are valid:
-
(1)
for any \((u_{0},\theta_{0})\in H^{s}\times H^{s}\), \(t\mapsto S(t)(u_{0},\theta_{0})\) is a continuous function from \(\mathbb{R}_{+}\) into \(H^{s}\times H^{s}\);
-
(2)
for any fixed \(t>0\), \(S(t)\) is a continuous and compact map in \(H^{s}\times H^{s}\);
-
(3)
\(\{S(t)\}\) possesses a global attractor \(\mathcal{A}\) in the space \(H^{s}\times H^{s}\). The global attractor \(\mathcal{A}\) is compact and connected in \(H^{s}\times H^{s}\) and is the maximal bounded attractor and the minimal invariant set in \(H^{s}\times H^{s}\) in the sense of the set inclusion relation.
2 Preliminaries
In this section, we state some important inequalities and facts which will be used in the proof of Theorem 1.2. First, we introduce the Kate-Ponce and commutator inequalities from [46]; see also [16, 47, 48].
Lemma 2.1
([46])
Suppose that \(f,g\in C_{c}^{\infty}(\Omega)\). Let \(s> 0\) and \(1< r\leq p_{1}, p_{2}, q_{1}, q_{2} \leq+\infty\) such that \(\frac{1}{r}=\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{q_{1}}+\frac{1}{q_{2}}\) with the restriction \(p_{1},q_{2}\neq+\infty\). Then we have
where \(C>0\) is a constant.
Lemma 2.2
([46])
Suppose that \(f,g\in C_{c}^{\infty}(\Omega)\). Let \(s> 0\) and \(2< p_{1},p_{2},q_{1},q_{2} \leq+\infty\) such that \(\frac{1}{2}=\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{q_{1}}+\frac{1}{q_{2}}\). Then we have
where \(C>0\) is a constant.
In order to achieve that, the solution operators \(\{S(t),\forall t\geq0\}\) are continuous in the space \(H^{s}\times H^{s}\) with respect to t. We recall the following lemma, which is a particular case of a general interpolation theorem in [49].
Lemma 2.3
Let V, H, \(V'\) be three Hilbert spaces such that
where \(H'\) is the dual space of H and \(V'\) is the dual space of V.
If a function u belong to \(L^{2}(0,T;V)\) and its derivative \(u'\) belongs to \(L^{2}(0,T;V')\), then u is almost everywhere equal to a function continuous from \([0,T]\) into H.
Lemma 2.3 has been proved in [50]. Therefore, here we omit the proof.
3 Proof of Theorem 1.2
3.1 Uniform estimates
In this subsection, we prove the existence of absorbing ball whose proof will be done in a series of lemmas, and consists of a priori estimates on an arbitrary time interval \([0,T]\). In the following, we denote by C a positive constant which is independent of time t and dependent of the initial data \(u_{0}\) and \(\theta_{0}\). First of all, we will prove the existence of absorbing ball in \(L^{2}\)and \(L^{p}\) for θ.
Lemma 3.1
Under the assumptions of Theorem 1.2, there exists \(T_{1}=T_{1}(\Vert \theta_{0}\Vert )>0\), for all \(t\geq T_{1}\), we have
and
Proof
Throughout this paper, we let \(\lambda_{1}\) be the first eigenvalue of \(\Lambda_{V}\). By the results from [48], we can get
Hence, (3.3) immediately implies the estimate (3.1) for a uniform bound for some \(T_{1}>0\) large enough.
Furthermore, taking the \(L^{2}\) inner product of (1.1)3 with θ, and integrating in time, we have
Therefore, the time average estimate (3.2) follows from (3.1). For all \(p\in[2,+\infty)\), similar to [48], we deduce the following equation:
which gives the uniform \(L^{p}\) estimate and absorbing ball in \(L^{p}\) for θ whenever \(\theta_{0}\in L^{p}(\Omega)\) for all \(p\in [2,+\infty)\). □
In the next lemma, we shall prove the existence of an absorbing ball in \(L^{2}\) for u.
