We are now ready to present the main contributions involving eight theorems. For simplicity, we will discuss in detail for Theorem 2.1, the remainder results are similar and their proofs are presented in the Appendix.
For the reader’s convenience, we now recall Mawhin’s coincidence degree [14], which our study is based upon.
Let X, Z be normed vector spaces, \(L: \operatorname{Dom}L\subset X\rightarrow Z\) be a linear mapping, \(N: X\rightarrow Z\) be a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if \(\operatorname{dim} \operatorname{Ker}L=\operatorname{codim} \operatorname{Im}L<+\infty\) and ImL is closed in Z. If L is a Fredholm mapping of index zero there exist continuous projectors \(P: X\rightarrow X\) and \(Q: Z\rightarrow Z\) such that \(\operatorname{Im}P=\operatorname{Ker}L\), \(\operatorname{Im}L=\operatorname{Ker}Q=\operatorname{Im}(I-Q)\). It follows that \(L|\operatorname{Dom}L\cap \operatorname{Ker}P: (I-P)X\rightarrow \operatorname{Im}L\) is invertible. We denote the inverse of that map by \(K_{P}\). If Ω is an open bounded subset of X, the mapping N will be called L-compact on Ω̄ if \(QN(\bar{\Omega})\) is bounded and \(K_{P}(I-Q)N: \bar{\Omega }\rightarrow X\) is compact. Since ImQ is isomorphic to KerL, there exists an isomorphism \(J: \operatorname{Im}Q\rightarrow \operatorname{Ker}L\).
Theorem A
(Continuation theorem)
Let
L
be a Fredholm mapping of index zero and let
N
be
L-compact on Ω̄. Suppose:
-
(i)
For each
\(\lambda\in(0,1)\), every solution
x
of
\(Lx=\lambda Nx\)
is such that
\(x\notin \partial\Omega\);
-
(ii)
\(QNx\neq0\)
for each
\(x\in\partial\Omega\cap \operatorname{Ker}L\);
-
(iii)
\(\deg\{JQN, \Omega\cap \operatorname{Ker}L, 0\}\neq0\).
Then the equation
\(Lx=Nx\)
has at least one solution lying in
\(\operatorname{Dom}L\cap\bar{\Omega}\).
For a bounded continuous function \(g(t)\) on \(\mathbb{R}\), we use the following notations:
$$ g^{U}=\max_{t\in[0,\omega]}g(t),\qquad g^{\ell}=\min _{t\in[0,\omega]}g(t), $$
where \(g(t)\) is s continuous function.
Theorem 2.1
If
\(h_{1}(t)\neq0\), \(h_{2}(t)\neq0\), \(h_{3}(t)\neq0\), and the following conditions are satisfied:
$$\begin{aligned} (\mathrm{H}1)&\quad r^{\ell}- \biggl(\frac{b_{1}}{m_{1}} \biggr)^{U}>2\sqrt{k^{U} h_{1}^{U}} , \\ (\mathrm{H}2)&\quad \biggl[ c_{1}^{\ell}-d_{1}^{U}- \biggl(\frac{b_{2}}{m_{2}} \biggr)^{U} \biggr] \frac{h_{1}^{\ell}}{r^{U}}-m_{1}^{U}h_{2}^{U}>2 \sqrt {m_{1}^{U} \biggl[ d_{1}^{U}+ \biggl(\frac{b_{2}}{m_{2}} \biggr)^{U} \biggr] \frac{r^{U} h_{2}^{U} }{k^{\ell}}} , \\ (\mathrm{H}3) &\quad \bigl(c_{2}^{\ell}-d_{2}^{U} \bigr) \frac{h_{2}^{\ell}}{c_{1}^{U}}-m_{2}^{U} h_{3}^{U}>2 \sqrt{\frac{r^{U} c_{1}^{U} m_{2}^{U} d_{2}^{U} h_{3}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}}} . \end{aligned}$$
Then system (1.3) has at least eight positive periodic solutions.
Proof
We make the change of variables
$$x(t)=\exp\bigl\{ u(t)\bigr\} , \qquad y(t)=\exp\bigl\{ v(t)\bigr\} ,\qquad z(t)=\exp \bigl\{ w(t)\bigr\} . $$
Then system (1.3) can be written as
$$ \textstyle\begin{cases} u^{\prime}(t)=r(t)-k(t)e^{u(t)}-\frac {b_{1}(t)e^{v(t)}}{m_{1}(t)e^{v(t)}+e^{u(t)}}-\frac{h_{1}(t)}{e^{u(t)}}, \\ v^{\prime}(t)=\frac{c_{1}(t)e^{u(t)}}{m_{1}(t)e^{v(t)}+e^{u(t)}}-d_{1}(t)-\frac {b_{2}(t)e^{w(t)}}{m_{2}(t)e^{w(t)}+e^{v(t)}}- \frac{h_{2}(t)}{e^{v(t)}}, \\ w^{\prime}(t)=\frac{c_{2}(t)e^{v(t)}}{m_{2}(t)e^{w(t)}+e^{v(t)}}-d_{2}(t)-\frac {h_{3}(t)}{e^{w(t)}}. \end{cases} $$
(2.1)
It is easy to see that if system (2.1) has an ω-periodic solution \((u^{*},v^{*},w^{*})^{T}\), then \((x^{*},y^{*}, z^{*})^{T}=(e^{u^{*}},e^{v^{*}},e^{w^{*}})^{T}\) is a positive ω-periodic solution of system (1.3). To this end, it suffices to prove that system (2.1) has at least eight ω-periodic solutions.
For \(\lambda\in(0,1)\), we consider the following system:
$$ \textstyle\begin{cases} u^{\prime}(t)=\lambda [ r(t)-k(t)e^{u(t)}-\frac{b_{1}(t)e^{v(t)}}{m_{1}(t)e^{v(t)}+e^{u(t)}}-\frac {h_{1}(t)}{e^{u(t)}} ] , \\ v^{\prime}(t)=\lambda [ \frac {c_{1}(t)e^{u(t)}}{m_{1}(t)e^{v(t)}+e^{u(t)}}-d_{1}(t)-\frac {b_{2}(t)e^{w(t)}}{m_{2}(t)e^{w(t)}+e^{v(t)}}- \frac{h_{2}(t)}{e^{v(t)}} ] , \\ w^{\prime}(t)=\lambda [ \frac {c_{2}(t)e^{v(t)}}{m_{2}(t)e^{w(t)}+e^{v(t)}}-d_{2}(t)-\frac {h_{3}(t)}{e^{w(t)}} ] . \end{cases} $$
(2.2)
Suppose that \((u(t),v(t),w(t))^{T}\) is an arbitrary ω-periodic solution of system (2.2) for a certain \(\lambda\in(0,1)\). Then we can choose \(\xi_{i}\), \(\eta_{i}\), \(i=1, 2, 3\) such that
$$\begin{aligned}& u(\xi_{1})=\max_{t\in [0,\omega]}\bigl\{ u(t)\bigr\} , \qquad u(\eta_{1})=\min_{t\in [0,\omega]}\bigl\{ u(t)\bigr\} , \end{aligned}$$
(2.3)
$$\begin{aligned}& v(\xi_{2})=\max_{t\in[0,\omega]}\bigl\{ v(t)\bigr\} ,\qquad v(\eta_{2})=\min_{t\in[0,\omega]}\bigl\{ v(t)\bigr\} , \end{aligned}$$
(2.4)
$$\begin{aligned}& w(\xi_{3})=\max_{t\in[0,\omega]}\bigl\{ w(t)\bigr\} ,\qquad w(\eta_{3})=\min_{t\in[0,\omega]}\bigl\{ w(t)\bigr\} . \end{aligned}$$
(2.5)
By the first equation of (2.2) and (2.3), we have
$$ r^{U}\geq r(\xi_{1})>k(\xi_{1})e^{u(\xi_{1})} \geq k^{\ell}e^{u(\xi_{1})}, $$
which reduces to
$$ u(\xi_{1})< \ln \biggl\{ \frac{r^{U}}{k^{\ell}} \biggr\} . $$
(2.6)
Again from the first equation of (2.2) and (2.3), it follows that
$$ h_{1}^{\ell}e^{-u(\eta_{1})}\leq h_{1}( \eta_{1})e^{-u(\eta_{1})}< r(\eta_{1})\leq r^{U}, $$
which implies
$$ u(\eta_{1})>\ln \biggl\{ \frac{ h_{1}^{\ell}}{r^{U}} \biggr\} . $$
(2.7)
From the second equation of (2.2) and (2.4), (2.6), we obtain
$$ d_{1}^{\ell}\leq d_{1}(\xi_{2})< \frac{c_{1}(\xi_{2}) e^{u(\xi_{2})}}{m_{1}(\xi_{2})e^{v(\xi_{2})}}< \frac{r^{U} c_{1}^{U}}{k^{\ell}m_{1}^{\ell}e^{v(\xi_{2})}}, $$
which reduces to
$$ v(\xi_{2})< \ln \biggl\{ \frac{r^{U} c_{1}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \biggr\} . $$
(2.8)
Moreover, from the second equation of (2.2) and (2.4), we get
