- Research
- Open access
- Published:
Uniqueness of iterative positive solutions for the singular fractional differential equations with integral boundary conditions
Boundary Value Problems volume 2016, Article number: 147 (2016)
Abstract
The uniqueness of positive solution for a class of singular fractional differential system with integral boundary conditions is considered in this paper and many types of equation system are contained in this equation system because there are many parameters which can be changeable in this equation system. The fractional orders are involved in the nonlinearity of the boundary value problem and the nonlinearity is allowed to be singular in regard to not only time variable but also space variable. The existence of uniqueness of positive solution is mainly obtained by fixed point theorem of mixed monotone operator and the positive solution of equation system is dependent on λ. An iterative sequence and convergence rate are given which are important for practical application and an example is given to demonstrate the validity of our main results.
1 Introduction
In the past couple of decades, boundary value problems for nonlinear fractional differential equations arise from the studies of complex problems in many disciplinary areas such as aerodynamics, fluid flows, electrodynamics of complex medium, electrical networks, rheology, polymer rheology, economics, biology chemical physics, control theory, signal and image processing, blood flow phenomena, and so on. Fractional-order models have been shown to be more accurate and realistic than integer-order models, and with this advantage in the application of these models, it is important to theoretically establish the conditions for the existence of positive solutions because theoretical results can help people to get an in-depth understanding for the dynamic behavior in the practical process, so the study of abstract fractional models is important and relevant nowadays. In recent years, many authors investigated the existence of positive solutions for fractional equation boundary value problems (see [1–22] and the references therein), and a great deal of results have been developed for differential and integral boundary value problems. The authors in [23] studied the following system of singular fractional differential equations:
where \(\alpha,\gamma,\beta,v,\mu\in\mathbb{R}^{1}_{+}=[0,+\infty)\), \(1<\gamma<\alpha\leq2\), \(1<\alpha-\beta<\gamma\), \(0<\beta\leq\mu <1\), \(0< v<1\), \(0<\xi_{1}<\xi_{2}<\cdots<\xi_{p-2}<1\), \(a_{j}, b_{j}\in\mathbb{R}^{1}_{+}\) with \(\sum_{j=1}^{p-2}a_{j}\xi_{j}^{\alpha -\mu-1}<1\), \(\sum_{j=1}^{p-2}b_{j}\xi_{j}^{\gamma-1}<1\), \(f\in C([0,1]\times(0,+\infty)^{3}, \mathbb{R}^{1}_{+})\) and may be singular at \(x_{i}=0\) (\(i=1,2,3\)), \(g\in C([0,1]\times(0,+\infty), \mathbb {R}^{1}_{+})\), \(D^{\alpha}_{0+}\), \(D^{\beta}_{0+}\), \(D^{\gamma}_{0+}\), \(D^{\mu}_{0+}\), \(D^{v}_{0+}\) are the standard Riemann-Liouville derivatives. By using the fixed point theorem of the mixed monotone operator, the authors obtained the uniqueness of the positive solution. In [24], the authors investigated the fractional differential equations
where \(\alpha,v,\mu\in\mathbb{R}^{1}_{+}\), \(3<\alpha\leq4\), \(0< v\leq 1\), \(0<\mu\leq1\) are real numbers, f is a Carathéodory function, \(f(t,x,y,z)\) is singular at \(x,y,z=0\), and \(D^{\alpha}_{0+}\), \(D^{v}_{0+}\), \(D^{\mu}_{0+}\) are the Riemann-Liouville fractional derivatives. The authors obtained the existence and multiplicity of positive solutions by means of Krasnosel’skii’s fixed point theorem. In [25], the authors investigated the fractional-order model for turbulent flow in a porous medium,
where \(\alpha,\beta,\gamma\in\mathbb{R}^{1}_{+}\), \(0<\gamma\leq 1<\alpha\leq2<\beta<3\), \(\alpha-\gamma>1\), \(\int_{0}^{1}x(s)\,dA(s)\) denotes a Riemann-Stieltjes integral, A is a function of bounded variation, and dA can be a signed measure. The p-Laplacian operator is defined as \(\varphi_{p}(s)=|s|^{p-2}s\), \(p>2\), and the nonlinearity \(f(t,u,v)\) may be singular at both \(u=0\) and \(v=0\), and \(D_{t}^{\alpha }\), \(D_{t}^{\beta}\), \(D_{t}^{\gamma}\) are the standard Riemann-Liouville derivatives. The authors obtained the uniqueness of a positive solution by using the fixed point theorem of the mixed monotone operator. In [26], the authors investigated the following system of singular problems:
where \(\alpha,\beta,\gamma\in\mathbb{R}^{1}_{+}\), \(2<\alpha,\gamma \leq3\), \(0<\beta<1\), u denotes the number of uninfected CD4+T cells and v denotes the number of infected cells, \(\lambda>0\) is a parameter, \(\alpha-\beta>2\), \(\int_{0}^{1}D_{t}^{\beta}u(s)\,dA(s)\), and \(\int_{0}^{1}v(s)\,dB(s)\) denote the Riemann-Stieltjes integrals of u with respect to A and B, respectively, A, B are bounded variations, \(f: (0,1)\times\mathbb{R}^{3}_{+}\rightarrow(-\infty ,+\infty)\), \(g: (0,1)\times\mathbb{R}^{1}_{+}\rightarrow(-\infty ,+\infty)\) are two continuous functions and may be singular at \(t=0,1\), \(D_{t}^{\alpha}\), \(D_{t}^{\beta}\), \(D_{t}^{\gamma}\) are the standard Riemann-Liouville derivatives. The authors obtained the existence of positive solution by fixed point theorem.
