- Research
- Open Access
- Published:
Existence of solutions for the Schrödinger-Kirchhoff-Poisson systems with a critical nonlinearity
Boundary Value Problems volume 2016, Article number: 210 (2016)
Abstract
This paper is concerned with the following Schrödinger-Kirchhoff-Poisson system:
where \(a\geq0\), \(b>0\) and \(\eta,\lambda>0\), \(\Omega\subset R^{3}\) is a bounded smooth domain. With the help of the variational methods, the existence of a non-trivial solution is obtained.
1 Introduction and main results
In this paper, we consider the following Schrödinger-Kirchhoff-Poisson system:
where \(a\geq0\), \(b>0\) and \(\eta,\lambda>0\), \(\Omega\subset R^{3}\) is a bounded smooth domain.
When \(a=1\) and \(b=0\), the problem (1.1) reduces to the boundary value problem
System (1.2) is relevant to the nonlinear parabolic Schrödinger-Poisson system:
The first equation in (1.3) is called the Schrödinger equation, which describes (non-relativistic) quantum particles interacting with the electromagnetic field generated by the motion. An interesting class of Schrödinger equations is the case where the potential \(\phi(x)\) is determined by the charge of the wave function itself, that is, when the second equation in (1.3) (Poisson equation) holds. For more details as regards the physical relevance of the Schrödinger-Poisson system, we refer to [1–3].
System (1.2) has been extensively studied after the seminal work of Benci and Fortunato [3]. Many important results concerning existence and nonexistence of solutions, multiplicity of solutions, least energy solutions, and so on, have been reported; see for instance [4–12] and the references therein.
On the other hand, considering just the first equation in (1.1) with the potential equal to zero, we have the problem
which was proposed by Kirchhoff in 1883 (see [13]) as a generalization of the well-known D’Alembert wave equation,
In recent years, with the aid of variational methods, the analysis of the stationary problem of (1.4) has been extensively carried out by many authors; see [14–24] and so on. By them, several existence results have been successfully obtained via the variational and topological methods even for the critical case. But most of them consider only the one nonlocal term. In our case, we denote \(\varphi(u)=\int_{\Omega}\phi_{u}u^{2}\,\mathrm{d}x\), it follows from Lemma 2.1 in the following section that \(\varphi:H\rightarrow R\) is \(C^{1}\) and \(\varphi(tu)=t^{4}\varphi(u)\). Although φ is a 4 homogeneous function, it is not equivalent to the nonlinear function \(f(u)=u^{4}\). Therefore our problem (1.1) possesses two nonlocal terms, \(\phi_{u}u\) and \(b(\int_{\Omega}|\nabla u|)\triangle u\). A typical difficulty occurs in proving the existence of solutions. It is caused by the lack of the compactness of the Sobolev embedding \(H_{0}^{1}(\Omega)\hookrightarrow L^{6}(\Omega)\). Furthermore, in view of the corresponding energy, the interaction between the Kirchhoff type perturbation \(\|u\|_{H_{0}^{1}(\Omega)}^{4}\) and the critical nonlinearity \(\int_{\Omega}u^{6}\,\mathrm{d}x\) is crucial. In the following, we can see the effect of such an interaction on the existence. To the best of our knowledge, there is little literature which essentially attacks the Brezis-Nirenberg problem for Schrödinger-Kirchhoff-Poisson type with critical nonlinearity equations.
Motivated by the above facts, the goal of this paper is to consider the existence of non-trivial solutions for problem (1.1). Under some natural assumptions, by using the mountain pass theory, the existence results of non-trivial solutions are obtained.
Before stating our main results, we give the following assumption.
The hypotheses on the function \(f:\Omega\times\mathbb{R}\rightarrow \mathbb{R}\) are the following.
- (F1):
-
\(\lim_{t\rightarrow0}\frac{f(x,t)}{t}=0\), uniformly on \(x\in\Omega\).