$$ h_{2}^{\ell}e^{-v(\eta_{2})}\leq h_{2}( \eta_{2}) e^{-v(\eta_{2})}< c_{1}(\eta_{2})\leq c_{1}^{U}, $$
that is,
$$ v(\eta_{2})>\ln \biggl\{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \biggr\} . $$
(2.9)
From the third equation of (2.2), (2.5), and (2.8), we have
$$ d_{2}^{\ell}\leq d_{2}(\xi_{3})< \frac{c_{2}(\xi_{3})e^{v(\xi_{3})}}{m_{2}(\xi_{3})e^{w(\xi _{3})}}< \frac {r^{U}c_{1}^{U}c_{2}^{U}}{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}e^{w(\xi_{3})}}, $$
which implies
$$ w(\xi_{3})< \ln \biggl\{ \frac{r^{U}c_{1}^{U}c_{2}^{U}}{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \biggr\} . $$
(2.10)
It follows from the third equation of (2.2) and (2.5) that
$$ h_{3}^{\ell}e^{-w(\eta_{3})}\leq h_{3}( \eta_{3}) e^{-w(\eta_{3})}< c_{2}(\eta_{3})\leq c_{2}^{U}, $$
which reduces to
$$ w(\eta_{3})>\ln \biggl\{ \frac{h_{3}^{\ell}}{c_{2}^{U}} \biggr\} . $$
(2.11)
Furthermore, by the definition of \(\xi_{1}\) and the first equation of (2.2), we know
$$ r(\xi_{1})-k(\xi_{1})e^{u(\xi_{1})}-\frac{b_{1}(\xi_{1})e^{v(\xi _{1})}}{m_{1}(\xi _{1})e^{v(\xi_{1})} +e^{u(\xi_{1})}}- \frac{h_{1}(\xi_{1})}{e^{u(\xi_{1})}}=0. $$
Then
$$ k^{U} e^{2u(\xi_{1})}+ \biggl[ \biggl(\frac{b_{1}}{m_{1}} \biggr)^{U}-r^{\ell}\biggr] e^{u(\xi_{1})}+h_{1}^{U}>0, $$
which produces
$$ u(\xi_{1})>\ln A_{0}^{+} \quad \mbox{or}\quad u(\xi_{1})< \ln A_{0}^{-}, $$
(2.12)
where
$$ A_{0}^{\pm}=\frac{1}{2k^{U}} \biggl\{ \biggl[ r^{\ell}- \biggl(\frac{b_{1}}{m_{1}} \biggr)^{U} \biggr] \pm \sqrt{ \biggl[ r^{\ell}- \biggl(\frac{b_{1}}{m_{1}} \biggr)^{U} \biggr] ^{2} -4k^{U} h_{1}^{U}} \biggr\} . $$
By the definition of \(\eta_{1}\) and the parallel argument to (2.12), it is easy to prove that
$$ u(\eta_{1})>\ln A_{0}^{+} \quad \mbox{or}\quad u(\eta_{1})< \ln A_{0}^{-}. $$
(2.13)
Similarly, by the definition of \(\xi_{2}\) and the second equation of (2.2), we have
$$ d_{1}(\xi_{2})+\frac{b_{2}(\xi_{2})e^{w(\xi_{2})}}{m_{2}(\xi_{2})e^{w(\xi _{2})}+e^{v(\xi_{2})}}+ h_{2}( \xi_{2})e^{-v(\xi_{2})}-\frac{c_{1}(\xi_{2})e^{u(\xi_{2})}}{m_{1}(\xi _{2})e^{v(\xi_{2})}+e^{u(\xi_{2})}}=0. $$
Then
$$ m_{1}^{U} \biggl[ d_{1}^{U}+ \biggl( \frac{b_{2}}{m_{2}} \biggr)^{U} \biggr] e^{2v(\xi_{2})}- \biggl\{ \biggl[ c_{1}^{\ell}-d_{1}^{U}- \biggl( \frac{b_{2}}{m_{2}} \biggr)^{U} \biggr] \frac {h_{1}^{\ell}}{r^{U}}-h_{2}^{U}m_{1}^{U} \biggr\} e^{v(\xi_{2})}+\frac{r^{U} h_{2}^{U}}{k^{\ell}}>0. $$
Solving the inequality, we get
$$ v(\xi_{2})>\ln B_{0}^{+} \quad \mbox{or}\quad v(\xi_{2})< \ln B_{0}^{-}, $$
(2.14)
where
$$\begin{aligned} B_{0}^{\pm} =&\frac{1}{2m_{1}^{U} [ d_{1}^{U}+ (\frac{b_{2}}{m_{2}} )^{U} ] }\biggl\{ \biggl[ c_{1}^{\ell}-d_{1}^{U}- \biggl( \frac{b_{2}}{m_{2}} \biggr)^{U} \biggr] \frac{h_{1}^{\ell}}{r^{U}}-m_{1}^{U} h_{2}^{U} \\ &{}\pm\sqrt{ \biggl\{ \biggl[ c_{1}^{\ell}-d_{1}^{U}- \biggl(\frac{b_{2}}{m_{2}} \biggr)^{U} \biggr] \frac{h_{1}^{\ell}}{r^{U}}-m_{1}^{U}h_{2}^{U} \biggr\} ^{2}-4m_{1}^{U} \biggl[ d_{1}^{U}+ \biggl(\frac{b_{2}}{m_{2}} \biggr)^{U} \biggr] \frac{h_{2}^{U} r^{U}}{k^{\ell}}}\biggr\} . \end{aligned}$$
In the same way, we can obtain
$$ v(\eta_{2})>\ln B_{0}^{+} \quad \mbox{or}\quad v(\eta_{2})< \ln B_{0}^{-}. $$
(2.15)
Using the definition of \(\xi_{3}\) and the third equation of (2.2), we get
$$ d_{2}(\xi_{3})m_{2}(\xi_{2})e^{2w(\xi_{3})}+ \bigl[d_{2}(\xi_{3})-c_{2}(\xi_{3}) \bigr]e^{v(\xi _{3})+w(\xi_{3})}+h_{3}(\xi_{3})e^{v(\xi_{3})} +m_{2}(\xi_{3})h_{3}(\xi_{3})e^{w(\xi_{3})}=0, $$
which, combined with (2.8) and (2.9), yields
$$ d_{2}^{U} m_{2}^{U}e^{2w(\xi_{3})}+h_{3}^{U} \frac{r^{U} c_{1}^{U} }{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}}- \biggl[ \bigl(c_{2}^{\ell}-d_{2}^{U} \bigr)\frac{h_{2}^{\ell}}{c_{1}^{U}}-m_{2}^{U} h_{3}^{U} \biggr] e^{w(\xi_{3})}>0. $$
Solving the inequality, we have
$$ w(\xi_{3})>\ln C_{0}^{+} \quad \mbox{or} \quad w(\xi_{3})< \ln C_{0}^{-}, $$
(2.16)
where
$$\begin{aligned} C_{0}^{\pm} =&\frac{1}{2d_{2}^{U}m_{2}^{U}} \biggl\{ \bigl(c_{2}^{\ell}-d_{2}^{U}\bigr) \frac{h_{2}^{\ell}}{c_{1}^{U}}-m_{2}^{U} h_{3}^{U} \\ &{}\pm \sqrt{ \biggl[ \bigl(c_{2}^{\ell}-d_{2}^{U} \bigr) \frac{h_{2}^{\ell}}{c_{1}^{U}}-m_{2}^{U} h_{3}^{U} \biggr] ^{2}-4\frac{r^{U} c_{1}^{U} m_{2}^{U} d_{2}^{U} h_{3}^{U} }{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}}} \biggr\} . \end{aligned}$$
Likewise, it follows that
$$ w(\eta_{3})>\ln C_{0}^{+}\quad \mbox{or}\quad w(\eta_{3})< \ln C_{0}^{-}. $$
(2.17)
From (2.6), (2.7), (2.12), and (2.13), we obtain, for any \(t\in[0,\omega]\),
$$ \ln \biggl\{ \frac{h_{1}^{\ell}}{r^{U}} \biggr\} < u(t)< \ln A_{0}^{-} $$
(2.18)
or
$$ \ln A_{0}^{+}< u(t)< \ln \biggl\{ \frac{r^{U}}{k^{\ell}} \biggr\} . $$
(2.19)
From (2.8), (2.9), (2.14), and (2.15), we obtain, for any \(t\in[0,\omega]\),
$$ \ln \biggl\{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \biggr\} < v(t)< \ln B_{0}^{-} $$
(2.20)
or
$$ \ln B_{0}^{+}< v(t)< \ln \biggl\{ \frac{r^{U} c_{1}^{U} }{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \biggr\} . $$
(2.21)
From (2.10), (2.11), (2.16), and (2.17), we obtain, for any \(t\in[0,\omega]\),
$$ \ln \biggl\{ \frac{h_{3}^{U}}{c_{2}^{U}} \biggr\} < w(t)< \ln C_{0}^{-} $$
(2.22)
or
$$ \ln C_{0}^{+}< w(t)< \ln \biggl\{ \frac{r^{U} c_{1}^{U} c_{2}^{U} }{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \biggr\} . $$
(2.23)
It is easily seen that \(\ln A_{0}^{\pm}\), \(\ln B_{0}^{\pm}\), \(\ln C_{0}^{\pm}\), \(\ln \{ \frac{h_{1}^{\ell}}{r^{U}} \} \), \(\ln \{ \frac{r^{U}}{k^{\ell}} \}\), \(\ln \{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \}\), \(\ln \{ \frac{r^{U} c_{1}^{U} }{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \}\), \(\ln \{ \frac{h_{3}^{U}}{c_{2}^{U}} \}\), \(\ln \{ \frac{r^{U} c_{1}^{U}c_{2}^{U} }{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \} \) are independent of λ.
In the following, we will show that (i)-(iii) in Theorem A are satisfied.