Lemma 3.2
Under the assumptions of Theorem 1.2, there exists \(T_{2}=T_{2}(\Vert u_{0}\Vert ,\Vert \theta_{0}\Vert )>0\), for all \(t\geq T_{2}\), we have
and
Proof
Taking the \(L^{2}\) inner product of (1.1)1 with u, we have
It follows that
Since u and θ have mean zero, using the Poincaré inequality, we get
Integrating in time, and using (3.3), we can obtain the following:
(i) in the case that \(\nu\lambda_{1}^{2\alpha}\neq\kappa\lambda_{1}^{2\beta}\),
(ii) in the case that \(\nu\lambda_{1}^{2\alpha}=\kappa\lambda_{1}^{2\beta}\),
Hence, (3.11) and (3.12) immediately imply the estimate (3.6) uniform bound for some \(T_{2}>0\) large enough.
Furthermore, integrating (3.10) in time, we have
Therefore, from (3.1) and (3.6), we can get the time average estimate (3.7). This completes the proof. □
Now we will prove the existence of an absorbing ball in \(L^{2}\) for ω. We are in a position to give the estimates \(\Vert \nabla u\Vert \) and \(\Vert \Lambda_{V}^{\alpha}\omega \Vert \).
Lemma 3.3
Under the assumptions of Theorem 1.2, there exists \(T_{3}=T_{3}(\Vert \omega_{0}\Vert ,\Vert \theta_{0}\Vert )>0\), for all \(t\geq T_{3}\), we have
and
Proof
In order to complete the proof, we need to use vorticity formulation together with the Biot-Savart law. Taking the curl of equation (1.1)1, we have
and
where \(\omega=\partial_{x_{1}}u_{2}-\partial_{x_{2}}u_{1}\) and \(\nabla^{\bot}=(-\partial_{x_{2}},\partial_{x_{1}})\). By the Biot-Savart law (see e.g. [51, 52]), we have
where the Poincaré inequality is employed for the last inequality.
Taking the \(L^{2}\) inner product of (3.16) with ω, we obtain
It follows that
Using the Poincaré inequality, we get
where \(\lambda_{2}\) be the first eigenvalue of \(\Lambda_{H}\). Taking \(\varepsilon<\frac{2\nu}{\lambda_{2}^{2}}\) and by the variant of uniform Gronwall lemma (see [53], Lemma 2.4), (3.1) and (3.18), it is easy to obtain the uniform estimate (3.14).
Furthermore, integrating (3.21) in time, we have
Therefore, we can get (3.15). Similar to Lemma 3.1, and using the Sobolev embedding theorem, we can get a uniform estimate \(\Vert u\Vert _{L^{p}}\) and time average estimate of \(\Vert \Lambda_{V}^{1+\alpha} u\Vert ^{2}\), that is, for all \(p\in(1,+\infty)\) and for any \(t\geq T_{3}\),
where the constant \(C(p)>0\) only depends on p. Now, we complete the proof. □
Now, let us focus on the existence of an absorbing ball in \(H^{s}\) for \((u,\theta)\).
