Open Access

Existence of a ground state solution for a class of singular elliptic problem in \(\mathbb{R}^{N}\)

Boundary Value Problems20172017:4

Received: 19 March 2016

Accepted: 6 December 2016

Published: 3 January 2017


In this paper, we prove the existence of a ground state solution for a quasi-linear singular elliptic equation in \(\mathbb{R}^{N}\) with exponential growth by using the mountain-pass theorem and the Vitali convergence theorem.


singular termexponential subcritical growthlack of compactnessTrudinger-Moser inequality

1 Introduction and main results

Let \(\Omega\subset\mathbb{R}^{N}\) be a bounded smooth domain; there are many results on the following problem:
$$ \textstyle\begin{cases} -\operatorname{div}(\vert \triangledown u\vert ^{p-2}\triangledown u) =f(x, u), \quad x \in \Omega, \\ u\in W^{1, p}_{0}(\Omega), \end{cases} $$
when \(p=2\), \(\vert f(x, u)\vert \leq c(\vert u\vert +\vert u\vert ^{q-1})\), \(1< q\leq 2^{*}=\frac{2N}{N-2}\), \(N\geq3\), for the corresponding results one may refer to Brézis [1], Brézis and Nirenberg [2], Bartsch and Willem [3] and Capozzi, Fortunato and Palmieri [4]. Garcia and Alonso [5] generalized Brézis, Nirenberg’s existence and nonexistence results to p-Laplace equation. Moreover, let us consider the following semilinear Schrödinger equation:
$$ \textstyle\begin{cases} -\triangle u+V(x)u =f(x, u), \quad x \in \mathbb{R}^{N}, \\ u\in H_{0}^{1}(\mathbb{R}^{N}), \end{cases} $$
where \(\vert f(x, u)\vert \leq c(\vert u\vert +\vert u\vert ^{q-1})\), \(1< q\leq 2^{*}=\frac{2N}{N-2}\). Problem (1.2) is considered in many papers such as by Kryszewski and Szulkin [6], Alama and Li [7], Ding and Ni [8] and Jeanjean [9]. The Sobolev embedding theorems and critical point theory, in particular the mountain-pass theorem would play an important role in studying problems (1.1) and (1.2) since both of them have a variational structure. When \(p = N\) and \(f(x, u)\) behaves like \(e^{\alpha \vert u\vert ^{\frac{N}{N-1}}}\) as \(\vert u\vert \rightarrow\infty\), problem (1.1) was studied by Adimurthi [10], Adimurthi and Yadava [11], Ruf et al. [12, 13], do Ó [14], Panda [15], and the references therein, all these results are based on the Trudinger-Moser inequality [1618] and critical point theory.
Let us consider the problem
$$ -\operatorname{div}\bigl(\vert \triangledown u\vert ^{N-2}\triangledown u\bigr)+V(x)\vert u\vert ^{N-2}u = \frac{f(x, u)}{\vert x\vert ^{\eta}},\quad x\in \mathbb{R}^{N} , $$
where \(N\geq 2\), \(0 \leq \eta < N\), \(V : \mathbb{R}^{N}\rightarrow \mathbb{R}\) is a continuous function, \(f (x, s)\) is continuous in \(\mathbb{R}^{N}\times \mathbb{R}\) and behaves like \(e^{\alpha \vert s\vert ^{\frac{N}{N-1}}}\) as \(\vert s\vert \rightarrow\infty\). The problems of this type are important in many fields of sciences, notably the fields of electromagnetism, astronomy, and fluid dynamics, because they can be used to accurately describe the behavior of electric, gravitational, and fluid potentials. Many works focus on the subcritical and critical growth of the nonlinearity which allows us