First, let us take
$$ X=Z=\bigl\{ \bigl(u(t),v(t),w(t)\bigr)^{T}\in C\bigl( \mathbb{R}, \mathbb{R}^{3}\bigr)|u(t+\omega)=u(t),v(t+\omega )=v(t),w(t+\omega )=w(t)\bigr\} $$
and
$$ \bigl\Vert \bigl(u(t),v(t),w(t)\bigr)^{T}\bigr\Vert =\max _{t\in[0,\omega]}\bigl\vert u(t)\bigr\vert +\max_{t\in [0,\omega]} \bigl\vert v(t)\bigr\vert +\max_{t\in[0,\omega]}\bigl\vert w(t)\bigr\vert . $$
Then X and Z are Banach spaces equipped with the norm \(\|\cdot\|\).
Let
$$ L\left ( \textstyle\begin{array}{@{}c@{}} u(t)\\ v(t)\\ w(t) \end{array}\displaystyle \right )=\left ( \textstyle\begin{array}{@{}c@{}} u^{\prime}(t) \\ v^{\prime}(t)\\ w^{\prime}(t) \end{array}\displaystyle \right ), $$
where \(\operatorname{Dom}L=\{ (u,v,w)^{T}\in X:(u,v,w)^{T}\in C^{1}(\mathbb{R},\mathbb{R}^{3})\}\).
Define \(N:X\rightarrow X\) as follows:
$$N\left ( \textstyle\begin{array}{@{}c@{}} u(t)\\ v(t)\\ w(t) \end{array}\displaystyle \right )= \left ( \textstyle\begin{array}{@{}c@{}} r(t)-k(t)e^{u(t)}-\frac{b_{1}(t)e^{v(t)}}{m_{1}(t)e^{v(t)} +e^{u(t)}}-\frac{h(t)}{e^{u(t)}} \\ \frac{c_{1}(t)e^{u(t)}}{m_{1}(t)e^{v(t)}+e^{u(t)}}-d_{1}(t)-\frac{b_{2}(t)e^{w(t)}}{m_{2}(t)e^{w(t)}+e^{v(t)}}-\frac{h_{2}(t)}{e^{v(t)}} \\ \frac{c_{2}(t)e^{v(t)}}{m_{2}(t)e^{w(t)}+e^{v(t)}}-d_{2}(t)-\frac{h_{3}(t)}{e^{w(t)}} \end{array}\displaystyle \right ):=\left ( \textstyle\begin{array}{@{}c@{}} N_{1}(t)\\ N_{2}(t)\\ N_{3}(t) \end{array}\displaystyle \right ). $$
Define projectors P and Q by
$$P\left ( \textstyle\begin{array}{@{}c@{}} u(t)\\ v(t)\\ w(t) \end{array}\displaystyle \right )=Q\left ( \textstyle\begin{array}{@{}c@{}} u(t)\\ v(t)\\ w(t) \end{array}\displaystyle \right )=\left ( \textstyle\begin{array}{@{}c@{}}\frac{1}{\omega}\int_{0}^{\omega}u(t)\,dt\\ \frac{1}{\omega}\int_{0}^{\omega}v(t)\,dt\\ \frac{1}{\omega}\int _{0}^{\omega}w(t)\,dt \end{array}\displaystyle \right ), \quad \left ( \textstyle\begin{array}{@{}c@{}} u(t)\\ v(t)\\ w(t) \end{array}\displaystyle \right ) \in X. $$
Then it follows that \(\operatorname{Ker}L=\mathbb{R}^{3}\), \(\operatorname{Im} L=\operatorname{Ker} Q=\{(u(t),v(t))^{T}\in X :\bar{u}=\bar{v}=\bar{w}=0\}\) is closed in X, and \(\dim \operatorname{Ker} L=3=\operatorname{codim} \operatorname{Im} L\), and P, Q are continuous projectors such that
$$\operatorname{Im}P=\operatorname{Ker} L, \qquad \operatorname{Ker}Q= \operatorname{Im}L=\operatorname{Im}(I-Q). $$
Hence, L is a Fredholm operator of index zero. Furthermore, the generalized inverse (to L) \(K_{P}: \operatorname{Im} L\rightarrow \operatorname{Dom} L\cap \operatorname{Ker} P\) is given by
$$K_{P}\left ( \textstyle\begin{array}{@{}c@{}} u(t)\\ v(t)\\ w(t) \end{array}\displaystyle \right )=\left ( \textstyle\begin{array}{@{}c@{}}\int_{0}^{t} u(s)\,ds-\frac{1}{\omega}\int_{0}^{\omega}\int_{0}^{t} u(s)\,ds\,dt\\ \int_{0}^{t} v(s)\,ds-\frac{1}{\omega}\int_{0}^{\omega}\int_{0}^{t} v(s)\,ds\,dt\\ \int_{0}^{t} w(s)\,ds-\frac{1}{\omega}\int_{0}^{\omega}\int_{0}^{t} w(s)\,ds\,dt \end{array}\displaystyle \right ). $$
Then
$$QN\left ( \textstyle\begin{array}{@{}c@{}}u(t)\\ v(t)\\ w(t) \end{array}\displaystyle \right )= \left ( \textstyle\begin{array}{@{}c@{}}\frac{1}{\omega}\int_{0}^{\omega}N_{1}(s)\,ds\\ \frac{1}{\omega}\int_{0}^{\omega}N_{2}(s)\,ds \\ \frac{1}{\omega}\int_{o}^{\omega}N_{3}(s)\,ds \end{array}\displaystyle \right ) $$
and
$$K_{p}(I-Q)N\left ( \textstyle\begin{array}{@{}c@{}}u(t)\\ v(t)\\ w(t) \end{array}\displaystyle \right )= \left ( \textstyle\begin{array}{@{}c@{}}\int_{0}^{\omega}N_{1}(t)\,dt-\frac{1}{\omega}\int_{0}^{\omega}\int_{0}^{t} N_{1}(s)\,ds\,dt+(\frac{1}{2}-\frac{t}{\omega})\int_{0}^{\omega}N_{1}(s)\,ds\\ \int _{0}^{\omega}N_{2}(t)\,dt-\frac{1}{\omega}\int_{0}^{\omega}\int_{0}^{t} N_{2}(s)\,ds\,dt+(\frac{1}{2}-\frac{t}{\omega})\int_{0}^{\omega}N_{2}(s)\,ds\\ \int _{0}^{\omega}N_{3}(t)\,dt-\frac{1}{\omega}\int_{0}^{\omega}\int_{0}^{t} N_{3}(s)\,ds\,dt+(\frac{1}{2}-\frac{t}{\omega})\int_{0}^{\omega}N_{3}(s)\,ds \end{array}\displaystyle \right ). $$
Now, we reach the point where we search for appropriate open bounded subsets \(\Omega_{i}\), \(i=1,2,\ldots,8\), for the application of the continuation theorem. To this end, we take
$$\begin{aligned}& \Omega_{1}=\left \{ (u,v,w)^{T}\in X\left \vert \textstyle\begin{array}{l} u(t)\in (\ln \{ \frac{h_{1}^{\ell}}{r^{U}} \} ,\ln A_{0}^{-} )\\ v(t)\in (\ln \{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \} ,\ln B_{0}^{-} )\\ w(t)\in (\ln \{ \frac{h_{3}^{U}}{c_{2}^{U}} \} ,\ln C_{0}^{-} ) \end{array}\displaystyle \right . \right \} , \\& \Omega_{2}=\left \{ (u,v,w)^{T}\in X\left \vert \textstyle\begin{array}{l} u(t)\in (\ln \{ \frac{h_{1}^{\ell}}{r^{U}} \} ,\ln A_{0}^{-} )\\ v(t)\in (\ln \{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \} ,\ln B_{0}^{-} )\\ w(t)\in (\ln C_{0}^{+},\ln \{ \frac{r^{U} c_{1}^{U} c_{2}^{U}}{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \} ) \end{array}\displaystyle \right . \right \} , \\& \Omega_{3}=\left \{ (u,v,w)^{T}\in X\left \vert \textstyle\begin{array}{l} u(t)\in (\ln \{ \frac{h_{1}^{\ell}}{r^{U}} \} ,\ln A_{0}^{-} )\\ v(t)\in (\ln B_{0}^{+},\ln \{ \frac{r^{U} c_{1}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \} )\\ w(t)\in (\ln \{ \frac{h_{3}^{U}}{c_{2}^{U}} \} ,\ln C_{0}^{-} ) \end{array}\displaystyle \right . \right \} , \\& \Omega_{4}=\left \{ (u,v,w)^{T}\in X\left \vert \textstyle\begin{array}{l} u(t)\in (\ln \{ \frac{h_{1}^{\ell}}{r^{U}} \} ,\ln A_{0}^{-} )\\ v(t)\in (\ln B_{0}^{+},\ln \{ \frac{r^{U} c_{1}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \} )\\ w(t)\in (\ln C_{0}^{+},\ln \{ \frac{r^{U} c_{1}^{U} c_{2}^{U}}{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \} ) \end{array}\displaystyle \right . \right \} , \\& \Omega_{5}=\left \{ (u,v,w)^{T}\in X\left \vert \textstyle\begin{array}{l} u(t)\in (\ln A_{0}^{+},\ln \{ \frac{r^{U}}{k^{\ell}} \} )\\ v(t)\in (\ln \{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \} ,\ln B_{0}^{-} )\\ w(t)\in (\ln \{ \frac{h_{3}^{U}}{c_{2}^{U}} \} ,\ln C_{0}^{-} ) \end{array}\displaystyle \right . \right \} , \\& \Omega_{6}=\left \{ (u,v,w)^{T}\in X\left \vert \textstyle\begin{array}{l} u(t)\in (\ln A_{0}^{+},\ln \{ \frac{r^{U}}{k^{\ell}} \} )\\ v(t)\in (\ln \{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \} ,\ln B_{0}^{-} )\\ w(t)\in (\ln C_{0}^{+},\ln \{ \frac{r^{U} c_{1}^{U} c_{2}^{U}}{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \} ) \end{array}\displaystyle \right . \right \} , \\& \Omega_{7}=\left \{ (u,v,w)^{T}\in X\left \vert \textstyle\begin{array}{l} u(t)\in (\ln A_{0}^{+},\ln \{ \frac{r^{U}}{k^{\ell}} \} )\\ v(t)\in (\ln B_{0}^{+},\ln \{ \frac{r^{U} c_{1}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \} )\\ w(t)\in (\ln \{ \frac{h_{3}^{U}}{c_{2}^{U}} \} ,\ln C_{0}^{-} ) \end{array}\displaystyle \right . \right \} , \\& \Omega_{8}=\left \{ (u,v,w)^{T}\in X\left \vert \textstyle\begin{array}{l} u(t)\in (\ln A_{0}^{+},\ln \{ \frac{r^{U}}{k^{\ell}} \} )\\ v(t)\in (\ln B_{0}^{+},\ln \{ \frac{r^{U} c_{1}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \} )\\ w(t)\in (\ln C_{0}^{+},\ln \{ \frac{r^{U} c_{1}^{U} c_{2}^{U}}{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \} ) \end{array}\displaystyle \right . \right \} . \end{aligned}$$
Then \(\Omega_{i}\) (\(i=1,\ldots,8\)) are bounded open subset of X, \(\Omega_{i}\cap\Omega_{j}=\phi\), \(i\neq j\), \(i,j=1,\ldots,8\). Hence \(\Omega_{i}\) (\(i=1,\ldots,8\)) satisfies the requirement (i) in Theorem A.