In present, many papers are devoted to the fractional differential equations in which the fractional orders are involved in the nonlinearity; see [1–4, 23–26]. On the other hand, there are some papers studying singular equations in regard to space variable, we refer the reader to [5–9]. Motivated by the results above, we utilize a fixed point theorem to investigate the existence results of positive solution of the following class of nonlinear singular fractional differential equations:
where \(\alpha,\beta,\mu_{\kappa},\eta_{\varrho}\in\mathbb {R}^{1}_{+}\), \(n,m,\kappa,\varrho\in\mathbb{N}\) (natural number set) and \(n-1<\alpha\leq n\), \(m-1<\beta\leq m\), \(m< n\) (\(n,m\geq2\)), \(\kappa-1<\mu_{\kappa}\leq\kappa\) (\(\kappa=1,2,\ldots,n-2\)), \(\varrho-1<\eta_{\varrho}\leq\varrho\) (\(\varrho=1,2,\ldots,m-2\)), and \(0<\eta,\vartheta\leq1\), \(\lambda,\mu,\chi,\iota>0\) are parameters, \(f\in C((0,1)\times(0,+\infty)^{n},\mathbb{R}^{1}_{+})\), and \(f(t, x_{1},x_{2},\ldots,x_{n})\) has a singularity at \(x_{i}=0\) (\(i=1,2,\ldots,n\)) and \(t=0,1\), \(g\in C((0,1)\times(0,+\infty)^{m-1} ,\mathbb{R}^{1}_{+})\), \(h,a\in C(0,1)\) with \(\int_{0}^{\eta}\chi t^{\alpha-n+1}h(t)\,dA(t)<1\), \(\int_{0}^{\vartheta}\iota t^{\beta -m+1}a(t)\,dB(t)<1\), A, B are functions of bounded variation, \(\int _{0}^{\eta}h(s)u^{(n-2)}(s)\,dA(s)\), \(\int_{0}^{\vartheta }a(s)v^{(m-2)}(s)\,dB(s)\) denote the Riemann-Stieltjes integral with respect to A and B, \(D_{0^{ +}}^{\alpha}u\), \(D_{0+}^{\beta}v\), \(D^{\mu_{\kappa}}_{0^{+}}u\) (\(\kappa =1,2,\ldots,n-2\)), \(D^{\eta_{\varrho}}_{0^{+}}u\) (\(\varrho=1,2,\ldots ,m-2\)) are the standard Riemann-Liouville derivatives. The existence of positive solutions is obtained by means of a mixed monotone operator in cones in this paper.
In this paper, we study the existence of positive solutions to BVP (1.1), where \((u,v)\in C[0,1]\times C[0,1]\) is said to be a positive solution of BVP (1.1) if and only if u, v satisfies (1.1) and \(u(t)>0\), \(v(t)>0\) for any \(t\in(0, 1]\). We should address here that our work presented in this paper has various new system features. First of all, the system of equations in question include many types of system of equations as special cases because there are many parameters which can be changeable in this equation system. Second, our study is on singular nonlinear differential boundary value problems, that is, \(f(t, x_{1},x_{2},\ldots,x_{n})\) has singularity at \(x_{i}=0\) (\(i=1,2,\ldots ,n\)) and \(t=0,1\), and \(g(t,x_{1},x_{2},\ldots,x_{m-1})\) may be singular at \(t=0,1\). Third, fractional derivatives is involved in the nonlinear terms and boundary conditions of fractional differential (1.1). Fourth, the uniqueness of the positive solution of equation (1.1) is dependent on λ.
2 Preliminaries and lemmas
For the convenience of the reader, we first present some basic definitions and lemmas that are important and are to be used in the rest of the paper. The definitions can also be found in recent literature such as [27, 28].