Lemma 3.4
Under the assumptions of Theorem 1.2, there exists \(T_{4}=T_{4}(\Vert \omega_{0}\Vert ,\Vert \theta_{0}\Vert )>0\), for all \(t\geq T_{4}\), we have
and
Proof
Taking the \(L^{2}\) inner product of (1.1)3 with \(\Lambda^{2s}\theta\), we obtain
Since u is divergence free, \(u\cdot\nabla\theta=\nabla\cdot(u\theta)\) and by Lemma 2.1, we have
where \(\beta_{1}>0\), \(p_{1},q_{1}>2\), satisfying \(\beta_{1}<\beta\) and \(\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{2}\). In order to determine \(\beta_{1}\), \(p_{1}\), and \(q_{1}\), we first let \(2\max\{1-\alpha,1-\beta\}< r< 1 \leq s\), by the Sobolev embedding theorem, this implies that
where \(q_{1}\) is chosen such that
By (3.5) and (3.23), for \(t>\max\{T_{1},T_{2}\}\), from (3.27) we can infer that
Hence, we set \(s+2-\frac{2}{p_{1}}-\beta_{1}=s+\beta_{1}\), that is, \(\beta_{1}=\frac{1}{2}+\frac{1}{q_{1}}<\min\{\alpha,\beta\}\), then, by the Sobolev embedding theorem, we know that \(H^{s+2-\frac{2}{p_{1}}-\beta_{1}}(\Omega)\hookrightarrow H^{s+1-\beta_{1},p_{1}}(\Omega)\), and \(I_{1}\) can be estimated as
where we have used the interpolation inequality for the tuples \((s,s+\beta_{1},s+\beta)\) and \((s,s+\alpha_{1},s+\alpha)\). By the Young inequality, we get
Similar to \(I_{1}\), we can deduce \(I_{2}\) as follows:
Taking the \(L^{2}\) inner product of (1.1)1 with \(\Lambda^{2s}u\), we obtain
Similar to (3.27), for \(t>\max\{T_{2},T_{3}\}\), we have
where \(\alpha_{1}>0\), \(p_{2},q_{2}>2\), satisfying \(\alpha_{1}<\beta\) and \(\frac{1}{p_{2}}+\frac{1}{q_{2}}=\frac{1}{2}\). If, we set \(s+2-\frac{2}{p_{2}}-\alpha_{1}=s+\alpha_{1}\), so that \(\alpha_{1}=\frac{1}{2}+\frac{1}{q_{2}}=1-\frac{1}{p_{2}}\), and we choose \(q_{2}\) large enough such that \(\alpha_{1}<\alpha\), then by the Sobolev embedding theorem, we know that \(H^{s+2-\frac{2}{p_{2}}-\alpha_{1}}(\Omega)\hookrightarrow H^{s+1-\alpha_{1},p_{2}}(\Omega)\), and as we use the interpolation inequality for the tuples \((s,s+\alpha_{1},s+\alpha)\) and the Young inequality, we arrive at
Finally, summing the differential inequalities (3.26) and (3.32) together, and inserting (3.30)-(3.31) and (3.34) into the resulting inequality, we obtain, for \(t>\max\{T_{1},T_{2},T_{3}\}\),
Using the Poincaré inequality, we get
where \(\lambda_{3}\) be the first eigenvalue of Λ.
Starting with \(s=s^{(1)}=1\), and taking \(\varepsilon<\min \{\nu\frac{\lambda_{1}^{2(s+\alpha)}+\lambda _{1}^{2\alpha}\lambda_{2}^{2s}}{\lambda_{3}^{2(s+\alpha)}}, \kappa\frac{\lambda_{1}^{2(s+\beta)}+\lambda_{1}^{2\beta}\lambda _{2}^{2s}}{\lambda_{3}^{2(s+\beta)}} \}\), then, for \(t>T:=\max\{T_{1},T_{2},T_{3}\}\), by the Poincaré inequality and (3.2), (3.22), we have
Hence, applying the uniform Gronwall lemma to (3.36) and using (3.37), for \(t>T+1\), we can obtain
Furthermore, integrating (3.36) and by (3.38), for \(t>T+1\), we find that
Then we iterate with \(s=s^{(2)}=s^{(1)}+\max\{\alpha,\beta\}\). For \(t>T+1\), from (3.39) we can get
Applying the uniform Gronwall lemma to (3.36) again, and (3.40), for \(t>T+2\), we can obtain
and
Therefore, with a bootstrapping argument, for any given real number \(s\geq1\), (3.24) and (3.25) are proved.