- (F2):
-
\(\lim_{t\rightarrow0}\frac{f(x,t)}{t^{5}}=0\), uniformly on \(x\in\Omega\).
- (F3):
-
The well-known Ambrosetti-Rabinowitz superlinear condition, that is, \(0<\theta F(x,t)=\theta\int_{0}^{t}f(x,s)\,\mathrm{d}s\leq tf(x,t)\) for all \(x\in\Omega\) and \(t>0\) for some \(4<\theta<6\) and \(F(x,t)=\int _{0}^{t}f(x,s)\,\mathrm{d}s\).
- (F4):
-
\(\lim_{t\rightarrow0}\frac{f(x,t)}{t^{3}}=0\), uniformly on \(x\in\Omega\).
Now we state our main results.
Theorem 1.1
For all \(\eta\geq\overline{\eta}\) and \(\lambda\in(0,\lambda^{\ast})\), where \(\eta, \lambda ^{\ast}\in R\). Suppose that (F1), (F2), (F3) are satisfied, then problem (1.1) has at least a positive non-trivial solution.
Corollary 1.2
Suppose that \(a=0\) and (F1), (F2), (F4) are satisfied, then the problem (1.1) has at least a positive non-trivial solution.
Remark 1.3
For (1.1), when \(\lambda=0\), the problem (1.1) reduces to the Kirchhoff equation, when \(b=0\), the problem (1.1) is the Schrödinger-Poisson system equation.
Remark 1.4
If \(a=0\), (1.1) is a degenerate case, we claim (1.1) is the degenerate Schrödinger-Kirchhoff-Poisson system.
The remainder of this paper is organized as follows. In Section 2, some preliminary results are presented. In Section 3, we give the proof of our main results.
2 Variational setting and preliminaries
In this section, we collect some information to be used in the paper. Hereafter we use the following notations:
-
\(H^{1}(\mathbb{R}^{3})\) is the usual Sobolev space endowed with the standard scalar product and norm
$$ (u,v)= \int_{\mathbb{R}^{3}}\nabla u\nabla v\,\mathrm{d}x,\qquad \|u\| ^{2}= \int_{\mathbb{R}^{3}}|\nabla u|^{2}\,\mathrm{d}x. $$(2.1) -
S denotes the best Sobolev constant \(S:=\inf_{u\in D^{1,2}(\mathbb{R}^{3})\setminus\{0\}}\frac{\int_{\mathbb {R}^{3}|\nabla u|^{2}\,\mathrm{d}x}}{(\int_{\mathbb {R}^{3}}u^{6}\,\mathrm{d}x)^{\frac{1}{3}}}\).
-
\(H^{\ast}\) denotes the dual space of \(H^{1}(\mathbb {R}^{3})\).
Now we define a functional I on H by
It is easy to prove that the functional I is of class \(C^{1}(H,\mathbb{R})\). Moreover,
The following result is well known (see e.g. [1, 5, 15]).
Lemma 2.1
For each \(u\in H_{0}^{1}(\Omega)\), there exists a unique element \(\phi_{u}\in H_{0}^{1}(\Omega)\) such that \(-\triangle\phi_{u}=u^{2}\), moreover, \(\phi_{u}\) has the following properties:
-
(a)
there exists \(c>0\) such that \(\|\phi_{u}\|\leq c\|u\| ^{2}\) and
$$ \int_{\Omega}|\nabla\phi_{u}|^{2}\, \mathrm{d}x= \int_{\Omega}\phi _{u}u^{2}\,\mathrm{d}x\leq c \|u\|^{4}; $$(2.4) -
(b)
\(\phi_{u}\geq0\) and \(\phi_{tu}=t^{2}\phi_{u}\), \(\forall t>0\);
-
(c)
if \(u_{n}\rightharpoonup u\) in \(H_{0}^{1}\), then \(\phi_{u_{n}}\rightharpoonup\phi_{u}\) in \(H_{0}^{1}\) and
$$ \lim_{n\rightarrow+\infty} \int_{\Omega}\phi _{u_{n}}u^{2}_{n}\, \mathrm{d}x= \int_{\Omega}\phi_{u}u^{2}\,\mathrm {d}x. $$(2.5)
3 Proof of Theorem 1.1
We show that the functional I has the mountain pass geometry.