Definition 2.1
The Riemann-Liouville fractional integral of order \(\alpha>0\) of a function \(y:(0,\infty)\rightarrow\mathbb{R}^{1}\) is given by
provided that the right-hand side is pointwise defined on \((0,\infty)\).
Definition 2.2
The Riemann-Liouville fractional derivative of order \(\alpha>0\) of a continuous function \(y:(0,\infty)\rightarrow\mathbb{R}^{1}\) is given by
where \(n=[\alpha]+1\), \([\alpha]\) denotes the integer part of the number α, provided that the right-hand side is pointwise defined on \((0,\infty)\).
Lemma 2.1
Assume that \(u\in C^{n}[0,1]\), then
where n is the least integer greater than or equal to \(\alpha, C_{i}\in\mathbb{R}^{1}\) (\(i=1,2,\ldots,n\)).
Lemma 2.2
[29]
-
(1)
If \(x\in L(0,1)\), \(v>\sigma>0\), then
$$I_{0^{+}}^{v}I_{0^{+}}^{\sigma}x(t)=I_{0^{+}}^{v+\sigma}x(t), \qquad D_{0^{+}}^{\sigma}I_{0^{+}}^{v}x(t)=I_{0^{+}}^{v-\sigma}x(t), \qquad D_{0^{+}}^{\sigma}I_{0^{+}}^{\sigma}x(t)=x(t). $$ -
(2)
If \(v>0\), \(\sigma>0\), then
$$D_{0^{+}}^{v}t^{\sigma-1}=\frac{\Gamma(\sigma)}{\Gamma(\sigma -v)}t^{\sigma-v-1}. $$
For convenience in our presentation, we here list some conditions to be used throughout the paper.
- (S1):
-
\(f(t,x_{1},x_{2},\ldots,x_{n})=\phi(t,x_{1},x_{2},\ldots ,x_{n})+\psi(t,x_{1},x_{2},\ldots,x_{n})\), where \(\phi:(0,1)\times (0,+\infty)^{n}\rightarrow\mathbb{R}^{1}_{+}\) is continuous, \(\phi (t,x_{1},x_{2},\ldots,x_{n})\) may be singular at \(t=0,1\) and is nondecreasing on \(x_{i}>0\) (\(i=1,2,\ldots,n\)); \(\psi:(0,1)\times (0,+\infty)^{n}\rightarrow\mathbb{R}^{1}_{+}\) is continuous, \(\psi (t,x_{1},x_{2},\ldots,x_{n})\) may be singular at \(t=0,1\) and \(x_{i}=0\) (\(i=1,2,\ldots,n\)), and is nonincreasing on \(x_{i}>0\) (\(i=1,2,\ldots,n\)).
- (S2):
-
There exists \(\sigma\in(0,1)\) such that, for all \(x_{i}>0\) (\(i=1,2,\ldots,n\)), \(t\in(0,1)\), and \(l\in(0,1)\),
$$\begin{aligned}& \phi(t,lx_{1},lx_{2},\ldots,lx_{n})\geq l^{\sigma}\phi (t,x_{1},x_{2},\ldots,x_{n}), \\ & \psi\bigl(t,l^{-1}x_{1},l^{-1}x_{2}, \ldots,l^{-1}x_{n}\bigr)\geq l^{\sigma} \psi(t,x_{1},x_{2},\ldots,x_{n}). \end{aligned}$$ - (S3):
-
\(g\in C((0,1)\times(0,+\infty)^{m-1},\mathbb{R}^{1}_{+})\), \(g(t,x_{1},x_{2},\ldots,x_{m-1})\) may be singular at \(t=0,1\) and is nondecreasing on \(x_{i}>0\) (\(i=1,2,\ldots,m-1\)). Moreover, there exists \(\varsigma\in(0,1)\) such that
$$\begin{aligned}& g(t,lx_{1},lx_{2},\ldots,lx_{m-1}) \\ & \quad \geq l^{\varsigma }g(t,x_{1},x_{2},\ldots,x_{m-1}), \quad t, l\in(0,1), x_{i}>0, i=1,2,\ldots,m-1. \end{aligned}$$ - (S4):