Second, we will prove that (ii) holds. If it is not true, then when \((u,v,w)^{T} \in\partial\Omega_{i}\cap \operatorname{Ker} L=\partial\Omega_{i}\cap \mathbb{R}^{3}\), \(i=1,\ldots,8\), \(QNx\neq0\). There exist three points \(t_{1},t_{2},t_{3}\in[0,\omega]\) such that
$$ \textstyle\begin{cases} r(t_{1})-k(t_{1})e^{u}-\frac{b_{1}(t_{1})e^{v}}{m_{1}(t_{1})e^{v}+e^{u}}-\frac {h_{1}(t_{1})}{e^{u}}=0, \\ \frac{c_{1}(t_{2})e^{u}}{m_{1}(t_{2})e^{v}+e^{u}}-d_{1}(t_{2})- \frac{b_{2}(t_{2})e^{w}}{m_{2}(t_{2})e^{w}+e^{v}}- \frac{h_{2}(t_{2})}{e^{v}}=0, \\ \frac{c_{2}(t_{3})e^{v}}{m_{2}(t_{3})e^{w}+e^{v}}-d_{2}(t_{3})-\frac{h_{3}(t_{3})}{e^{w}}=0. \end{cases} $$
From the above arguments, we have
$$\begin{aligned}& \ln \biggl\{ \frac{h_{1}^{\ell}}{r^{U}} \biggr\} < u(t)< \ln A_{0}^{-} \quad \mbox{or}\quad \ln A_{0}^{+}< u(t)< \ln \biggl\{ \frac{r^{U}}{k^{\ell}} \biggr\} , \\& \ln \biggl\{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \biggr\} < v(t)< \ln B_{0}^{-} \quad \mbox{or} \quad \ln B_{0}^{+}< v(t)< \ln \biggl\{ \frac{r^{U} c_{1}^{U} }{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \biggr\} , \\& \ln \biggl\{ \frac{h_{3}^{U}}{c_{2}^{U}} \biggr\} < w(t)< \ln C_{0}^{-} \quad \mbox{or} \quad \ln C_{0}^{+}< w(t)< \ln \biggl\{ \frac{r^{U} c_{1}^{U} c_{2}^{U} }{ k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \biggr\} . \end{aligned}$$
Then we know \((u,v,w)^{T}\) belongs to one of \(\Omega_{i}\cap\mathbb{R}^{3}\), \(i=1,\ldots,8\). This leads to a contradiction.
Finally, we show that (iii) in Theorem A is satisfied. We proceed in our proofs by two steps.
On one hand, we show that, for \(i=1,\ldots,8\),
$$\begin{aligned} \deg\bigl\{ JQNx,\Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} =& \deg\bigl\{ \bigl(N_{1}(t_{1}),N_{2}(t_{2}),N_{3}(t_{3}) \bigr)^{T},\Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} \\ =& \deg\bigl\{ (\widehat{N}_{1},\widehat{N}_{2},\widehat {N}_{3})^{T},\Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} . \end{aligned}$$
(2.24)
Here
$$\left [ \textstyle\begin{array}{@{}c@{}} \widehat{N}_{1}\\ \widehat{N}_{2}\\ \widehat{N}_{3} \end{array}\displaystyle \right ] = \left [ \textstyle\begin{array}{@{}c@{}} \hat{r}-\hat{k}e^{u}-\hat{h}_{1} e^{-u}\\ (\hat{c}_{1}-\hat{d}_{1} )e^{u+v}-\widehat {m}_{1}\hat{d}_{1} e^{2v}-\hat{h}_{2} e^{u}-\widehat{m}_{1}\hat{h}_{2} e^{v}\\ (\hat{c}_{2}-\hat{d}_{2}) e^{v+w}-\hat{h}_{3}(\widehat{m}_{2} e^{w}+e^{v})-\widehat{m}_{2}\hat{d}_{2} e^{2w} \end{array}\displaystyle \right ] , $$
and r̂, k̂, \(\hat{b}_{i}\), \(\hat{c}_{i}\), \(\widehat {m}_{i}\) (\(i=1,2\)), \(\hat{h}_{j}\), \(j=1,2,3\) are some chosen positive constants satisfying the following conditions:
$$\begin{aligned}& \hat{r}k^{\ell}< r^{U} \hat{k},\qquad \hat{r}h_{1}^{\ell}< r^{U} \hat{h}_{1},\qquad \hat{c}_{1}m_{1}^{\ell}d_{1}^{\ell}< c_{1}^{U}\widehat{m}_{1} \hat{d}_{1}, \\& \hat{c}_{1} h_{2}^{\ell}< c_{1}^{U} \hat{h}_{2},\qquad \hat{c}_{2}m_{2}^{\ell}d_{2}^{\ell}< c_{2}^{U}\widehat{m}_{2} \hat{d}_{2},\qquad \hat{c}_{2} h_{3}^{\ell}< c_{2}^{U} \hat{h}_{3}, \\& A_{0}^{+}< u^{+}\triangleq\frac{\hat{r}+\sqrt{\hat{r}^{2}-4\hat {k}\hat{h}_{1}}}{2\hat{k}}, \qquad A_{0}^{-}>u^{-}\triangleq\frac{\hat{r}-\sqrt{\hat{r}^{2}-4\hat {k}\hat{h}_{1}}}{2\hat{k}}, \\& B_{0}^{+}< v^{+} \\& \hphantom{B_{0}^{+}} \triangleq\frac{1}{2\widehat{m}_{1}\hat{d}_{1}} \biggl[ ( \hat{c}_{1}-\hat{d}_{1})\frac{h_{1}^{\ell}}{r^{U}}-\widehat {m}_{1}\hat{h}_{2}+ \sqrt{ \biggl[ ( \hat{c}_{1}-\hat{d}_{1})\frac{h_{1}^{\ell}}{r^{U}}-\widehat {m}_{1}\hat{h}_{2} \biggr] ^{2}-\frac{4r^{U}\widehat{m}_{1} \hat{d}_{1}\hat{h}_{2}}{k^{\ell}}} \biggr] , \\& B_{0}^{-}>v^{-} \\& \hphantom{B_{0}^{-}}\triangleq\frac{1}{2\widehat{m}_{1}\hat{d}_{1}} \biggl[ ( \hat{c}_{1}-\hat{d}_{1})\frac{h_{1}^{\ell}}{r^{U}}-\widehat {m}_{1}\hat{h}_{2}- \sqrt{ \biggl[ ( \hat{c}_{1}-\hat{d}_{1})\frac{h_{1}^{\ell}}{r^{U}}-\widehat {m}_{1}\hat{h}_{2} \biggr] ^{2}-\frac{4r^{U}\widehat{m}_{1} \hat{d}_{1}\hat{h}_{2}}{k^{\ell}}} \biggr] , \\& C_{0}^{+}< w^{+} \\& \hphantom{C_{0}^{+}}\triangleq\frac{1}{2\widehat{m}_{2}\hat{d}_{2}} \biggl[ ( \hat{c}_{2}-\hat{d}_{2})\frac{h_{2}^{\ell}}{c_{1}^{U}}-\widehat {m}_{2}\hat{h}_{3}+ \sqrt{ \biggl[ ( \hat{c}_{2}-\hat{d}_{2})\frac{h_{2}^{\ell}}{c_{1}^{U}}- \widehat{m}_{2}\hat{h}_{3} \biggr] ^{2}- \frac{4r^{U}c_{1}^{U}\widehat{m}_{2} \hat{d}_{2}\hat{h}_{3}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}}} \biggr] , \\& C_{0}^{-}>w^{-} \\& \hphantom{C_{0}^{-}}\triangleq\frac{1}{2\widehat{m}_{2}\hat{d}_{2}} \biggl[ ( \hat{c}_{2}-\hat{d}_{2})\frac{h_{2}^{\ell}}{c_{1}^{U}}-\widehat {m}_{2}\hat{h}_{3}- \sqrt{ \biggl[ ( \hat{c}_{2}-\hat{d}_{2})\frac{h_{2}^{\ell}}{c_{1}^{U}}- \widehat{m}_{2}\hat{h}_{3} \biggr] ^{2}- \frac{4r^{U}c_{1}^{U}\widehat{m}_{2} \hat{d}_{2}\hat{h}_{3}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}}} \biggr] . \end{aligned}$$
(2.25)
To this end, define a mapping \(\phi_{1}:\operatorname{Dom} L\times[0,1]\rightarrow X\) by
$$ \phi_{1}(u,v,w,\mu_{1})=\mu_{1}\left [ \textstyle\begin{array}{@{}c@{}} N_{1}(t_{1})\\ N_{2}(t_{2})\\ N_{3}(t_{3}) \end{array}\displaystyle \right ] +(1-\mu_{1})\left [ \textstyle\begin{array}{@{}c@{}} \widehat{N}_{1}\\ \widehat{N}_{2}\\ \widehat{N}_{3} \end{array}\displaystyle \right ], $$
where \(\mu_{1}\in[0,1]\) is a parameter.
