- Research
- Open access
- Published:
Existence,uniqueness, and nonexistence of solutions to nonlinear diffusion equations with \(p(x,t)\)-Laplacian operator
Boundary Value Problems volume 2016, Article number: 149 (2016)
Abstract
The aim of this paper is to deal with the existence and nonexistence of weak solutions to the initial and boundary value problem for \(u_{t}=\operatorname{div}(|\nabla u|^{p(x,t)-2}\nabla u+b(x,t)\nabla u)+f(u)\). By constructing suitable function spaces and applying the method of Galerkin’s approximation as well as weak convergence techniques, the authors prove the existence of local solutions. Furthermore, we choose a suitable test-function, make integral estimates, and apply Gronwall’s inequality to prove the uniqueness of weak solutions. At the end of this paper, the authors construct a suitable energy functional, obtain a new energy inequality, and apply a convex method to prove the nonexistence of solutions. Especially, it is worth pointing out that the results are obtained with the assumption that \(p_{t}(x,t)\) is only negative and integrable, which is weaker than most of the other papers required.
1 Introduction
Consider the following initial and boundary value problem:
where \(\Omega\subset\mathbb{R}^{N}\) (\(N\geqslant1\)) is a bounded domain, ∂Ω is Lipschitz continuous, and f is a continuous function satisfying
It will be assumed throughout the paper that the exponent \(p(x,t)\) is continuous in \(Q=\overline{Q_{T}}\) with logarithmic module of continuity:
where
and the coefficient \(b(x,t)\) is a Carathéodory function.
Model (1.1) proposed by Růžička may describe some properties of electro-rheological fluids which change their mechanical properties dramatically when an external electric field is applied [1, 2]. The variable exponent p in Model (1.1) is a function of the external electric field \(|E|^{2}\) which is subject to the quasi-static Maxwell equations
where \(\varepsilon_{0}\) is the dielectric constant in vacuum and the electric polarization P⃗ is linear in E⃗, i.e. \(\vec{P}=\lambda\vec{E}\). Another important application is the image processing where the anisotropy and nonlinearity of the diffusion operator are used to underline the borders of the distorted image and to eliminate the noise [3, 4]. For more physical background, the interested reader may refer to [4–17].
In the case when \(p(x,t)\) is a fixed constant, there have been many results about the existence, uniqueness, nonexistence, extinction of the solutions [10, 18, 19]. For nonconstant case, the authors of [7–9] and the authors of [17] studied the existence and uniqueness of weak solutions of the initial and Dirichlet boundary value problem with variable exponent of nonlinearity. Besides, the authors of [20] applied the differential and variational techniques to prove the existence of solutions when the exponent p only depends on the spatial variable. Motivated by the work above, we consider the existence and uniqueness of solutions to Problem (1.1). However, since the coefficient \(b(x,t)\) is degenerate or singular, it is natural to ask: which kind of conditions on the coefficient \(b(x,t)\) guarantees that Problem (1.1) admits a local solution? In our paper, we construct suitable function spaces and apply Galerkin’s method to prove the existence of weak solutions to Problem (1.1) with necessary uniform estimates and compactness argument. In addition, there exist some difficulties such as the failure of the monotonicity of the energy functional, the anisotropy of the diffusive operator and the gap between the norm and the modular, which make the methods used in [19] fail. In order to overcome such difficulties, we have to search a new technique or method. In this paper, by constructing a revised energy functional and combining a new energy estimate with convex method, we obtain the nonexistence of weak solutions when the exponents p is a function with respect to time and spatial variables. Especially, it is worth pointing out that the results are obtained with the assumption that \(p_{t}(x,t)\) is only negative and integrable which is weaker than those the most of the other papers required.
The outline of this paper is the following: In Section 2, we shall introduce the function spaces of Orlicz-Sobolev type, give the definition of the weak solution to the problem, and prove the existence of weak solutions with Galerkin’s method and the uniqueness of the solution. In Section 3, we establish sufficient condition of nonexistence of weak solutions of Problem (1.1) with the assumption that the exponent \(p(x,t)\) depends on the time and spatial variables.
2 Existence of local solutions
In this section, the existence of weak solutions will be studied. First of all, we introduce some Banach spaces:
and denote by \(H'(Q_{T})\) the dual of \(H(Q_{T})\) with respect to the inner product in \(L^{2}(Q_{T})\). From [11], we know that condition (1.4) implies that \(M\overset{\Delta}{=}\{u: u\in W^{1,p(x)}(\Omega),u=0\mbox{ on } \partial\Omega\}\) is equivalent to \(W_{0}^{1,p(x)}(\Omega)\) (the closure of \(C^{\infty}_{0}(\Omega)\) in \(W^{1,p(x)}(\Omega)\)).
Lemma 2.1
For any \(u\in L^{p(x)}(\Omega)\),
Lemma 2.2
[11, 12] (Hölder’s inequality)
For any \(u\in L^{p(x)}(\Omega)\) and \(v\in L^{q(x)}(\Omega)\) with \(q(x)=\frac{p(x)}{p(x)-1}\),
Because of the degeneracy, Problem (1.1) does not admit classical solutions in general. So we introduce weak solutions in the following sense.