-
$$\begin{aligned}& 0< \int_{0}^{1}(1-s)^{\alpha-n+1}s^{-\sigma(\alpha-1)} \psi (s,1,1,\ldots,1)\,ds< +\infty, \\ & 0< \int_{0}^{1}(1-s)^{\alpha-n+1}\phi(s,1,1, \ldots,1)\,ds< +\infty, \\ & 0< \int_{0}^{1}(1-s)^{\beta-m+1}g(s,1,1,\ldots,1) \,ds< +\infty. \end{aligned}$$
Remark 2.1
According to (S2) and (S3), we have
Lemma 2.3
Let \(\rho\in L^{1}(0,1)\cap C(0,1)\), then the equation of the BVPs
have the integral representation
respectively, where
in which
Proof
The proof is similar to that for Lemma 2.3 in [30], we omit it here. □
Lemma 2.4
Let \(\theta_{1}(s)=m_{1}s(1-s)^{\alpha-n+1}\), \(\theta _{2}(s)=m_{2}s(1-s)^{\beta-m+1}\), then the Green functions \(G(t,s)\) and \(H(t,s)\) satisfy:
-
(1)
\(G(t,s)>0\), \(H(t,s)>0\), \(\forall t,s\in(0,1)\),
-
(2)
\(\forall t,s\in[0,1]\),
$$\begin{aligned}& t^{\alpha-n+1}\theta_{1}(s)\leq G(t,s)\leq M_{1}t^{\alpha -n+1}(1-s)^{\alpha-n+1}, \\& t^{\beta-m+1}\theta_{2}(s)\leq H(t,s)\leq M_{2}t^{\beta -m+1}(1-s)^{\beta-m+1}, \end{aligned}$$where
$$\begin{aligned}& m_{1}=\frac{1}{\Gamma(\alpha-n+2)} \biggl(1+\frac{\chi\int _{0}^{\eta}h(t)t^{\alpha-n+1}\,dA(t)}{1-\chi\int_{0}^{\eta} h(t)t^{\alpha-n+1}\,dA(t)} \biggr), \\& m_{2}=\frac{1}{\Gamma(\beta-m+2)} \biggl(1+\frac{\iota\int _{0}^{\vartheta}a(t)t^{\beta-m+1}\,dB(t)}{ 1-\iota\int_{0}^{\vartheta}a(t)t^{\beta-m+1}\,dB(t)} \biggr), \\& M_{1}=\frac{2}{\Gamma(\alpha-n+2)} \biggl(1+\frac{\chi\int _{0}^{\eta}h(t)t^{\alpha-n}\,dA(t)}{1-\chi\int_{0}^{\eta} h(t)t^{\alpha-n+1}\,dA(t)} \biggr), \\& M_{2}=\frac{2}{\Gamma(\beta-m+2)} \biggl(1+\frac{\iota\int _{0}^{\vartheta}a(t)t^{\beta-m}\,dB(t)}{ 1-\iota\int_{0}^{\vartheta}a(t)t^{\beta-m+1}\,dB(t)} \biggr). \end{aligned}$$
Proof
The proof is similar to that for Lemma 2.4 in [30], we omit it here. □
Let \(u(t)=I_{0^{+}}^{n-2}x(t)\), \(v(t)=I_{0^{+}}^{m-2}y(t)\), then \(x(t)=D_{0^{+}}^{ n-2}u(t)\), \(y(t)=D_{0^{+}}^{ m-2}v(t)\), the problem (1.1) can turn into the following modified problem of the BVP (2.8):
Lemma 2.5
Let \(u(t)=I_{0^{+}}^{n-2}x(t)\), \(v(t)=I_{0^{+}}^{m-2}y(t)\), \(x(t), y(t)\in C[0,1]\). Then (1.1) can be transformed into (2.8). Moreover, if \((x,y)\in C[0,1]\times C[0,1]\) is a positive solution of the problem (2.8), then \((I_{0^{+}}^{n-2}x,I_{0^{+}}^{m-2}y)\) is a positive solution of the problem (1.1).
Proof
Put \(u(t)=I_{0^{+}}^{n-2}x(t)\), \(v(t)=I_{0^{+}}^{m-2}y(t)\) into (1.1), by Lemma 2.2, we have
By \(u(t)=I_{0^{+}}^{n-2}x(t)\), \(v(t)=I_{0^{+}}^{m-2}y(t)\), and (2.9), we have
Thus (1.1) is transformed into (2.8).