In addition, for fixed \(T>0\), and taking \(\varepsilon<\min \{\nu\frac{\lambda_{1}^{2(s+\alpha)}+\lambda _{1}^{2\alpha}\lambda_{2}^{2s}}{\lambda_{3}^{2(s+\alpha)}}, \kappa\frac{\lambda_{1}^{2(s+\beta)}+\lambda_{1}^{2\beta}\lambda _{2}^{2s}}{\lambda_{3}^{2(s+\beta)}} \}\), we also can get
By (3.40), given \((u_{0},\theta_{0})\in H^{s}\times H^{s}\), for some \(t>0\) large enough, the solution \((u(t),\theta(t))\) of the system (1.1) belongs to the space \(H^{s_{1}}\times H^{s_{1}}\) for some \(s_{1}=s+\max\{\alpha,\beta\}\). By the Sobolev compactness embedding theorem in [54], the inclusion map \(H^{s_{1}}\times H^{s_{1}}\mapsto H^{s}\times H^{s}\) is compact. Thus, for any \(s\geq 1\), the solution operator \(S(t)\) defined by \(S(t)(u_{0},\theta_{0})= (u(t),\theta(t) )\) is a compact operator in the space \(H^{s}\times H^{s}\) for some \(t>0\) large enough. □
3.2 Continuity
This subsection mainly includes two parts, the first part to prove \((u,\theta)\in C(0,T;H^{s})^{2}\), which is to show that the solution operator \(\{S(t),\forall t>0\}\) of Boussinesq system (1.1) are continuous in the space \(H^{s}\times H^{s}\) with respect to t. In part two, we simultaneously prove uniqueness and continuity of \(S(t)\) from \(H^{s}\times H^{s}\) to itself for any fixed \(T>0\). The proof will be done in a series of lemmas as follows.
Lemma 3.5
Under the assumptions of Theorem 1.2, the solutions of Boussinesq system (1.1) satisfy \((u,\theta)\in C(0,T;H^{s})^{2}\).
Proof
For any fixed \(T>0\), from Lemma 3.3 we can ensure that
and
Hence, by (3.44) and (3.45) we can obtain
For any \((\varphi,\psi)\in H^{\alpha}\times H^{\beta}\), applying the differential operator \(\Lambda^{s}\) to (1.1)1 and (1.1)3, and then taking the \(L^{2}\) inner product with φ and ψ, respectively, we can obtain
and
By the Cauchy-Schwarz inequality, from (3.47) and (3.48) we can know that
and
Since u is divergence free, we now estimate \(\Vert u\cdot\nabla u\Vert \) and \(\Vert u\cdot\nabla\theta \Vert \)
where \(\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{2}\) and \(q_{1}=\frac{1}{1-\alpha}\). By Lemma 3.2, we know that, for \(p_{1}=\frac{1}{2\alpha-1}\), \(u\in C(0,+\infty;L^{p_{1}})\). Since
and by the Sobolev embedding theorem, we get
Inserting (3.52) and (3.51) to (3.49), we obtain
Similarly, for the term \(u\cdot\nabla\theta\), we find that
If we chose \(2\max\{1-\alpha,1-\beta\}< r_{1}<1\leq s\), we can get
where
By Lemmas 3.1 and 3.2, we know that
Applying Lemma 2.2, we obtain
where \(\frac{1}{p_{2}}+\frac{1}{q_{2}}=\frac{1}{2}\) and \(\frac{1}{p_{3}}+\frac{1}{q_{3}}=\frac{1}{2}\). We now choose \(q^{*}>0\), such that
Since \(\frac{1}{q_{3}}=\frac{r_{1}}{2}\), we get
hence, we know that
By the Poincaré inequality and the Sobolev embedding theorem, we can get
From \(\frac{1}{p_{2}}+\frac{1}{q_{2}}=\frac{1}{2}\), we deduce that
by the Sobolev embedding theorem, we can easily get
Inserting (3.54) and (3.56)-(3.58) into (3.50), we obtain
By utilizing estimates (3.5), (3.23) and (3.43), from (3.53) and (3.59), we find
and
respectively. By Lemma 2.3, we thus complete the proof. □
Lemma 3.6
Under the assumptions of Theorem 1.2, the solutions of Boussinesq system (1.1) is unique and the operator \(S(t):H^{s}\times H^{s}\mapsto H^{s}\times H^{s}\) is continuous for any fixed \(T>0\).