Lemma 3.1
Suppose that (F1), (F2) and (F3) hold, then we have:
-
(i)
There exist \(r,\rho>0\), such that \(\inf_{\|u\| =r}I(u)\geq\rho>0\).
-
(ii)
There exists a nonnegative function \(e\in H_{0}^{1}(\Omega )\) such that \(\|e\|>r\) and \(I(e)<0\).
Proof
By (F1) and (F2), we have
According to (2.2)
By the Sobolev theorem, there exists \(c_{1}>0\) such that
So there exists \(\rho>0\) such that
It follows from (2.4) that
Hence for t big enough, there exists \(t_{0}u_{0}\) such that \(I(t_{0}u_{0})<0\), we take \(t_{0}u_{0}=e\) and \(I(e)<0\), we complete the proof. □
Recall that S is attained by the functions \(\frac{\varepsilon ^{\frac{1}{4}}}{\varepsilon+|x|^{2}}\), where \(\varepsilon>0\). Define \(V_{\varepsilon}(x)=\frac{\psi(x)\varepsilon^{\frac {1}{4}}}{\varepsilon+|x|^{2}}\), where \(\psi\in C_{0}^{\infty }(B_{2r}(0))\) such that \(0\leq\psi(x)\leq1\) and \(\psi(x)=1\) on \(B_{r}(0)\). From [25] we know that for \(\varepsilon>0\) small
Lemma 3.2
Suppose that (F1), (F2), (F3) are satisfied; then for the problem (1.1), there exists u such that \(\sup_{t\geq0}I(tu)\leq\Gamma\), where \(\Gamma=[\frac{(b+\lambda c)^{2}}{12}s^{4}+\frac{a}{3}s]\frac {(b+\lambda c)s^{2}+\sqrt{(b+\lambda c)s^{4}+4as}}{2}+\frac {ab+\lambda ac}{12}s^{3}\).
Proof
Let \(u_{\varepsilon}\in C_{0}^{\infty}(R^{3})\) with \(u>0\) on Ω. We have, for \(t\geq0\),
We set \(h(t)=\frac{at^{2}}{2}\|u_{\varepsilon}\|^{2}+(\frac {b+\lambda c}{4})t^{4}\|u_{\varepsilon}\|^{4}-\frac{t^{6}}{6}\) and by \(h'(t)=0\) we have
Then it follows from (3.2) that
Combining (3.3) and (3.4), we can obtain
It is easy to verify the following inequality:
So we have
by (F1) and (F2), we obtain
So we obtain
and
For ε small enough, it follows that \(d(\varepsilon)\int_{\Omega}|u_{\varepsilon}|^{2}\,\mathrm {d}x\rightarrow0\) as \(\varepsilon\rightarrow0\) and that \(d(\varepsilon)\int_{\Omega}|u_{\varepsilon}|^{2}\,\mathrm{d}x\leq a\|u_{\varepsilon}\|^{2}\), combining (3.6) and (3.7) we obtain
It follows that \(bs^{2}\leq b\|u_{\varepsilon}\|^{4}\leq\frac {3}{2}t_{\varepsilon}^{2}\).
This implies that \(t^{2}_{\varepsilon}\geq\frac{2}{3}bs^{2}\). so we can get \(F(x,t)\geq c_{0}\|t\|^{q}\).