Now, assume \((x,y)\in C[0,1]\times C[0,1]\) is a positive solution for problem (2.8). Let \(u(t)=I_{0^{+}}^{n-2}x(t)\), \(v(t)=I_{0^{+}}^{m-2}y(t)\), by Lemma 2.2, we have
On the other hand, by \(u(t)=I_{0^{+}}^{n-2}x(t)\), \(v(t)=I_{0^{+}}^{m-2}y(t)\), and Lemma 2.2, we also get
which implies that
Clearly, \(u=I_{0^{+}}^{n-2}x, v=I_{0^{+}}^{m-2}y\in C([0,1],\mathbb {R}^{1}_{+})\). Hence, \((I_{0^{+}}^{n-2}x,I_{0^{+}}^{m-2}y)\) is a positive solution of problem (1.1). Hence, (1.1) and (2.8) are equivalent. □
The vector \((x,y)\) is a solution of system (2.8) if and only if \((x,y)\in C[0,1]\times C[0,1]\) is a solution of the following system of nonlinear integral equations:
Obviously, system (2.10) is equivalent to the following system of integral equations:
Let P be a normal cone of a Banach space E, and \(e\in P\), \(e>\theta \) (θ is a zero element of E). Define a component of P by \(Q_{e}=\{u\in P|\mbox{ there exist constants }c,C>0\mbox{ such that }ce\leq u\leq Ce\}\). \(A:Q_{e}\times Q_{e}\rightarrow P\) is said to be mixed monotone if \(A(u,y)\) is nondecreasing in u and nonincreasing in y, i.e., \(u_{1}\leq u_{2}\) (\(u_{1},u_{2}\in Q_{e} \)) implies \(A(u_{1},y)\leq A(u_{2},y)\) for any \(y\in Q_{e}\), and \(y_{1}\leq y_{2}\) (\(y_{1},y_{2}\in Q_{e}\)) implies \(A(u,y_{1})\geq A(u,y_{2})\) for any \(u\in Q_{e}\). The element \(u^{\star}\in Q_{e}\) is called a fixed point of A if \(A(u^{\star},u^{\star})=u^{\star}\).
Lemma 2.6
Suppose that \(A:Q_{e}\times Q_{e}\rightarrow Q_{e}\) is a mixed monotone operator and there exists a constant σ, \(0<\sigma<1\), such that
then A has a unique fixed point \(x^{\star}\in Q_{e}\), and, for any \(x_{0},y_{0}\in Q_{e}\), we have
where
and the convergence rate is
where r is a constant, \(0< r<1\), and dependent on \(x_{0}\), \(y_{0}\).
Lemma 2.7
Suppose that \(A:Q_{e}\times Q_{e}\rightarrow Q_{e}\) is a mixed monotone operator and there exists a constant \(\sigma\in(0,1)\) such that (2.12) holds. If \(x_{\lambda }^{\star}\in Q_{e}\) is a unique solution of equation
then:
-
(1)
For any \(\lambda_{0}\in(0,+\infty)\), \(\|x_{\lambda}^{\star }-x_{\lambda_{0}}^{\star}\|\rightarrow0\), \(\lambda\rightarrow\lambda_{0}\).
-
(2)
If \(0<\sigma<\frac{1}{2}\), then \(0<\lambda_{1}<\lambda_{2}\) implies \(x_{\lambda_{1}}^{\star}\leq x_{\lambda_{2}}^{\star}\), \(x_{\lambda_{1}}^{\star}\neq x_{\lambda_{2}}^{\star}\).
-
(3)
\(\lim_{\lambda\rightarrow+\infty}\|x_{\lambda}^{\star}\| =+\infty\), \(\lim_{\lambda\rightarrow0^{+}}\|x_{\lambda}^{\star}\| =0\).
Let \(e(t)=t^{\alpha-n+1}\), we define a normal cone of \(C[0,1]\) by
also define a component of P by
Remark 2.2
By simple calculation, for any \(t\in[0, 1]\), we have
3 Main results
Theorem 3.1
Suppose that (S1)-(S4) hold. Then the BVP (1.1) has a unique positive solution \((u_{\lambda}^{\star },v_{\lambda}^{\star})\), which satisfies
and at the same time \(u_{\lambda}^{\star}\) satisfies:
-
(1)
For \(\lambda_{0}\in(0,\infty)\), \(\|u_{\lambda}^{\star }-u_{\lambda_{0}}^{\star}\|\rightarrow0\), \(\lambda\rightarrow\lambda_{0}\).
-
(2)
If \(0<\sigma<\frac{1}{2}\), then \(0<\lambda_{1}<\lambda_{2}\) implies \(u_{\lambda_{1}}^{\star}\leq u_{\lambda_{2}}^{\star}\), \(u_{\lambda_{1}}^{\star}\neq u_{\lambda_{2}}^{\star}\).
-
(3)
\(\lim_{\lambda\rightarrow0}\|u_{\lambda}^{\star}\|=0\), \(\lim_{\lambda\rightarrow+\infty}\|u_{\lambda}^{\star}\|=+\infty\).