Proof
Suppose there are two solutions \((u_{1},\theta_{1},P_{1})\) and \((u_{2},\theta_{2},P_{2})\) to the Boussinesq system (1.1) with two initial data \((u_{1}^{0},\theta_{1}^{0})\) and \((u_{2}^{0},\theta_{2}^{0})\), respectively. Setting \(\tilde{u}=u_{1}-u_{2}\), \(\tilde{\theta}=\theta_{1}-\theta_{2}\), and \(\tilde{P}=P_{1}-P_{2}\), then \((\tilde{u},\tilde{\theta},\tilde{P})\) satisfies
Taking the \(L^{2}\) inner product of (3.62)1 with \(\Lambda^{2s}\tilde{u}\), we get
Using the interpolation inequality and the Young inequality, we can get
To deal with \(I_{2}\), we can get
where \(\int u_{1}\cdot\nabla(\Lambda^{s}\tilde{u})\cdot\Lambda^{s}\tilde{u}\,dx=0\). Since ∇ and Λ commute, we obtain
Applying Lemma 2.2, we can obtain
From (1.2), we know that \(1-\alpha<\alpha\), then, choosing \(p_{4}=\frac{2}{\alpha}\), \(p_{5}=\frac{2}{1-\alpha}\), \(q_{4}=\frac{2}{1-\alpha}\), and \(q_{5}=\frac{2}{\alpha}\), and using the Sobolev embedding inequalities, we can get
and
From (3.68)-(3.71), and using the Young inequality, we obtain
Simply applying the Cauchy-Schwarz inequality, we can get
Applying Lemma 2.1 again, we obtain
Similarly, we choose \(p_{6}=\frac{2}{1-\alpha}\), \(p_{7}=\frac{2}{\alpha}\), \(q_{6}=\frac{2}{2\alpha-1}\), and \(q_{7}=\frac{2}{1-\alpha}\), and we use the Sobolev embedding inequalities, to get
and
Inserting (3.64), (3.72) and (3.79) to (3.63), we can obtain
Using the Poincaré inequality, we get
Taking the \(L^{2}\) inner product of (3.62)2 with \(\Lambda^{2s}\tilde{\theta}\), we get
Let \(J_{1}=-\int u_{1}\cdot\nabla\tilde{\theta}\cdot\Lambda^{2s}\tilde{\theta}\,dx\) and \(J_{2}=-\int\tilde{u}\cdot\nabla \theta_{2}\cdot\Lambda^{2s}\tilde{\theta}\,dx\). Then using the interpolation inequality and the Young inequality, we can get
where we have used \(\int u_{1}\cdot\nabla(\Lambda^{s}\tilde{\theta})\cdot\Lambda^{s}\tilde {\theta}\,dx=0\) and also the fact that ∇ and Λ commute. Applying Lemma 2.2, we can obtain
Choosing \(p_{8}=\frac{2}{\beta}\) and \(p_{9}=\frac{2}{1-\beta}\), and using the Sobolev embedding inequality, we can obtain
and
Let \(\gamma=\min\{\alpha,\beta\}\), \(q_{8}=\frac{2}{1-\gamma}\), and \(q_{9}=\frac{2}{\gamma}\), we can obtain
and
Using (3.83) and (3.84), and the Young inequality, we can get
Similar to \(I_{3}\), we can deduce \(J_{2}\) as follows:
Applying Lemma 2.1 again, we can obtain
Choosing \(p_{10}=\frac{2}{1-\beta}\), \(p_{11}=\frac{2}{\beta}\), \(q_{10}=\frac{2}{2\beta-1}\), \(q_{11}=\frac{1}{1-\beta}\), and using the Sobolev embedding inequality, we can get
and
From (3.92)-(3.95), and using the Young inequality, we obtain
hence, inserting (3.96) into (3.90), we can get
Then, inserting (3.89) and (3.97) into (3.82), we can obtain
Using the Poincaré inequality, we get
Together with (3.81) and (3.99) this enables us to deduce that
Taking \(\varepsilon<\min \{\nu\frac{\lambda_{1}^{2(s+\alpha)}+\lambda _{1}^{2\alpha}\lambda_{2}^{2s}}{\lambda_{3}^{2(s+\alpha)}}, \kappa\frac{\lambda_{1}^{2(s+\beta)}+\lambda_{1}^{2\beta}\lambda _{2}^{2s}}{\lambda_{3}^{2(s+\beta)}} \}\), using the Gronwall inequality, and by (3.43), for all \(t\in[0,T]\), we immediately get