to treat the problem using general critical point theory. Problem (1.3) can be compared with (1.2) in this way: the Sobolev embedding theorem can be applied to (1.2), while the Trudinger-Moser type embedding theorem can be applied to (1.3). When \(\eta = 0\), problem (1.3) was studied by Cao [19] in the case \(N = 2\), by Panda [20], do Ó [21] and Alves and Figueiredo [22] in the general dimensional case. When \(0 < \eta<N\), problem (1.3) is closely related to a singular Trudinger-Moser type inequality [23], Theorem 1.1 or [24], Theorem 3.
For the problem
$$ -\operatorname{div}\bigl(\vert \triangledown u\vert ^{N-2}\triangledown u\bigr)+V(x)\vert u\vert ^{N-2}u = \frac{f(x, u)}{\vert x\vert ^{\eta}}+\varepsilon h(x),\quad x\in \mathbb{R}^{N}, $$
when \(\eta=0\), the multiplicity of the solutions of the problem (1.4) is proved by do Ó, Medeiros and Severo [25] using Ekeland variational principle and the mountain-pass theorem. When \(\eta>0\), the existence of a nontrival weak solution of the problem (1.4) is proved by Adimurthi and Yang [23], furthermore, they get a weak solution of negative energy when ε is small enough, however, the difference of these two solutions has not been proved in Adimurthi and Yang [23]. In Yang [26], the author derives similar results for the bi-Laplacian operator in dimension four and Yang [27] constructs the existence and multiplicity of a weak solution for the N-Laplacian elliptic equation. Lam and Lu [28] considered the existence and multiplicity of a nontrivial weak solution for non-uniformly N-Laplacian elliptic equation.
For the problem
$$ \textstyle\begin{cases} -\triangle u =Q(x)f(u), \quad x \in \mathbb{R}^{N}, \\ u\in D^{1, 2}(\mathbb{R}^{N}), \end{cases} $$
where \(N\geq 3\), f is continuous with subcritical growth and \(Q \in L^{\infty}(\mathbb{R}^{N} )\cap L^{r} (\mathbb{R}^{N} )\), for some \(r \geq 1\), is positive almost everywhere in \(\mathbb{R}^{N}\), the existence of a ground state solution of problem (1.5) is proved by Alves, Montenegro and Souto [29]. Motivated by [29], Abreu [30] considered the problem
$$ \textstyle\begin{cases} -\triangle u =Q(x)\frac{f(u)}{\vert x\vert ^{\eta}}, \quad x \in \mathbb{R}^{2}, \\ u\in H_{0}^{1}(\mathbb{R}^{2}), \end{cases} $$
where \(0 \leq \eta <\frac{1}{2}\), \(f(s)\) is continuous and behaves like \(e^{\alpha \vert s\vert ^{2}}\) when \(\vert s\vert \rightarrow \infty\), \(Q \in L^{\infty}(\mathbb{R}^{N} )\cap L^{r} (\mathbb{R}^{N} )\), for some \(r \geq 1\), is positive almost everywhere in \(\mathbb{R}^{N}\), Abreu [30] showed the existence of a ground state solution of problem (1.6) in \(H_{0}^{1}(\mathbb{R}^{2})\).
In this paper, we consider the problem
$$ \textstyle\begin{cases} -\operatorname{div}(\vert \triangledown u\vert ^{N-2}\triangledown u)+V(x)\vert u\vert ^{N-2}u =Q(x)\frac{f(u)}{\vert x\vert ^{\eta}}, \quad x \in \mathbb{R}^{N}, \\ u\in W^{1, N}(\mathbb{R}^{N}), \end{cases}\displaystyle \hspace{90pt}(P_{\eta}) $$
where \(N\geq2\), \(0\leq\eta< N\), \(V : \mathbb{R}^{N} \rightarrow \mathbb{R}\) is a continuous function satisfying the following hypothesis:

\(V(x) \geq V_{0 }> 0\).

Suppose \(Q : \mathbb{R}^{N} \rightarrow\mathbb{ R}\cup\{-\infty, +\infty\}\) satisfying:


\(Q>0\) is positive almost everywhere in \(\mathbb{R}^{N}\).


\(Q\in L^{\infty}(\mathbb{R}^{N})\).

Furthermore, we assume that \(f : \mathbb{R} \rightarrow \mathbb{R}\) is a continuous function satisfying:


\(f (t) = o(\vert t\vert ^{N-1} )\) as \(t \rightarrow 0\), i.e. \(\lim_{t\rightarrow0}\frac{f(t)}{\vert t\vert ^{N-1}}=0\).

\(f(t)\) has exponential subcritical growth at +∞, i.e. for all \(\alpha > 0\), we have
$$\lim_{\vert t\vert \rightarrow +\infty}\frac{f(t)}{e^{\alpha \vert t\vert ^{\frac{N}{N-1}}}}= 0. $$
There exists \(\theta>N\) such that
$$0 < \theta F(t) \leq tf(t),\quad \forall t\in \mathbb{R}\backslash\{0\}, $$
where \(F(t)=\int_{0}^{t}f(s)\,ds\), this is the well-known Ambrosetti-Rabinowitz condition.
Define a function space
$$E=\biggl\{ u \in W^{1, N}\bigl(\mathbb{R}^{N}\bigr)\Bigm| \int_{\mathbb{R}^{N}}V(x)\vert u\vert ^{N}\,dx< \infty\biggr\} , $$
which is equipped with the norm
$$\Vert u\Vert = \biggl( \int_{\mathbb{R}^{N}}\vert \triangledown u\vert ^{N}+V(x)\vert u \vert ^{N}\,dx \biggr)^{\frac{1}{N}}, $$
then the assumption \(V(x)\geq V_{0}>0\) implies E is a reflexive Banach space. For \(0\leq \eta< N\), we define a singular eigenvalue by
$$\lambda_{\eta}=\inf_{u\in E\backslash\{0\}}\frac{\Vert u \Vert ^{N}}{\int_{\mathbb{R}^{N}}\vert Q(x)\vert \frac{\vert u\vert ^{N}}{\vert x\vert ^{\eta}}\,dx}. $$
If \(\eta = 0\), obviously we have \(\lambda_{0} > 0\). If \(0 <\eta <N\), the continuous embedding of \(E\hookrightarrow L^{q}(\mathbb{R}^{N})\) (\(q \geq N\)) and the Hölder inequality imply
$$\begin{aligned} & \int_{\mathbb{R}^{N}}\bigl\vert Q(x)\bigr\vert \frac{\vert u\vert ^{N}}{\vert x\vert ^{\eta}}\,dx \\ &\quad \leq \Vert Q\Vert _{L^{\infty}(\mathbb{R}^{N})} \int_{\{\vert x\vert >1\}}\vert u\vert ^{N}\,dx +\Vert Q\Vert _{L^{\infty}(\mathbb{R}^{N})} \biggl( \int_{\{\vert x\vert \leq1\}}\vert u\vert ^{Nt}\,dx \biggr)^{\frac{1}{t}} \biggl( \int_{\{\vert x\vert \leq1\}}\frac{1}{\vert x\vert ^{\eta t'}}\,dx \biggr)^{\frac{1}{t'}} \\ &\quad \leq C \int_{\mathbb{R}^{N}}\bigl(\vert u\vert ^{N}+\vert \triangledown u \vert ^{N}\bigr)\,dx, \end{aligned}$$
where \(1/t + 1/t' = 1\), \(0 < \eta t'< N\), and thus \(\lambda_{\eta} > 0\) since \(V\geq V_{0}>0\).
For all \(q \geq N\), the embedding
$$E\hookrightarrow W^{1, N}\bigl(\mathbb{R}^{N}\bigr) \hookrightarrow L^{q}\bigl(\mathbb{R}^{N}\bigr) $$
is continuous. Furthermore, we see that the embedding \(E\hookrightarrow L^{q}(\mathbb{R}^{N})\) (\(q\geq N\)) is compact (see [23]) if V satisfies the following hypothesis:

\(\frac{1}{V}\in L^{1}(\mathbb{R}^{N})\).

Definition 1

We say that \(u\in E\) is a weak solution of problem \((P_{\eta} )\) if
$$\int_{\mathbb{R}^{N}}\bigl(\vert \triangledown u\vert ^{N-2} \triangledown u \triangledown \phi +V(x)\vert u\vert ^{N-2}u\phi \bigr)\,dx- \int_{\mathbb{R}^{N}}Q(x)\frac{f(u)}{\vert x\vert ^{\eta}}\phi \,dx=0,\quad \forall \phi \in E. $$
Define \(I:E\rightarrow \mathbb{R}\) by
$$ I(u)=\frac{1}{N}\Vert u\Vert - \int_{\mathbb{R}^{N}}Q(x)\frac{F(u)}{\vert x\vert ^{\eta}}\,dx,\quad u\in E. $$
From condition \((f_{1})\), it follows that there exist positive constants α and \(C_{1}\) such that
$$\int_{\mathbb{R}^{N}}\biggl\vert Q(x)\frac{F(u)}{\vert x\vert ^{\eta}}\biggr\vert \,dx \leq C_{1}\Vert Q\Vert _{L^{\infty}(\mathbb{R}^{N})} \int_{\mathbb{R}^{N}}\frac{(e^{\alpha \vert u\vert ^{\frac{N}{N-1}}}-S_{N-2}(\alpha, u))}{\vert x\vert ^{\eta}}\,dx,\quad \forall u\in E, $$
where \(S_{N-2}(\alpha, u)=\sum_{k=0}^{N-2}\frac{\alpha^{k}\vert u\vert ^{kN/(N-1)}}{k!}\), thus, I is well defined thanks to the Trudinger-Moser inequality and \(I\in C^{1}(E, \mathbb{R})\). A straightforward calculation shows that
$$\bigl\langle I'(u), \phi\bigr\rangle = \int_{\mathbb{R}^{N}}\vert \triangledown u\vert ^{N-2} \triangledown u \triangledown \phi \,dx+ \int_{\mathbb{R}^{N}}V(x)\vert u\vert ^{N-2}u\phi \,dx- \int_{\mathbb{R}^{N}}Q(x)\frac{f(u)}{\vert x\vert ^{\eta}}\phi \,dx, $$
for all \(u, \phi\in E\), hence, a critical point of (1.7) is a weak solution of \((P_{\eta})\).