Moreover, for any \(u_{0}\), we construct a successive sequence
and we have \(\|u_{k}-u_{\lambda}^{\star}\|\rightarrow0\) as \(k\rightarrow \infty\), and the convergence rate
where r is a constant, \(0< r<1\), and dependent on \(u_{0}\). Moreover,
Proof
We first consider the existence of a positive solution to problem (2.10). From the discussion in Section 2, we only need to consider the existence of a positive solution to BVP (2.11). In order to realize this purpose, let
and, for any \(x,w\in Q_{e}\), we define the operator \(T_{\lambda }:Q_{e}\times Q_{e}\rightarrow P\) by
Now we prove that \(T_{\lambda}:Q_{e}\times Q_{e}\rightarrow P\) is well defined. For any \(x,w\in Q_{e}\), by (2.13), (2.16), we have
Hence, by (2.14), for any \(s\in[0,1]\), we have
By (3.3), (2.13), (2.15), (S1), and Remark 2.1, we have
where
By (3.3), (2.13), (2.15), (S1), and (S2), we also have
where
Noting \(\frac{c}{D}s^{\alpha-1}<1\), by (3.3), (2.13), (2.15), (S1), and (S2), we have
and by (3.3), (2.13), (2.15), (S1), and Remark 2.1, we also get
For \(x,w\in Q_{e}\), it follows from (3.4), (3.5) that
By (H4), (3.8), and (3.9), we see that \(T_{\lambda }:Q_{e}\times Q_{e}\rightarrow P\) is well defined.
Next, we will prove that \(T_{\lambda}:Q_{e}\times Q_{e}\rightarrow Q_{e}\). It follows from (3.8), (3.9) that
At the same time, by (3.6), (3.7), we have
Equations (3.11) and (3.12) imply that
Hence, \(T_{\lambda}:Q_{e}\times Q_{e}\rightarrow Q_{e}\) is well defined.
Next, we shall prove that \(T_{\lambda}:Q_{e}\times Q_{e}\rightarrow Q_{e}\) is a mixed monotone operator. In fact, for any \(x_{1},x_{2}\in Q_{e}\) and \(x_{1}\leq x_{2}\), by the monotonicity of \(I_{0^{+}}^{n-2-\mu_{i}}\), A and ϕ, for any \(t\in[0, 1]\), we have
Hence, by (3.14), we have
that is, \(T_{\lambda}(x,w)\) is nondecreasing on x for any \(w\in Q_{e}\). Similarly, if \(w_{1}\geq w_{2}\), \(w_{1}, w_{2}\in Q_{e}\), from (S1), for any \(t\in[0, 1]\), we have
Hence, by (3.16), we have
i.e., \(T_{\lambda}(x,w)\) is nonincreasing on w for any \(x\in Q_{e}\). Hence, by (3.15) and (3.17), we see that \(T_{\lambda }:Q_{e}\times Q_{e}\rightarrow Q_{e}\) is a mixed monotone operator.
Finally, we show that the operator \(T_{\lambda}\) satisfies (2.12). For any \(x,w\in Q_{e}\) and \(l\in(0,1)\), \(t\in[0, 1]\), by (S2) and (S3), we have
Equations (3.18), (3.19) imply that
Hence, as regards Lemma 2.6 assume that there exists a unique positive solution \(x_{\lambda}^{\star}\in Q_{e}\) such that \(T_{\lambda }(x_{\lambda}^{\star},x_{\lambda}^{\star})=x_{\lambda}^{\star}\). It is easy to check that \(x_{\lambda}^{\star}\) is a unique positive solution of (2.8) for any given \(\lambda>0\). Moreover, by Lemma 2.7 we have the following conclusions:
-
(1)
For any \(\lambda_{0}\in(0,+\infty)\), \(\|x_{\lambda}^{\star }-x_{\lambda_{0}}^{\star}\|\rightarrow0\), \(\lambda\rightarrow\lambda_{0}\).
-
(2)
If \(0<\sigma<\frac{1}{2}\), then \(0<\lambda_{1}<\lambda_{2}\) implies \(x_{\lambda_{1}}^{\star}\leq x_{\lambda_{2}}^{\star}\), \(x_{\lambda_{1}}^{\star}\neq x_{\lambda_{2}}^{\star}\).
-
(3)
\(\lim_{\lambda\rightarrow0}\|x_{\lambda}^{\star}\|=0\), \(\lim_{\lambda\rightarrow+\infty}\|x_{\lambda}^{\star}\|=+\infty\).
By Lemma 2.5, we have
Hence, by (3.21) and the monotonicity and continuity of \(I_{0^{+}}^{n-2}\), we get:
-
(1)
\(\|u_{\lambda}^{\star}-u_{\lambda_{0}}^{\star}\|\rightarrow 0\), \(\lambda\rightarrow\lambda_{0}\).
-
(2)
If \(0<\sigma<\frac{1}{2}\), then \(0<\lambda_{1}<\lambda_{2}\) implies \(u_{\lambda_{1}}^{\star}\leq u_{\lambda_{2}}^{\star}\), \(u_{\lambda_{1}}^{\star}\neq u_{\lambda_{2}}^{\star}\).
-
(3)
\(\lim_{\lambda\rightarrow0}\|u_{\lambda}^{\star}\|=0\), \(\lim_{\lambda\rightarrow+\infty}\|u_{\lambda}^{\star}\|=+\infty\).