Now we show that \(\phi_{1}(u,v,w,\mu_{1})\neq0\), \((u,v,w)^{T}\in\partial \Omega_{i}\cap \operatorname{Ker} L=\partial\Omega_{i}\cap \mathbb{R}^{3}\), \(i=1,\ldots,8\). If it is not the case, then when \((u,v,w)^{T}\in\partial\Omega_{i}\cap \operatorname{Ker} L=\partial\Omega_{i}\cap \mathbb{R}^{3}\), \(i=1,\ldots,8\), \(\phi_{1}(u,v,w,\mu_{1})=0\). Therefore, the constant vector \((u,v,w)^{T}\in\mathbb{R}^{3}\) satisfies
$$\begin{aligned}& \mu_{1} \biggl[ r(t_{1})-k(t_{1})e^{u}- \frac{b_{1}(t_{1})e^{v}}{m_{1}(t_{1})e^{v}+e^{u}}-\frac {h_{1}(t_{1})}{e^{u}} \biggr] +(1-\mu_{1}) \bigl( \hat{r}-\hat{k}e^{u}-\hat{h}_{1} e^{-u}\bigr)=0, \end{aligned}$$
(2.26)
$$\begin{aligned}& \mu_{1} \biggl[ \frac{c_{1}(t_{2})e^{u}}{m_{1}(t_{2})e^{v}+e^{u}}-d_{1}(t_{2})- \frac {b_{2}(t_{2})e^{w}}{m_{2}(t_{2})e^{w}+e^{v}}- \frac{h_{2}(t_{2})}{e^{v}} \biggr] + (1-\mu_{1}) \\& \quad {}\times \bigl[ (\hat{c}_{1}-\hat{d}_{1}) e^{u+v}-\widehat{m}_{1}\hat{d}_{1} e^{2v}- \hat{h}_{2} e^{u}-\widehat{m}_{1} \hat{h}_{2} e^{v} \bigr] =0, \end{aligned}$$
(2.27)
$$\begin{aligned}& \mu_{1} \biggl[ \frac {c_{2}(t_{3})e^{v}}{m_{2}(t_{3})e^{w}+e^{v}}-d_{2}(t_{3})- \frac {h_{3}(t_{3})}{e^{w}} \biggr] +(1-\mu_{1}) \\& \quad {} \times\bigl[(\hat{c}_{2}-\hat{d}_{2}) e^{v+w}-\hat{h}_{3}\bigl(\widehat{m}_{2} e^{w}+e^{v}\bigr)-\widehat{m}_{2} \hat{d}_{2} e^{2w}\bigr]=0. \end{aligned}$$
(2.28)
From (2.26)-(2.28), we make the following nine claims.
(1) \(u<\ln \{ \frac{r^{U}}{k^{\ell}} \} \). Otherwise, \(u\geq\ln \{ \frac{r^{U}}{k^{\ell}} \} \). Then
$$\begin{aligned}& \mu_{1} \biggl[ r(t_{1})-k(t_{1})e^{u}- \frac{b_{1}(t_{1})e^{v}}{m_{1}(t_{1})e^{v}+e^{u}}-\frac {h_{1}(t_{1})}{e^{u}} \biggr] +(1-\mu_{1}) \bigl( \hat{r}-\hat{k}e^{u}-\hat{h}_{1} e^{-u}\bigr) \\& \quad < \mu_{1}\bigl(r^{U}-k^{\ell}e^{u} \bigr)+(1-\mu_{1}) \bigl(\hat{r}-\hat {k}e^{u}\bigr) \\& \quad < \mu_{1} \biggl(r^{U}-k^{\ell}\frac{r^{U}}{k^{\ell}} \biggr)+(1-\mu _{1}) \biggl( \hat{r}-\hat{k} \frac{r^{U}}{k^{\ell}} \biggr) \\& \quad < 0. \end{aligned}$$
(2) \(u>\ln \{ \frac{h_{1}^{\ell}}{r^{U}} \} \). Otherwise, \(u\leq\ln \{ \frac{h_{1}^{\ell}}{r^{U}} \} \). Then
$$\begin{aligned}& \mu_{1} \biggl[ r(t_{1})-k(t_{1})e^{u}- \frac{b_{1}(t_{1})e^{v}}{m_{1}(t_{1})e^{v}+e^{u}}-\frac {h_{1}(t_{1})}{e^{u}} \biggr] +(1-\mu_{1}) \bigl( \hat{r}-\hat{k}e^{u}-\hat{h}_{1} e^{-u}\bigr) \\& \quad < \mu_{1} \biggl(r^{U}-h_{1}^{\ell}\frac{r^{U}}{h_{1}^{\ell}} \biggr)+(1-\mu_{1}) \biggl( \hat{r}- \hat{h}_{1}\frac{r^{U}}{h_{1}^{\ell}} \biggr) \\& \quad < 0. \end{aligned}$$
(3) \(u>\ln A_{0}^{+}\) or \(u<\ln A_{0}^{-}\). Otherwise, \(\ln A_{0}^{-}\leq u\leq\ln A_{0}^{+}\). Then
$$\begin{aligned}& \mu_{1} \biggl[ r(t_{1})-k(t_{1})e^{u}- \frac{b_{1}(t_{1})e^{v}}{m_{1}(t_{1})e^{v}+e^{u}}-\frac {h_{1}(t_{1})}{e^{u}} \biggr] +(1-\mu_{1}) \bigl( \hat{r}-\hat{k}e^{u}-\hat{h}_{1} e^{-u}\bigr) \\& \quad =\frac{-\mu_{1}}{e^{u}} \biggl[ k(t_{1}) e^{2u}+ \frac{b_{1}(t_{1})e^{v+u}}{m_{1}(t_{1})e^{v}+e^{u}}-r(t_{1}) e^{u}+h_{1}(t_{1}) \biggr] \\& \qquad {}-\frac{1-\mu_{1}}{e^{u}}\bigl(\hat{k}e^{2u}-\hat {r} e^{u} +\hat{h}_{1}\bigr) \\& \quad >\frac{-\mu_{1}}{e^{u}} \biggl[ k^{U} e^{2u}+ \biggl( \frac{b_{1}}{m_{1}} \biggr)^{U} e^{u}-r^{\ell}e^{u}+h_{1}^{U} \biggr] -\frac{1-\mu_{1}}{e^{u}}\bigl( \hat{k}e^{2u}-\hat {r} e^{u} +\hat{h}_{1}\bigr) \\& \quad >-\frac{1-\mu_{1}}{e^{u}}\bigl(\hat{k}e^{2u}-\hat{r} e^{u} +\hat{h}_{1}\bigr) \\& \quad >0. \end{aligned}$$
Clearly, the above three inequalities contradict (2.26). Hence Claims 1-3 hold.