By the Riesz lemma, since \(\Vert \Lambda^{s}\tilde{u}_{0}\Vert \) and \(\Vert \Lambda^{s}\tilde{\theta}_{0}\Vert \) go to zero, for almost every t, \(\Vert \Lambda^{s} \tilde{u}\Vert \) and \(\Vert \Lambda^{s} \tilde{\theta} \Vert \) converge to zero. By Lemma 3.5 we know that \(\Vert \Lambda^{s} \tilde{u}\Vert \) and \(\Vert \Lambda^{s} \tilde{\theta} \Vert \) are continuous in t, then \(\Vert \Lambda^{s}\tilde{u}_{0}\Vert \) and \(\Vert \Lambda^{s}\tilde{\theta}_{0}\Vert \) converge to zero for all t, which implies that, for any \(T\geq0\),
i.e., \(\tilde{u}=0\), \(\tilde{\theta}=0\), \(u_{1}=u_{2}\), and \(\theta_{1}=\theta_{2}\). So we complete the proof. □
References
Jiu, QS, Miao, CX, Wu, JH, Zhang, ZF: The 2D incompressible Boussinesq equations with general dissipation. Soc. Sci. Elec. Publ. 17(4), 1132-1157 (2012)
Cannon, JR, DiBenedetto, E: The initial value problem for the Boussinesq equations with data in \(L^{p}\). In: Approximation Methods for Navier-Stokes Problems, pp. 129-144. Springer, Berlin (1980)
Li, YG: Global regularity for the viscous Boussinesq equations. Math. Methods Appl. Sci. 27(3), 363-369 (2004)
Morimoto, H: Nonstationary Boussinesq equations. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 39(1), 61-75 (1992)
Chae, D, Nam, HS: Local existence and blow-up criterion for the Boussinesq equations. Proc. R. Soc. Edinb. 127A, 935-946 (1997)
Chae, D, Kim, SK, Nam, HS: Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations. Nagoya Math. J. 155, 55-80 (1999)
Chae, D: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203(2), 497-513 (2006)
Hou, TY, Li, CM: Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. 12(1), 1-12 (2005)
Abidi, H, Hmidi, T: On the global well-posedness for Boussinesq system. J. Differ. Equ. 233(1), 199-220 (2007)
Hmidi, T, Keraani, S: On the global well-posedness of the Boussinesq system with zero viscosity. Indiana Univ. Math. J. 58(4), 1591-1618 (2009)
Lai, MJ, Pan, RH, Zhao, K: Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch. Ration. Mech. Anal. 199(3), 739-760 (2011)
Xu, FY, Yuan, J: On the global well-posedness for the 2D Euler-Boussinesq system. Nonlinear Anal., Real World Appl. 17, 137-146 (2014)
Zhao, K: 2D inviscid heat conductive Boussinesq equations on a bounded domain. Mich. Math. J. 59, 329-352 (2010)
Jin, LB, Fan, JS: Uniform regularity for the 2D Boussinesq system with a slip boundary condition. J. Math. Anal. Appl. 400(1), 96-99 (2013)
Hu, WW, Kukavica, I, Ziane, M: On the regularity for the Boussinesq equations in a bounded domain. J. Math. Phys. 54(8), 081507 (2013)
Hu, WW, Kukavica, I, Ziane, M: Persistence of regularity for the viscous Boussinesq equations with zero diffusivity. Asymptot. Anal. 91, 111-134 (2015)
Lorca, SA, Boldrini, JL: The initial value problem for a generalized Boussinesq model: regularity and global existence of strong solutions. Mat. Contemp. 11, 71-94 (1996)
Lorca, SA, Boldrini, JL: The initial value problem for a generalized Boussinesq model. Nonlinear Anal., Theory Methods Appl. 36(4), 457-480 (1999)