Definition 2.1
A function \(u(x,t)\in H(Q_{T})\cap L^{\infty}(0,T;L^{2}(\Omega))\), \(b(x,t)|\nabla u|\in L^{2}(0,T;L^{2}(\Omega))\) is called a weak solution of Problem (1.1) if for every test-function
and every \(t_{1},t_{2}\in[0,T]\) the following identity holds:
Remark 2.1
On one hand, \(u\in H(Q_{T})\), \(\xi\in\mathcal{Z}\), implies that
On the other hand,
which imply that the definition of weak solutions is well defined.
The main theorem in this section is the following.
Theorem 2.1
Suppose that the continuous function \(f(s)\) and the exponents \(p(x,t)\), α satisfy conditions (1.2)-(1.4). If the following conditions hold:
then Problem (1.1) has at least one weak solution \(u(x,t)\in H(Q_{T})\cap L^{\infty}(0,T;L^{2}(\Omega))\), \(b(x,t)|\nabla u|\in L^{2}(0,T;L^{2}(\Omega))\).
Due to \(p^{-}>2\) and \(b(x,t)\in L^{\frac{p^{-}}{p^{-}-2}}(0,\infty;L^{\frac{p^{-}}{p^{-}-2}}(\Omega))\), the term \(b(x,t)|\nabla u|^{2}\) can be controlled by the nonlinear diffusion term \(|\nabla u|^{p(x,t)}\), and then one may follow the lines of the proof of Theorem 3.1(a) in [6] or Theorem 4.1(a) of Chapter 4 in [7] to complete the rest of the proof.
Corollary 2.1
Let the conditions of Theorem 2.1 be fulfilled, then the solution \(u\in H(Q_{T})\) to Problem (1.1) satisfies the identity
When \(b(x,t)\geqslant0\), we follow the line of the proof of Theorem 5.1 in [6] to obtain the following theorem.
Theorem 2.2
Suppose that the conditions in Theorem 2.1 are fulfilled and \(b(x,t)\geqslant0\), then the bounded solution of Problem (1.1) is unique provided that the following condition holds
Furthermore, we have the following comparison theorem.
Corollary 2.2
(Comparison principle)
Let \(u,v\in H(Q_{T})\cap L^{2}(0,T;H^{1}_{0}(\Omega))\) be two bounded weak solutions of Problem (1.1) such that \(u(x,0)\leqslant v(x,0)\) a.e. in Ω. If the nonlinearity exponents and the function \(f(s)\) satisfy the conditions of Theorem 3.1, then \(u(x,t)\leqslant v(x,t)\) a.e. in \(Q_{T}\).
3 Nonexistence of global weak solutions
In this section, we concentrate on the study of nonexistence of weak solutions to Problem (1.1). For convenience, we first state that the function \(f(s)\) and the coefficient \(b(x,t)\) satisfy the following conditions:
with \(G(u)=\int^{u}_{0}f(s)\,ds\). Before stating the main results, we give the definition of global solutions.
Definition 3.1
A function \(u(x,t)\) is called a global solution to Problem (1.1) if \(\forall T>0\) the following property holds:
Otherwise, we say that Problem (1.1) does not admit global weak solutions.
First, we consider the case \(p(x,t)\equiv p(x)\). Our main result is as follows.
Theorem 3.1
Assume that \(u(x,t)\in H(Q_{T})\cap L^{\infty}(0,T;L^{2}(\Omega))\), \(b(x,t)|\nabla u|\in L^{2}(0,T;L^{2}(\Omega))\) is the local solution to Problem (1.1). If (3.1) and (3.2) are fulfilled and \(u_{0}\in W^{1,p^{(}x)}_{0}(\Omega)\), \(p^{+}>2\), such that
Then there exists a \(T^{*}\in(0,T]\) such that
To prove Theorem 3.1, we need the following lemma.
Lemma 3.1
Assume that \(u\in H(Q_{T})\) is the solution to Problem (1.1), then \(u(x,t)\) satisfies the following relation:
Proof
Following the lines of the proof of Lemma 3.1 and Theorem 6.1 in [7], we know that \(u_{t}\in L^{2}(Q_{T})\). Noting that
and using the idea of the proof of Lemma 1 in [8], we arrive at the relation
After integrating over \((0,t)\), it is obvious that Lemma 3.1 holds. □
Proof of Theorem 3.1
Let
Clearly
By Hölder’s inequality, we have
Thus by Schwarz’s inequality and the definition of \(K(t)\), we have
Therefore by Lemma 3.1, we obtain the following inequality:
Noticing \(p^{+}>2\), \(K(t)>0\), we conclude from (3.1), (3.2), (3.3) that
which implies
Noting that \(K^{1-\frac{p^{+}}{2}}(0)>0\), \((K^{1-\frac{p^{+}}{2}})'(0)\leqslant0\), then
Here
Thus, \(0< T^{*}\leqslant T\) and
This completes the proof of Theorem 3.1. □
Next, we consider the case when p is dependent of t. Before stating the conclusion, we first give a useful lemma.