(4) \(v< \{ \frac{r^{U}c_{1}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \} \). Otherwise, \(v\geq \{ \frac{r^{U}c_{1}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \} \). Then
$$\begin{aligned}& \mu_{1} \biggl[ \frac{c_{1}(t_{2})e^{u}}{m_{1}(t_{2})e^{v}+e^{u}}-d_{1}(t_{2})- \frac {b_{2}(t_{2})e^{w}}{m_{2}(t_{2})e^{w}+e^{v}}- \frac{h_{2}(t_{2})}{e^{v}} \biggr] \\& \qquad {}+(1-\mu_{1})\times \bigl[ (\hat{c}_{1}- \hat{d}_{1}) e^{u+v}-\widehat{m}_{1} \hat{d}_{1} e^{2v}-\hat{h}_{2} e^{u}- \widehat{m}_{1}\hat{h}_{2} e^{v} \bigr] \\& \quad < \mu_{1} \biggl[ -d_{1}^{\ell}+ \frac{c_{1}^{U} e^{u}}{m_{1}^{\ell}e^{v}} \biggr] +(1-\mu_{1})e^{2v} \biggl( \frac{\hat{c}_{1} e^{u}}{e^{v}}-\widehat{m}_{1}\hat{d}_{1} \biggr) \\& \quad < (1-\mu_{1})e^{2v} \biggl(\frac{\hat{c}_{1} r^{U} k^{\ell}m_{1}^{\ell}d_{1}^{\ell}}{k^{\ell}r^{U} c_{1}^{U}}- \widehat{m}_{1}\hat{d}_{1} \biggr) \\& \quad < 0. \end{aligned}$$
(5) \(v>\ln \{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \} \). Otherwise, \(v\leq\ln \{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \} \). Then
$$\begin{aligned}& \mu_{1} \biggl[ \frac{c_{1}(t_{2})e^{u}}{m_{1}(t_{2})e^{v}+e^{u}}-d_{1}(t_{2})- \frac {b_{2}(t_{2})e^{w}}{m_{2}(t_{2})e^{w}+e^{v}}- \frac{h_{2}(t_{2})}{e^{v}} \biggr] \\& \qquad {}+ (1-\mu_{1})\times \bigl[ (\hat{c}_{1}- \hat{d}_{1}) e^{u+v}-\widehat{m}_{1} \hat{d}_{1} e^{2v}-\hat{h}_{2} e^{u}- \widehat{m}_{1}\hat{h}_{2} e^{v} \bigr] \\& \quad < \mu_{1} \biggl[ c_{1}^{U}-h_{2}^{\ell}\frac{c_{1}^{U}}{h_{2}^{\ell}} \biggr] +(1-\mu_{1}) \bigl(\widehat{m}_{1} e^{v}+e^{u}\bigr)e^{v} \biggl[ \frac{\hat{c}_{1} e^{u}}{\widehat{m}_{1} e^{v}+e^{u}}- \frac{\hat{h}_{2}}{e^{v}} \biggr] \\& \quad < (1-\mu_{1}) \bigl(\widehat{m}_{1} e^{v}+e^{u}\bigr)e^{v} \biggl[ \hat{c}_{1}-\hat{h}_{2}\frac{c_{1}^{U}}{h_{2}^{\ell}} \biggr] \\& \quad < 0. \end{aligned}$$
(6) \(v>\ln B_{0}^{+}\) or \(v<\ln B_{0}^{-}\). Otherwise, \(\ln B_{0}^{-}\leq v\leq\ln B_{0}^{+}\). Then
$$\begin{aligned}& \mu_{1} \biggl[ \frac{c_{1}(t_{2})e^{u}}{m_{1}(t_{2})e^{v}+e^{u}}-d_{1}(t_{2})- \frac {b_{2}(t_{2})e^{w}}{m_{2}(t_{2})e^{w}+e^{v}}- \frac{h_{2}(t_{2})}{e^{v}} \biggr] \\& \qquad {}+ (1-\mu_{1})\times \bigl[ (\hat{c}_{1}- \hat{d}_{1}) e^{u+v}-\widehat{m}_{1} \hat{d}_{1} e^{2v}-\hat{h}_{2} e^{u}- \widehat{m}_{1}\hat{h}_{2} e^{v} \bigr] \\& \quad >\frac{-\mu_{1}}{e^{v}(m_{1}^{U} e^{v}+e^{u})} \biggl\{ m_{1}^{U} \biggl[ d_{1}^{U}+ \biggl(\frac{b_{2}}{m_{2}} \biggr)^{U} \biggr] e^{2v} \\& \qquad {}- \biggl[ \biggl(c_{1}^{\ell}-d_{1}^{U}- \biggl(\frac{b_{2}}{m_{2}} \biggr)^{U} \biggr)\frac{h_{1}^{\ell}}{r^{U}}-h_{2}^{U}m_{1}^{U} \biggr] e^{v}+\frac{h_{2}^{U}r^{U}}{k^{\ell}} \biggr\} \\& \qquad {}-(1-\mu_{1}) \biggl\{ \widehat{m}_{1} \hat{d}_{1} e^{2v}- \biggl[ (\hat{c}_{1}- \hat{d}_{1})\frac{h_{1}^{\ell}}{r^{U}}-\widehat {m}_{1} \hat{h}_{2} \biggr] e^{v}+\hat{h}_{2} \frac{r^{U}}{k^{\ell}} \biggr\} \\& \quad >0. \end{aligned}$$
It is easy to see the above three inequalities contradict (2.27). Therefore, Claims 4-6 hold.
(7) \(w<\ln \{ \frac{r^{U} c_{1}^{U}c_{2}^{U} }{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \} \). Otherwise, \(w\geq\ln \{ \frac{r^{U} c_{1}^{U}c_{2}^{U} }{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \} \). Then
$$\begin{aligned}& \mu_{1} \biggl[ \frac {c_{2}(t_{3})e^{v}}{m_{2}(t_{3})e^{w}+e^{v}}-d_{2}(t_{3})- \frac {h_{3}(t_{3})}{e^{w}} \biggr] +(1-\mu_{1}) \\& \qquad {}\times\bigl[(\hat{c}_{2}-\hat{d}_{2}) e^{v+w}-\hat{h}_{3}\bigl(\widehat{m}_{2} e^{w}+e^{v}\bigr)-\widehat{m}_{2} \hat{d}_{2} e^{2w}\bigr] \\& \quad < \mu_{1} \biggl[ \frac{r^{U}c_{1}^{U}c_{2}^{U} }{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}e^{w}}-d_{2}^{\ell}\biggr] +(1-\mu_{1})e ^{2w} \biggl[ \frac{(\hat{c}_{2}-\hat{d}_{2})e^{v}}{e^{w}}- \widehat{m}_{2}\hat {d}_{2} \biggr] \\& \quad < (1-\mu_{1})e ^{2w} \biggl[ \frac{r^{U}c_{1}^{U} \hat {c}_{2}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}e^{w}}- \widehat{m}_{2}\hat{d}_{2} \biggr] \\& \quad < 0. \end{aligned}$$
(8) \(w>\ln \{ \frac{h_{3}^{\ell}}{c_{2}^{U}} \} \). Otherwise, \(w\leq\ln \{ \frac{h_{3}^{\ell}}{c_{2}^{U}} \} \). Then
$$\begin{aligned}& \mu_{1} \biggl[ \frac {c_{2}(t_{3})e^{v}}{m_{2}(t_{3})e^{w}+e^{v}}-d_{2}(t_{3})- \frac {h_{3}(t_{3})}{e^{w}} \biggr] +(1-\mu_{1}) \\& \qquad {}\times\bigl[(\hat{c}_{2}-\hat{d}_{2}) e^{v+w}-\hat{h}_{3}\bigl(\widehat{m}_{2} e^{w}+e^{v}\bigr)-\widehat{m}_{2} \hat{d}_{2} e^{2w}\bigr] \\& \quad < \mu_{1} \biggl[ c_{2}^{U}-h_{3}^{\ell}\frac{c_{2}^{U}}{h_{3}^{\ell}} \biggr] +(1-\mu_{1}) \bigl(\widehat{m}_{2} e^{w}+e^{v}\bigr)e^{w} \biggl[ \frac{\hat{c}_{2} e^{v}}{\widehat{m}_{2} e^{w}+e^{v}}- \frac{\hat{h}_{3}}{e^{w}} \biggr] \\& \quad < (1-\mu_{1}) \bigl(\widehat{m}_{2} e^{w}+e^{v}\bigr)e^{w} \biggl[ \hat{c}_{2}-\hat{h}_{3}\frac{c_{2}^{U}}{h_{3}^{\ell}} \biggr] \\& \quad < 0. \end{aligned}$$
(9) \(w>\ln C_{0}^{+}\) or \(w<\ln C_{0}^{-}\). Otherwise, \(\ln C_{0}^{-}\leq w\leq\ln C_{0}^{+}\). Then
$$\begin{aligned}& \mu_{1} \biggl[ \frac {c_{2}(t_{3})e^{v}}{m_{2}(t_{3})e^{w}+e^{v}}-d_{2}(t_{3})- \frac {h_{3}(t_{3})}{e^{w}} \biggr] +(1-\mu_{1}) \\& \qquad {}\times\bigl[(\hat{c}_{2}-\hat{d}_{2}) e^{v+w}-\hat{h}_{3}\bigl(\widehat{m}_{2} e^{w}+e^{v}\bigr)-\widehat{m}_{2} \hat{d}_{2} e^{2w}\bigr] \\& \quad >\frac{-\mu_{1}}{(m_{2}(t_{3})e^{w}+e^{v})e^{w}} \biggl[ d_{2}^{U} m_{2}^{U}e^{2w}+h_{3}^{U} \frac{r^{U}c_{1}^{U} }{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}}- \biggl((c_{2}-d_{2})^{\ell}\frac{h_{2}^{\ell}}{c_{1}^{U}}-m_{2}^{U} h_{3}^{U} \biggr) e^{w} \biggr] \\& \qquad {}-(1-\mu_{1}) \biggl\{ \widehat{m}_{2}\hat{d}_{2} e^{2w}- \biggl[ (\hat{c}_{2}-\hat{d}_{2}) \frac{h_{2}^{\ell}}{c_{1}^{U}}-\widehat{m}_{2}\hat{h}_{3} \biggr] e^{w}+\hat{h}_{3}\frac{r^{U}c_{1}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \biggr\} \\& \quad > -(1-\mu_{1}) \biggl\{ \widehat{m}_{2} \hat{d}_{2} e^{2w}- \biggl[ (\hat{c}_{2}- \hat{d}_{2})\frac{h_{2}^{\ell}}{c_{1}^{U}}-\widehat{m}_{2} \hat{h}_{3} \biggr] e^{w}+\hat{h}_{3} \frac{r^{U}c_{1}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \biggr\} \\& \quad >0. \end{aligned}$$
Obviously, the above three inequalities contradict (2.28). Hence Claims 7-9 hold.