Wang, C, Zhang, ZF: Global well-posedness for the 2D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity. Adv. Math. 228(1), 43-62 (2011)
Sun, YZ, Zhang, ZF: Global regularity for the initial-boundary value problem of the 2D Boussinesq system with variable viscosity and thermal diffusivity. J. Differ. Equ. 255(6), 1069-1085 (2013)
Li, HP: Some mathematical problems on Boussinesq equations with nonlinear diffusion. PhD thesis, Jilin University (2013)
Li, HP, Pan, RH, Zhang, WZ: Initial boundary value problem for 2D Boussinesq equations with temperature-dependent heat diffusion. J. Hyperbolic Differ. Equ. 12(3), 469-488 (2015)
Huang, AM: The 2D Euler-Boussinesq equations in planar polygonal domains with Yudovich’s type data. Commun. Math. Stat. 2(3-4), 369-391 (2014)
Huang, AM: The global well-posedness and global attractor for the solutions to the 2D Boussinesq system with variable viscosity and thermal diffusivity. Nonlinear Anal., Theory Methods Appl. 113, 401-429 (2015)
Adhikari, D, Cao, CS, Wu, JH: The 2D Boussinesq equations with vertical viscosity and vertical diffusivity. J. Differ. Equ. 249, 1078-1088 (2010)
Adhikari, D, Cao, CS, Wu, JH: Global regularity results for the 2D Boussinesq equations with vertical dissipation. J. Differ. Equ. 251, 1637-1655 (2011)
Cao, CS, Wu, JH: Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal. 208(3), 985-1004 (2013)
Danchin, R, Paicu, M: Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci. 21(3), 421-457 (2011)
Hmidi, T, Keraani, S, Rousset, F: Global well-posedness for Euler-Boussinesq system with critical dissipation. Commun. Partial Differ. Equ. 36, 420-445 (2011)
Jia, JX, Peng, JG, Li, KX: On the global well-posedness of a generalized 2D Boussinesq equations. NoDEA Nonlinear Differ. Equ. Appl. 22, 911-945 (2015)
Jiu, QS, Miao, CX, Wu, JH, Zhang, ZF: The two-dimensional incompressible Boussinesq equations with general critical dissipation. SIAM J. Math. Anal. 46(5), 3426-3454 (2014)
Jiu, QS, Wu, JH, Yang, WR: Eventual regularity of the two-dimensional Boussinesq equations with supercritical dissipation. J. Nonlinear Sci. 25, 37-58 (2015)
Durga, KC, Regmi, D, Tao, LZ, Wu, JH: Generalized 2D Euler-Boussinesq equations with a singular velocity. J. Differ. Equ. 257, 82-108 (2014)
Durga, KC: A study on the global well-posedness for the two-dimensional Boussinesq and Lans-Alpha magnetohydrodynamics equations. Dissertations & Theses - Gradworks, Oklahoma State University (2014)
Larios, A, Lunasin, E, Titi, ES: Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion. J. Differ. Equ. 255(9), 2636-2654 (2013)
Miao, CX, Xue, LT: On the global well-posedness of a class of Boussinesq-Navier-Stokes systems. NoDEA Nonlinear Differ. Equ. Appl. 18, 707-735 (2011)
Stefanov, A, Wu, JH: A global regularity result for the 2D Boussinesq equations with critical dissipation (2015). arXiv:1411.1362v3
Xiang, ZY, Yan, W: Global regularity of solutions to the Boussinesq equations with fractional diffusion. Adv. Differ. Equ. 18(11-12), 1105-1128 (2013)