Lemma 3.2
Assume \(u_{0}\in W^{1,p(x,0)}_{0}(\Omega)\), \(p^{+}>2\), \(p_{t}\leqslant0\). Then the solution of Problem (1.1) satisfies
Proof
Following the lines of the proof of Lemmas 3.1 and Lemma 6.1 of [7], we know \(u_{t}\in L^{2}(Q_{T})\) and
On one hand, a simple analysis shows that
On the other hand, we apply the condition \(p_{t}\leqslant0\) to obtain
The second inequality above follows from
Lemma 3.2 follows from (3.7) and (3.8). □
Our main result is as follows.
Theorem 3.2
Suppose that (3.1) and (3.2) hold and \(p^{+}>2\), \(p_{t}\leqslant0\). If \(u_{0}\in W^{1,p(x,0)}_{0}(\Omega)\) satisfies
then there exists \(T^{*}\in(0,T]\) such that
Proof
We argue by contradiction. Define
It is easy to verify that
Therefore by Lemma 3.2 and (3.10), we obtain the following inequality:
In the rest of the proof, we follow the lines of the proof of Theorem 3.1 to finish the proof of this theorem. □
At the end of this paper, we give an example to illustrate that the condition on \(p_{t}(x,t)\) is weaker than that of [8, 9].
Example 3.1
Set \(p(x,y,z,t)=\frac{\sqrt{t}\cos x}{100}+\frac{5}{2}\), \(x\in(\frac{\pi}{2},\pi)\), \(y,z\in(0,\frac{\pi}{2})\), \(0< t<1\). A simple computation shows that
References
Růžička, M: Electrorheological Fluids: Modelling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)
Acerbi, E, Mingione, G, Seregin, GA: Regularity results for parabolic systems related to a class of non-Newtonian fluids. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21, 25-60 (2004)
Aboulaich, R, Meskine, D, Souissi, A: New diffusion models in image processing. Comput. Math. Appl. 56, 874-882 (2008)
Chen, Y, Levine, S, Rao, M: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383-1406 (2006)
Acerbi, E, Mingione, G: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156(1), 121-140 (2001)
Antontsev, SN, Shmarev, SI: Anisotropic parabolic equations with variable nonlinearity. Publ. Math. 53, 355-399 (2009)
Antontsev, SN, Shmarev, SI: Evolution PDEs with Nonstandard Growth Condtions: Existence, Uniqueness, Localization, Blow-up. Atlantis Studies in Differ. Equ., vol. 4. Atlantis Press, Amsterdam (2015)
Antontsev, SN, Shmarev, SI: Blow-up of solutions to parabolic equations with nonstandard growth conditions. J. Comput. Appl. Math. 234(9), 2633-2645 (2010)
Antontsev, SN, Shmarev, SI: Doubly degenerate parabolic equations with variable nonlinearity II: blow-up and extinction in a finite time. Nonlinear Anal. 95, 483-498 (2014)
DiBenedetto, E: Degenerate Parabolic Equations. Springer, New York (1993)
Diening, L, Harjulehto, P, Hästö, P, Růžička, M: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)
Fan, XL, Zhang, QH: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. TMA 52, 1843-1852 (2003)
Gao, WJ, Guo, B: Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity. Ann. Mat. Pura Appl. 191, 551-562 (2012)
Gao, WJ, Guo, B: Existence and asymptotic behavior of solutions for a viscous \(p(x)\)-Laplacian equation. Appl. Anal. 91(5), 879-894 (2012)
Guo, B, Gao, WJ: Study of weak solutions for a fourth-order parabolic equation with variable exponent of nonlinearity. Z. Angew. Math. Phys. 62, 909-926 (2011)
Guo, B, Gao, WJ: Existence and asymptotic behavior of solutions for nonlinear parabolic equations with variable exponent of nonlinearity. Acta Math. Sci. 32, 1053-1062 (2012)
Guo, B, Gao, WJ: Study of weak solutions for parabolic equations with nonstandard growth conditions. J. Math. Anal. Appl. 374(2), 374-384 (2011)
Kalashnikov, AS: Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations. Russ. Math. Surv. 42(2), 169-222 (1987)
Zhao, JN: Existence and nonexistence of solutions for \(u_{t}=\operatorname{div}(|\nabla u|^{p-2}\nabla u)+f(\nabla u,u,x,t)\). J. Math. Anal. Appl. 172, 130-146 (1993)
Lian, SZ, Gao, WJ, Yuan, HJ, Cao, CL: Existence of solutions to initial Dirichlet problem of evolution \(p(x)\)-Laplace equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29(3), 377-399 (2012)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (11271154) and by the 985 program of Jilin University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to this paper and they read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Gao, Y., Chu, Y. & Gao, W. Existence,uniqueness, and nonexistence of solutions to nonlinear diffusion equations with \(p(x,t)\)-Laplacian operator. Bound Value Probl 2016, 149 (2016). https://doi.org/10.1186/s13661-016-0657-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-016-0657-9