It follows from (3.5) that
since \(\int_{\Omega}|u_{\varepsilon}|^{q}\,\mathrm{d}x\geq c_{2}\varepsilon^{\frac{6-q}{4}}\), by (F2), \(q>5\), we obtain \(\frac{1}{4}>\frac{6-q}{4}\). As ε is small enough, we obtain
we take \(tu_{\varepsilon}=tu\), we can get \(\sup_{t\geq 0}I(tu)\leq\Gamma\), the proof is completed. □
Lemma 3.3
If the conditions (F1), (F2), and (F3) hold then there exists \(\overline{\eta}>0\) such that \(c_{\ast}\) belongs to the interval \((0,\Gamma)\) for all \(\eta\geq\overline{\eta}\).
Proof
If \(u_{0}\) is the function given by Lemma 3.2, it follows that there exists \(t_{\eta}>0\) verifying \(I(t_{\eta }u_{0})=\max_{t\geq0}I(tu_{0})\). Hence
From (2.3)
which implies that \(t_{\eta}\) is bounded. Thus, there exist a sequence \(\eta_{n}\rightarrow+\infty\) and \(t_{0}\geq 0\) such that \(t_{\eta_{n}}\rightarrow t_{0}\), as \(n\rightarrow+\infty \). Consequently, there is \(M>0\) such that
and so
If \(t_{0}>0\) the last inequality leads to
which is absurd.
Thus we conclude that \(t_{0}=0\), now consider the path \(\gamma(t)=te\), for \(t\in[0,1]\), which belongs to Γ and we get the following estimate:
In this way, if η is large enough we derive \(I(t_{\eta }u_{0})<\Gamma\), which leads to \(0< c_{\ast}<\Gamma\). □
Proof of Theorem 1.1
We first prove that \(\{u_{n}\}\) is bounded in E:
which implies that \(\{u_{n}\}\) is bounded.
Finally, we show that \(\{u_{n}\}\) possesses a strong convergent subsequence. Hence we assume that \(\{u_{n}\}\) is a \((\mathit{PS})_{c}\) sequence, for \(c\in (0,\Gamma)\),
Since \(\{u_{n}\}\) is bounded in \(H_{0}^{1}(\Omega)\) going if necessary to a subsequence, we assume that
we write \(v_{n}=u_{n}-u\). It follows that
by (2.5), we have
The Brezis-Lieb lemma in [25] leads to
Making use of the Vitali convergence theorem, we obtain
If \(v_{n}=u_{n}-u\) and \(\|v_{n}\|\rightarrow0\), the proof is completed. Otherwise there exists a subsequence (still denoted by \(v_{n}\)) such that \(\lim_{n\rightarrow\infty}\|v_{n}\|=k\), where k is a positive constant.
Thus by \(I'(u_{n})\rightarrow0\) in \((H^{1}_{0})^{\ast}\), it follows that
It also follows from (3.8) that
On the one hand, by (3.16), we obtain
On the other hand, it follows from (3.15) and (3.16) that
and
By (3.19) and \(\int_{\Omega}|v_{n}|^{6}\,\mathrm{d}x\leq\frac{\| v_{n}\|^{6}}{s^{3}}\), we obtain
so we have
It follows from (3.19) and (3.20) that
let \(n\rightarrow\infty\), which implies that
since
for λ small enough, \(\lambda\in(0,\lambda^{\ast})\), such that
we obtain from (3.17) and (3.21) a contradiction.