From the above arguments (1)-(9), we have
$$\begin{aligned}& \ln \biggl\{ \frac{h_{1}^{\ell}}{r^{U}} \biggr\} < u< \ln A_{0}^{-} \quad \mbox{or}\quad \ln A_{0}^{+}< u< \ln \biggl\{ \frac{r^{U}}{k^{\ell}} \biggr\} , \\& \ln \biggl\{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \biggr\} < v< \ln B_{0}^{-} \quad \mbox{or}\quad \ln B_{0}^{+}< v< \ln \biggl\{ \frac{r^{U} c_{1}^{U} }{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \biggr\} , \\& \ln \biggl\{ \frac{h_{3}^{U}}{c_{2}^{U}} \biggr\} < w< \ln C_{0}^{-} \quad \mbox{or} \quad \ln C_{0}^{+}< w< \ln \biggl\{ \frac{r^{U}c_{1}^{U}c_{2}^{U} }{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \biggr\} . \end{aligned}$$
These indicate that \((u,v,w)^{T}\) belongs to one of \(\Omega_{i}\cap\mathbb{R}^{3}\), \(i=1,\ldots,8\). This is a contradiction.
On the other hand, we prove that, for \(i=1,\ldots,8\),
$$\begin{aligned}& \deg\bigl\{ (\widehat{N}_{1},\widehat{N}_{2}, \widehat{N}_{3})^{T},\Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} \\& \quad =\deg\bigl\{ \bigl[\hat{r}-\hat{k}e^{u}-\hat{h}_{1} e^{-u}, \hat{c}_{1} e^{u+v}-\widehat{m}_{1} \hat{d}_{1} e^{2v}-\hat{h}_{2} e^{u}, \hat{c}_{2} e^{v+w}-\widehat{m}_{2} \hat{d}_{2} e^{2w}-\hat{h}_{3} e^{v} \bigr]^{T}, \\& \qquad \Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} . \end{aligned}$$
(2.29)
To this end, we define a mapping \(\psi_{2}:\operatorname{Dom} L\times[0,1]\rightarrow X\) by
$$ \psi_{2}(u,v,w,\mu_{2})=\left [ \textstyle\begin{array}{@{}c@{}} \hat{r}-\hat{k}e^{u}-\hat{h}_{1}r^{-u} \\ \hat{c}_{1} e^{u+v}-\widehat{m}_{1}\hat{d}_{1} e^{2v}-\hat{h}_{2}e^{u}-\mu_{2}(\widehat{m}_{1}\hat{h}_{2} e^{v}+\hat{d}_{1} e^{u+v}) \\ \hat{c}_{2} e^{v+w}-\widehat{m}_{2}\hat{d}_{2} e^{2w}-\hat{h}_{3}e^{v}-\mu_{2}(\widehat{m}_{2}\hat{h}_{3} e^{w}+\hat{d}_{2} e^{v+w}) \end{array}\displaystyle \right ], $$
where \(\mu_{2}\in[0,1]\) is a parameter. We prove that when \((u,v,w)^{T}\in\partial\Omega_{i}\cap \operatorname{Ker} L=\partial\Omega_{i}\cap\mathbb{R}^{3}\), \(i=1,\ldots,8\), \(\psi _{2}(u,v,w,\mu_{2})\neq(0,0,0)^{T}\). If it is not true, then the constant vector \((u,v,w)^{T}\in \partial\Omega_{i}\cap\mathbb{R}^{3}\), \(i=1,\ldots,8\) satisfies the following equalities:
$$ \textstyle\begin{cases} \hat{r}-\hat{k}e^{u}-\hat{h}_{1} e^{-u}=0, \\ \hat{c}_{1} e^{u+v}-\widehat{m}_{1}\hat{d}_{1} e^{2v}-\hat{h}_{2}e^{u}-\mu_{2}(\widehat{m}_{1}\hat{h}_{2} e^{v}+\hat{d}_{1} e^{u+v})=0, \\ \hat{c}_{2} e^{v+w}-\widehat{m}_{2}\hat{d}_{2} e^{2w}-\hat{h}_{3}e^{v}-\mu_{2}(\widehat{m}_{2}\hat{h}_{3} e^{w}+\hat{d}_{2} e^{v+w})=0. \end{cases} $$
By similar arguments to the above estimation of \((u,v,w)^{T}\), we can obtain
$$\begin{aligned}& \ln \biggl\{ \frac{\hat{h}_{1}}{\hat {r}} \biggr\} < u< \ln u^{-} \quad \mbox{or} \quad \ln u^{+}< u< \ln \biggl\{ \frac{\hat{r}}{\hat{k}} \biggr\} , \\& \ln \biggl\{ \frac{\hat{h}_{2}}{\hat{c}_{1}} \biggr\} < v< \ln v^{-} \quad \mbox{or}\quad \ln v^{+}< v< \ln \biggl\{ \frac{\hat{r} \hat{c}_{1}}{\hat {k}\widehat {m}_{1}\hat{d}_{1}} \biggr\} , \\& \ln \biggl\{ \frac{\hat{h}_{3}}{\hat{c}_{2}} \biggr\} < w< \ln w^{-} \quad \mbox{or} \quad \ln w^{+}< w< \ln \biggl\{ \frac{\hat{r}\hat{c}_{1}\hat {c}_{2}}{\hat {k}\widehat{m}_{1} \widehat{m}_{2}\hat{d}_{1}\hat{d}_{2}} \biggr\} . \end{aligned}$$
Therefore, combined with the conditions in (2.25), it follows that
$$\begin{aligned}& \ln \biggl\{ \frac{h_{1}^{\ell}}{r^{U}} \biggr\} < u< \ln A_{0}^{-} \quad \mbox{or}\quad \ln A_{0}^{+}< u< \ln \biggl\{ \frac{r^{U}}{k^{\ell}} \biggr\} , \\& \ln \biggl\{ \frac{h_{2}^{\ell}}{c_{1}^{U}} \biggr\} < v< \ln B_{0}^{-} \quad \mbox{or}\quad \ln B_{0}^{+}< v< \ln \biggl\{ \frac{r^{U} c_{1}^{U} }{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}} \biggr\} , \\& \ln \biggl\{ \frac{h_{3}^{U}}{c_{2}^{U}} \biggr\} < w< \ln C_{0}^{-} \quad \mbox{or} \quad \ln C_{0}^{+}< w< \ln \biggl\{ \frac{r^{U} c_{1}^{U}c_{2}^{U} }{k^{\ell}m_{1}^{\ell}m_{2}^{\ell}d_{1}^{\ell}d_{2}^{\ell}} \biggr\} , \end{aligned}$$
which implies \((u,v,w)^{T}\) belongs to one of \(\Omega_{i}\), \(i=1,\ldots,8\). This is a contradiction. Hence \(\psi_{2}(u,v,w,\mu_{2})\neq(0,0,0)^{T}\), \((u,v,w)^{T}\in\partial\Omega _{i}\cap \operatorname{Ker} L=\partial\Omega_{i}\cap\mathbb{R}^{3}\), \(i=1,\ldots,8\).
By using homotopy invariance of topological degree and (2.24), (2.29), we have, for \(i=1,\ldots,8\),
$$\begin{aligned}& \deg\bigl\{ JQNx,\Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} \\& \quad =\deg\bigl\{ \psi_{1}(u,v,w,1),\Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} \\& \quad =\deg\bigl\{ \psi_{1}(u,v,w,0),\Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} \\& \quad =\deg\bigl\{ \psi_{2}(u,v,w,1),\Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} \\& \quad =\deg\bigl\{ \psi_{2}(u,v,w,0),\Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} \\& \quad =\deg\bigl\{ \bigl[\hat{r}-\hat{k}e^{u}-\hat{h}_{1} e^{-u}, \hat{c}_{1} e^{u+v}-\widehat{m}_{1} \hat{d}_{1} e^{2v}-\hat{h}_{2} e^{u},\hat{c}_{2} e^{v+w}-\widehat{m}_{2} \hat{d}_{2} e^{2w}-\hat{h}_{3} e^{v} \bigr]^{T}, \\& \qquad \Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} . \end{aligned}$$
Now, we consider the following algebraic equations:
$$ \textstyle\begin{cases} \hat{r}-\hat{k}e^{u}-\hat{h}_{1}e^{-u}=0, \\ \hat{c}_{1} e^{u+v}-\widehat{m}_{1}\hat{d}_{1} e^{2v}-\hat{h}_{2}e^{u}=0, \\ \hat{c}_{2} e^{v+w}-\widehat{m}_{2}\hat{d}_{2} e^{2w}-\hat{h}_{3}e^{v}=0. \end{cases} $$
It is not difficult to find the equations has eight distinct solutions,