Moreover, for any \(u_{0}(t)=I_{0^{+}}^{n-2}x_{0}\in Q_{e}\), by Lemma 2.6, constructing a successive sequence
by \(u_{k+1}(t)=I_{0^{+}}^{n-2}x_{k+1}(t)\), then
and we have \(\|u_{k}-u_{\lambda}^{\star}\|=\| I_{0^{+}}^{n-2}x_{k}-I_{0^{+}}^{n-2}x_{\lambda}^{\star}\|\rightarrow 0\) as \(k\rightarrow\infty\), the convergence rate is
r is a constant, \(0< r<1\), and dependent on \(u_{0}\), where \(u_{\lambda }^{\star}(t)=I_{0^{+}}^{n-2}x_{\lambda}^{\star}(t)\), and we easily get
so by \(u_{\lambda}^{\star}(t)=I_{0^{+}}^{n-2}x_{\lambda}^{\star }(t)\), we have
By (3.3), (3.22) , for any \(t\in[0,1]\), we easily get
Therefore, the proof of Theorem 3.1 is completed. □
Remark 3.1
Compared with previous work [23, 25], the fractional orders are involved not only in the nonlinearity f but also in the nonlinearity g and the uniqueness positive solution of equation (1.1) is dependent on eigenvalue λ. Moreover, compared with [25], an iterative sequence and the convergence rate are also given.
4 Example
Example 4.1
Consider the following boundary value problem:
where \(\alpha=\frac{5}{2}\), \(\beta=\frac{3}{2}\), \(h(s)=a(s)=1\), \(\eta =\vartheta=\frac{3}{4}\), \(\chi=\tau=1\). Let \(u(t)=I_{0^{+}}^{1}x(t)\), \(v(t)=v(t)\), the equation can be changed to the following:
and
Hence,
Moreover, for any \((t,x_{1},x_{2},x_{3})\in(0,1)\times(0,\infty )^{3}\) and \(0< l<1\), we have
Noting \(\sigma=\frac{1}{4}\), \(\psi(s,1,1,1)=s^{-\frac{1}{2}}+3-s\), \(\phi(s,1,1,1)=s^{-\frac{1}{2}}+\cos s+2s+2\), \(g(s,1)=4s+s\sin s+s^{2}\), we have
Thus, the assumptions (S1)-(S4) of Theorem 3.1 hold. Then Theorem 3.1 implies that problem (4.1) has a unique solution. Furthermore, when \(\lambda\rightarrow\lambda_{0}\), \(\lambda_{0}\in (0,+\infty)\), we have
and \(0<\lambda_{1}<\lambda_{2}\) implies
Since \(\sigma=\frac{1}{4}\in(0,\frac{1}{2})\),
By \(u_{\lambda}^{\star}(t)=I_{0^{+}}^{1}x_{\lambda}^{\star}(t) \), we can easily get:
-
(1)
\(\lambda_{0}\in(0,+\infty)\), \(\|u_{\lambda}^{\star }-u_{\lambda_{0}}^{\star}\|\rightarrow0\), \(\lambda\rightarrow\lambda_{0}\).
-
(2)
If \(0<\sigma<\frac{1}{2}\), then \(0<\lambda_{1}<\lambda_{2}\) implies \(u_{\lambda_{1}}^{\star}\leq u_{\lambda_{2}}^{\star}\), \(u_{\lambda_{1}}^{\star}\neq u_{\lambda_{2}}^{\star}\).
-
(3)
\(\lim_{\lambda\rightarrow0}\|u_{\lambda}^{\star}\|=0\), \(\lim_{\lambda\rightarrow+\infty}\|u_{\lambda}^{\star}\|=+\infty\).
In addition, for any initial \(u_{0}=I_{0^{+}}^{1}x_{ 0}\in Q_{e}\), we construct a successive sequence
by \(u_{k+1}(t)=I_{0^{+}}^{1}x_{k+1}(t) \), then
and we have \(\|u_{k}-u_{\lambda}^{\star}\|=\|I_{0^{+}}^{1}x_{ k}-I_{0^{+}}^{1}x_{\lambda}^{\star}\|\rightarrow0\) as \(k\rightarrow \infty\), and the convergence rate
r is a constant, \(0< r<1\), and dependent on \(u_{0}\). Moreover,
5 Conclusions
In this paper, some existence results are obtained for the case where the nonlinearity is allowed to be singular in regard to not only the time variable but also the space variable and the fractional orders are involved in the nonlinearity of the boundary value problem (1.1). Moreover, our equation system contains many types of equation systems because there are many parameters in our equation system and the uniqueness of the positive solution of equation (1.1) is dependent on λ. An iterative sequence and convergence rate are given which are important for practical applications. The method which we used for the analysis in this paper is the fixed point theorem of a mixed monotone operator in cone.