So we obtain \(\|u_{n}-u\|\rightarrow0\). The functional I possesses the mountain pass geometry, on combining Lemma 3.1. Hence u is a weak solution of the problem (1.1), we have \(\langle I'(u),u^{-}\rangle=0\), where \(u^{-}=\min\{u,0\}\). Then \(u\geq0\) and \(u\not\equiv0\), for \(c_{\ast}>0\). By the strong maximum principle we see that u is a positive solution of problem (1.1). □
Proof of Corollary 1.2
The proof is similar to Theorem 1.1, here we omit it. □
References
Ambrosetti, A, Ruiz, D: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10, 391-404 (2008)
Ruiz, D: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655-674 (2006)
Benci, V, Fortunato, D: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283-293 (1998)
Zhang, Q: Existence uniqueness and multiplicity of positive solutions for Schrödinger-Poisson system with singularity. J. Math. Anal. Appl. 437, 160-180 (2016)
Sun, JT, Wu, TF, Feng, ZS: Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system. J. Differ. Equ. 260, 586-627 (2016)
Li, YQ, Wang, ZQ, Zeng, J: Ground states of nonlinear Schrödinger equations with potentials. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23, 829-837 (2006)
Sun, JT, Chen, HB, Nieto, JJ: On ground state solutions for some non-autonomous Schrödinger-Poisson system. J. Differ. Equ. 252, 3365-3380 (2012)
Tang, XH: Infinitely many solutions for semilinear Schrödinger equation with sign-changing potential and nonlinearity. J. Math. Anal. Appl. 401, 407-415 (2013)
Shao, LY, Chen, HB: Multiple solutions for Schrödinger-Poisson systems with sign-changing potential and critical nonlinearity. Electron. J. Differ. Equ. 2016, 276 (2016)
Liu, HL, Chen, HB: Multiple solutions for a nonlinear Schrödinger-Poisson system with sign-changing potential. Comput. Math. Appl. 71, 1405-1416 (2016)
Tang, XH: New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum. J. Math. Anal. Appl. 413, 392-410 (2014)
Tang, XH: New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation. Adv. Nonlinear Stud. 14, 349-361 (2014)
Kirchhoff, G: Mechanik. Teubner, Leipzig (1983)
Liu, ZS, Guo, SJ: Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent. Z. Angew. Math. Phys. 66, 747-769 (2015)
Fan, HN: Multiple positive solutions for a class of Kirchhoff type problems involving critical Sobolev exponents. J. Math. Anal. Appl. 431, 150-168 (2015)
Alves, CO, Figueiredo, GM: Nonlinear perturbations of a periodic Kirchhoff equation in \(\mathbb{R}^{N}\). Nonlinear Anal. 75(5), 2750-2759 (2012)
Deng, YB, Peng, SJ: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \(\mathbb{R}^{3}\). J. Funct. Anal. 269, 3500-3527 (2015)
Li, QQ, Wu, X: A new result on high energy solutions for Schrödinger-Kirchhoff type equations in \(R^{N}\). Appl. Math. Lett. 30, 24-27 (2014)
Figueiredo, GM, Ikoma, N, Santos, JR: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213(3), 931-979 (2014)
Xu, LP, Chen, HB: Existence and multiplicity of solutions for fourth-order elliptic equations of Kirchhoff type via genus theory. Bound. Value Probl. 2014, 212 (2014)
Xu, LP, Chen, HB: Nontrivial solutions for Kirchhoff-type problems. J. Math. Anal. Appl. 433, 455-472 (2016)
Szulkin, A, Weth, T: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802-3822 (2009)
Sun, JT, Wu, TF: Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J. Differ. Equ. 256, 1771-1792 (2014)
Xu, LP, Chen, HB: Multiple solutions for the nonhomogeneous fourth order elliptic equations for Kirchhoff-type. Taiwan. J. Math. 19, 1215-1226 (2015)
Millem, M: Minimax Theorems. Birkhäuser, Berlin (1996)
Acknowledgements
The authors thank the referees for valuable comments and suggestions which improved the presentation of this manuscript. This article was supported by Natural science Foundation of China 11271372 and Hunan Provincial Natural Science Foundation of China 12JJ2004.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors carried out the proofs and the authors conceived of the study. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Shao, L., Chen, H. Existence of solutions for the Schrödinger-Kirchhoff-Poisson systems with a critical nonlinearity. Bound Value Probl 2016, 210 (2016). https://doi.org/10.1186/s13661-016-0718-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-016-0718-0
MSC
- 35B38
- 35G99
Keywords
- mountain pass theorem
- variational methods
- Schrödinger-Kirchhoff-Poisson system
- non-trivial solution