$$\begin{aligned}& \bigl(u_{1}^{*},v_{1}^{*},w_{1}^{*}\bigr)=\bigl(\ln u^{+}, \ln v_{+}^{+}, \ln w_{++}^{+}\bigr),\qquad \bigl(u_{2}^{*},v_{2}^{*},w_{2}^{*} \bigr)=\bigl(\ln u^{+},\ln v_{+}^{+}, \ln w_{++}^{-}\bigr), \\& \bigl(u_{3}^{*},v_{3}^{*},w_{3}^{*}\bigr)=\bigl(\ln u^{+}, \ln v_{-}^{+}, \ln w_{+-}^{+}\bigr),\qquad \bigl(u_{4}^{*},v_{4}^{*},w_{4}^{*} \bigr)=\bigl(\ln u^{+},\ln v_{-}^{+}, \ln w_{+-}^{-}\bigr), \\& \bigl(u_{5}^{*},v_{5}^{*},w_{5}^{*}\bigr)=\bigl(\ln u^{-},\ln v_{+}^{-}, \ln w_{-+}^{+}\bigr),\qquad \bigl(u_{6}^{*},v_{6}^{*},w_{6}^{*} \bigr)=\bigl(\ln u^{-},\ln v_{+}^{-}, \ln w_{-+}^{-}\bigr), \\& \bigl(u_{7}^{*},v_{7}^{*},w_{7}^{*}\bigr)=\bigl(\ln u^{-},\ln v_{-}^{-}, \ln w_{--}^{+}\bigr),\qquad \bigl(u_{8}^{*},v_{8}^{*},w_{8}^{*} \bigr)=\bigl(\ln u^{-},\ln v_{-}^{-}, \ln w_{--}^{-}\bigr), \end{aligned}$$
where
$$\begin{aligned}& v_{+}^{\pm}=\ln \biggl\{ \frac{\hat{c}_{1}u^{+} \pm\sqrt{(\hat{c}_{1}u^{+})^{2}-4\widehat{m}_{1}\hat{d}_{1}\hat {h}_{2}u^{+}}}{2\widehat{m}_{1}\hat{d}_{1}} \biggr\} , \\& v_{-}^{\pm}=\ln \biggl\{ \frac{\hat{c}_{1}u^{-} \pm\sqrt{(\hat{c}_{1}u^{-})^{2}-4\widehat{m}_{1}\hat{d}_{1}\hat {h}_{2}u^{-}}}{2\widehat{m}_{1}\hat{d}_{1}} \biggr\} , \\& w_{++}^{\pm}=\ln \biggl\{ \frac{\hat{c}_{2} v_{+}^{+}\pm \sqrt{(\hat{c}_{2}v_{+}^{+})^{2}-4\widehat{m}_{2}\hat{d}_{2}\hat {h}_{3}v_{+}^{+}}}{ 2\widehat{m}_{2}\hat{d}_{2}} \biggr\} , \\& w_{-+}^{\pm}=\ln \biggl\{ \frac{\hat{c}_{2} v_{+}^{-}\pm \sqrt{(\hat{c}_{2}v_{+}^{-})^{2}-4\widehat{m}_{2}\hat{d}_{2}\hat {h}_{3}v_{+}^{-}}}{ 2\widehat{m}_{2}\hat{d}_{2}} \biggr\} , \\& w_{+-}^{\pm}=\ln \biggl\{ \frac{\hat{c}_{2} v_{-}^{+}\pm \sqrt{(\hat{c}_{2}v_{-}^{+})^{2}-4\widehat{m}_{2}\hat{d}_{2}\hat {h}_{3}v_{-}^{+}}}{ 2\widehat{m}_{2}\hat{d}_{2}} \biggr\} , \\& w_{--}^{\pm}=\ln \biggl\{ \frac{\hat{c}_{2} v_{-}^{-}\pm \sqrt{(\hat{c}_{2}v_{-}^{-})^{2}-4\widehat{m}_{2}\hat{d}_{2}\hat {h}_{3}v_{-}^{-}}}{ 2\widehat{m}_{2}\hat{d}_{2}} \biggr\} . \end{aligned}$$
It is easy to verify that \((u_{i}^{*},v_{i}^{*},w_{i}^{*})\) belongs to one of \(\Omega_{j}\), \(i,j=1,\ldots,8\).
It follows from the definition of the topological degree that
$$\begin{aligned}& \deg\bigl\{ JQNx,\Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} \\& \quad =\operatorname{sign}\left \vert \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{}} -\hat{k}e^{u_{i}^{*}}+\hat{h}_{1} e^{-u_{i}^{*}} &0&0\\ \hat{c}_{1} e^{u_{i}^{*}+v_{i}^{*}}-\hat{h}_{2} e^{u_{i}^{*}} &\hat{c}_{1} e^{u_{i}^{*}+v_{i}^{*}}-2\widehat{m}_{1}\hat{d}_{1} e^{2v} &0\\ 0 &\hat{c}_{2} e^{v_{i}^{*}+w_{i}^{*}}-\hat{h}_{3} e^{v_{i}^{*}} & \hat{c}_{2}e^{v_{i}^{*}+w_{i}^{*}}-2\widehat{m}_{2}\hat{d}_{2} e^{2w_{i}^{*}} \end{array}\displaystyle \right \vert \\& \quad =\operatorname{sign} \bigl[ \bigl(-\hat{k}e^{u_{i}^{*}}+ \hat{h}_{1} e^{-u_{i}^{*}} \bigr) \bigl(\hat{c}_{1} e^{u_{i}^{*}+v_{i}^{*}}-2\widehat{m}_{1}\hat{d}_{1} e^{2v_{i}^{*}} \bigr) \bigl(\hat{c}_{2}e^{v_{i}^{*}+w_{i}^{*}}-2\widehat {m}_{2} \hat{d}_{2} e^{2w_{i}^{*}} \bigr) \bigr] \\& \quad =-\operatorname{sign} \bigl[ \bigl(2\hat{k}e^{u_{i}^{*}}-\hat{r} \bigr) \bigl( \hat{c}_{1}e^{u_{i}^{*}}-2\widehat{m}_{1} \hat{d}_{1} e^{v_{i}^{*}} \bigr) \bigl(\hat{c}_{2}e^{v_{i}^{*}}-2 \widehat{m}_{2}\hat{d}_{2} e^{w_{i}^{*}} \bigr) \bigr] . \end{aligned}$$
Then, by direct calculation, we obtain
$$ \deg\bigl\{ JQNx,\Omega_{i}\cap \operatorname{Ker} L,(0,0,0)^{T}\bigr\} \neq0,\quad i=1,\ldots,8. $$
By now, we have proved that each \(\Omega_{i}\) (\(i=1,\ldots,8\)) satisfies all the requirements of Theorem A. Hence, system (2.1) has at least one ω-periodic solution in each of \(\Omega_{1},\ldots,\Omega_{8}\). The proof is completed. □
Theorem 2.2
If
\(h_{1}(t)\neq0\), \(h_{2}(t)\neq0\), \(h_{3}(t)=0\), and (H1), (H2) are satisfied. Moreover,
$$(\mathrm{H}4)\quad c_{2}^{\ell}>d_{2}^{U}. $$
Then system (1.3) has at least four positive periodic solutions.
Theorem 2.3
If
\(h_{1}(t)\neq0\), \(h_{2}(t)=0\), \(h_{3}(t)\neq0\), and (H1) is satisfied. Moreover,
$$\begin{aligned} (\mathrm{H}5)&\quad c_{1}^{\ell}>d_{1}^{U}+ \biggl(\frac{b_{2}}{m_{2}} \biggr)^{U} , \\ (\mathrm{H}6)&\quad \bigl(c_{2}^{\ell}-d_{2}^{U} \bigr) \frac{[c_{1}^{\ell}-d_{1}^{U}-(b_{2}/{m_{2}})^{U}]h_{1}^{\ell}}{r^{U}m_{1}^{U}[d_{1}^{U}+(b_{2}/{m_{2}})^{U}]}-m_{2}^{U} h_{3}^{U}>2 \sqrt{\frac{r^{U} c_{1}^{U} m_{2}^{U} d_{2}^{U} h_{3}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}}} . \end{aligned}$$
Then system (1.3) has at least four positive periodic solutions.
Theorem 2.4
If
\(h_{1}(t)=0\), \(h_{2}(t)\neq0\), \(h_{3}(t)\neq0\), and (H3) is satisfied. Moreover,
$$\begin{aligned} (\mathrm{H}7)&\quad r^{\ell}> \biggl(\frac{b_{1}}{m_{1}} \biggr)^{U} , \\ (\mathrm{H}8) &\quad \biggl[ c_{1}^{\ell}-d_{1}^{U}- \biggl(\frac{b_{2}}{m_{2}} \biggr)^{U} \biggr] \frac{r^{\ell}-(b_{1}/{m_{1}})^{U}}{k^{U}}-m_{1}^{U}h_{2}^{U}>2 \sqrt{m_{1}^{U} \biggl[ d_{1}^{U}+ \biggl(\frac{b_{2}}{m_{2}} \biggr)^{U} \biggr] \frac{r^{U} h_{2}^{U} }{k^{\ell}}} . \end{aligned}$$
Then system (1.3) has at least four positive periodic solutions.
Theorem 2.5
If
\(h_{1}(t)\neq0\), \(h_{2}(t)=0\), \(h_{3}(t)=0\), and (H1), (H4), (H5) are satisfied, then system (1.3) has at least two positive periodic solutions.
Theorem 2.6
If
\(h_{1}(t)=0\), \(h_{2}(t)\neq0\), \(h_{3}(t)=0\), and (H4), (H7), (H8) are satisfied, then system (1.3) has at least two positive periodic solutions.
Theorem 2.7
If
\(h_{1}(t)=0\), \(h_{2}(t)=0\), \(h_{3}(t)\neq0\), and (H5), (H7) are satisfied. Moreover,
$$(\mathrm{H}9)\quad \bigl(c_{2}^{\ell}-d_{2}^{U} \bigr) \frac{[c_{1}^{\ell}-d_{1}^{U}-(b_{2}/{m_{2}})^{U}][r^{\ell}-(b_{1}/{m_{1}})^{U}]}{k^{U} m_{1}^{U}[d_{1}^{U}+(b_{2}/{m_{2}})^{U}]}-m_{2}^{U} h_{3}^{U}>2 \sqrt{\frac{r^{U} c_{1}^{U} m_{2}^{U} d_{2}^{U} h_{3}^{U}}{k^{\ell}m_{1}^{\ell}d_{1}^{\ell}}}. $$
Then system (1.3) has at least two positive periodic solutions.
Theorem 2.8
If
\(h_{1}(t)=0\), \(h_{2}(t)=0\), \(h_{3}(t)=0\), and (H4), (H5), (H7) are satisfied, then system (1.3) has at least one positive periodic solution.