Wu, JH, Xu, XJ: Well-posedness and inviscid limits of the Boussinesq equations with fractional Laplacian dissipation. Arch. Ration. Mech. Anal. 208(3), 985-1004 (2013)
Xu, XJ: Global regularity of solutions of 2D Boussinesq equations with fractional diffusion. Nonlinear Anal., Real World Appl. 72, 677-681 (2010)
Xu, XJ, Xue, LT: Yudovich type solution for the 2D inviscid Boussinesq system with critical and supercritical dissipation. J. Differ. Equ. 256, 3179-3207 (2014)
Yang, WR, Jiu, QS, Wu, JH: Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation. J. Differ. Equ. 257, 4188-4213 (2014)
Ye, Z, Xu, XJ: Remarks on global regularity of the 2D Boussinesq equations with fractional dissipation. Nonlinear Anal., Theory Methods Appl. 125, 715-724 (2015)
Ye, Z, Xu, XJ: Global regularity results of the 2D Boussinesq equations with fractional Laplacian dissipation. J. Math. Fluid Mech. 260(8), 1-20 (2015)
Fang, DY, Qian, CY, Zhang, T: Global well-posedness for 2D Boussinesq system with general supercritical dissipation. Nonlinear Anal., Real World Appl. 27, 326-349 (2016)
Kato, T, Ponce, G: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891-907 (1988)
Wu, JH: The quasi-geostrophic equation and its two regularizations. Commun. Partial Differ. Equ. 27(5-6), 1161-1181 (2002)
Ju, N: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255(1), 161-181 (2005)
Lions, JL, Magenes, E: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972) Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181
Temma, R: Navier-Stokes Equations: Theory and Numerical Analysis 3rd edn. Studies in Mathematics and Its Applications, vol. 2. North-Holland, Amsterdam (1984) With an appendix by F. Thomasset
Bardos, C: Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl. 40, 769-790 (1972)
Kato, T: On classical solutions of the two-dimensional nonstationary Euler equation. Arch. Ration. Mech. Anal. 25, 188-200 (1967)
Huang, AM, Huo, WR: The global attractor of the 2D Boussinesq equations with fractional Laplacian in subcritical case (2015). arXiv:1504.00716v1 [math.AP]
Temma, R: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci., vol. 68. Springer, New York (1988)
Acknowledgements
This work was in part supported by the Science Foundation of Hebei Province with contract number A2013410007, and supported by the Fundamental Research Funds for the Central Universities with the contract number SUSF-DH-D-2015085. The author thanks the referee for useful suggestions, which improved the exposition considerably.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The author declares to have no completing interests.
Authors’ contributions
The main ides of this paper was proposed by Xing Su, and he prepared all steps of the proofs in this research. He read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Su, X. The global attractor of the 2D Boussinesq system with fractional vertical dissipation. Bound Value Probl 2016, 105 (2016). https://doi.org/10.1186/s13661-016-0615-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-016-0615-6
MSC
- 35Q30
- 34D45
- 35R11
Keywords
- Boussinesq system
- fractional vertical dissipation
- global well-posedness
- global attractor