References
Agarwal, RP, O’Regan, D, Stanek, S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371, 57-68 (2010)
Stanek, S: The existence of positive solutions of singular fractional boundary value problems. Comput. Math. Appl. 59, 1379-1388 (2011)
Zhang, S: Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 59, 1300-1309 (2010)
Guo, L, Zhang, X: Existence of positive solutions for the singular fractional differential equations. J. Appl. Math. Comput. 44, 215-228 (2014)
Jiang, J, Liu, L, Wu, Y: Positive solutions for nonlinear fractional differential equations with boundary conditions involving Riemann-Stieltjes integrals. Abstr. Appl. Anal. 2012, Article ID 708192 (2012)
Zhang, X, Liu, L, Wu, Y, Lu, Y: The iterative solutions of nonlinear fractional differential equations. Appl. Math. Comput. 219, 4680-4691 (2013)
Zhang, X, Liu, L, Wu, Y, Wiwatanapataphee, B: The spectral analysis for a singular fractional differential equation with a signed measure. Appl. Math. Comput. 257, 252-263 (2015)
Jiang, J, Liu, L, Wu, Y: Positive solutions for second-order singular semipositone differential equations involving Stieltjes integral conditions. Abstr. Appl. Anal. 2012, Article ID 696283 (2012)
Zhang, X, Liu, L, Wiwatanapataphee, B, Wu, Y: The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition. Appl. Math. Comput. 235, 412-422 (2014)
Li, X, Liu, S, Jiang, W: Positive solutions for boundary value problem of nonlinear fractional functional differential equations. Appl. Math. Comput. 217, 9278-9285 (2011)
Xu, X, Jiang, D, Yuan, C: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. 71, 4676-4688 (2009)
Zhang, X, Liu, L, Wu, Y: The eigenvalue problem for a singular higher fractional differential equation involving fractional derivatives. Appl. Math. Comput. 218, 8526-8536 (2012)
Hao, X, Liu, L, Wu, Y: On positive solutions of an m-point nonhomogeneous singular boundary value problem. Nonlinear Anal. 73, 2532-2540 (2010)
Rehman, M, Khan, R: Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations. Appl. Math. Lett. 23, 1038-1044 (2010)
Avery, RI, Peterson, AC: Three positive fixed points of nonlinear operators on order Banach spaces. Comput. Math. Appl. 42, 313-322 (2001)
Goodrich, C: Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 61, 191-202 (2011)
Lakshmikantham, V, Vatsala, AS: Basic theory of fractional differential equations. Nonlinear Anal. 69, 2677-2682 (2008)
Zhang, X: Positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. Appl. Math. Lett. 39, 22-27 (2015)
Wei, Z: A class of fourth order singular boundary value problems. Appl. Math. Comput. 153, 865-884 (2004)
Zhao, Y, Sun, S, Han, Z, Zhang, M: Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl. Math. Comput. 217, 6950-6958 (2011)
Guo, D, Lakshmikantham, V: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11, 623-632 (1987)
Bai, Z, Lv, H: Positive solutions of boundary value problems of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 2761-2767 (2005)
Zhang, X, Liu, L: The uniqueness of positive solution for a singular fractional differential system involving derivatives. Commun. Nonlinear Sci. Numer. Simul. 18, 1400-1409 (2013)
Bai, Z, Sun, W: Existence and multiplicity of positive solutions for singular fractional boundary value problems. Appl. Math. Comput. 63, 1369-1381 (2012)
Zhang, X, Liu, L, Wu, Y: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26-33 (2014)
Wang, Y, Liu, L, Zhang, X, Wu, Y: Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection. Appl. Math. Comput. 258, 312-324 (2015)
Podlubny, I: Fractional Differential Equations. Math. Sci. Eng. Academic Press, San Diego (1999)
Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Kilbas, A, Trujillo, J: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Zhang, X: Positive solutions for singular higher-order fractional differential equations with nonlocal conditions. J. Appl. Math. Comput. (2015). doi:10.1007/s12190-014-0824-z
Guo, D, Cho, Y, Zhu, J: Partial Ordering Methods in Nonlinear Problems. Nova Science Publishers, New York (2004)
Cao, Z, Jiang, D, Yuan, C: Existence and uniqueness of solutions for singular integral equation. Positivity 12, 725-732 (2008)
Acknowledgements
The authors would like to thank the referee for very important comments, which improved the results and the quality of the paper. The authors were supported financially by the National Natural Science Foundation of China (11371221, 11571296).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Guo, L., Liu, L. & Wu, Y. Uniqueness of iterative positive solutions for the singular fractional differential equations with integral boundary conditions. Bound Value Probl 2016, 147 (2016). https://doi.org/10.1186/s13661-016-0652-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-016-0652-1