Definition 2


A solution u of problem \((P_{\eta})\) is said to be ground state if
$$I(u)=\inf\bigl\{ I(\omega):\omega \in W^{1, N}\bigl(\mathbb{R}^{N} \bigr)\backslash\{0\},I'(\omega)\omega=0 \bigr\} , $$
where \(I :E \rightarrow \mathbb{R}\) is the functional associated to \((P_{\eta})\).

In this paper, we prove the existence of a ground state solution about problem \((P_{\eta})\) under weak conditions.

Theorem 1.1

Suppose \(V(x) \geq V_{0 }> 0\) in \(\mathbb{R}^{N}(N\geq2)\), \((V_{1})\), \((f_{0})\)-\((f_{2})\), η and σ are two numbers which satisfy
$$ 0\leq\eta< \frac{N-1}{N},\qquad \sigma>\frac{N-\eta}{N-1-N\eta}. $$
Let the function Q satisfy \((Q_{1})\)-\((Q_{2})\) and

\(Q\in L^{r}(\mathbb{R}^{N})\), for some \(r > \frac{N^{2}\sigma}{\sigma(N-1-2\eta)+\eta-N}\),

then \((P_{\eta})\) has a nontrivial solution. Furthermore, if the function f also satisfies

\(s \mapsto \frac{f(s)}{s^{N-1}}\) is increasing for \(s>0\)

then this solution is a ground state.

This paper is organized as follows: in Section 2, we introduce some preliminary results. In Section 3, we demonstrate Theorem 1.1.

2 Preliminaries

Lemma 2.1

Let θ be the number given by the condition \((f_{2})\) and \(\{u_{n}\}\) be a sequence satisfying
$$\limsup_{n\rightarrow\infty} \Vert u_{n}\Vert ^{\frac{N}{N-1}} \leq \biggl(\frac{N\theta}{\theta-N} \biggr)^{\frac{1}{N-1}}c^{\frac{1}{N-1}}, $$
for some \(c > 0\). Then there exist constants \(\alpha > 0\), \(t > 1\), \(C > 0\), independent of n, such that
$$\int_{\mathbb{R}^{N}} \biggl(\frac{e^{\alpha \vert u_{n}\vert ^{\frac{N}{N-1}}}-S_{N-2}(\alpha, u_{n})}{\vert x\vert ^{\eta}} \biggr)^{t}\,dx \leq C, $$
for n large enough.


$$ \alpha=\frac{\alpha_{N}}{\sigma} \biggl(1-\frac{\eta}{N} \biggr) \biggl(\frac{\theta-N}{N\theta} \biggr)\frac{1}{c}, $$
where \(\alpha_{N}=N\omega_{N-1}^{1/(N-1)}\) and \(\omega_{N-1}\) is the measure of the unit sphere in \(\mathbb{R}^{N}\).
Since \(0\leq\eta< N\), we have \(\alpha>0\). Moreover, let
$$m:=\frac{1}{N} \biggl(N-1+\sigma\cdot\frac{N}{N-\eta} \biggr) \biggl( \frac{N\theta}{\theta-N} \biggr)^{\frac{1}{N-1}} c^{\frac{1}{N-1}}, $$
then by (1.8)
$$\biggl(\frac{N\theta}{\theta-N} \biggr)^{\frac{1}{N-1}}c^{\frac{1}{N-1}}< m, $$
hence, passing to a subsequence, there exists \(n_{0}\in \mathbb{N}\) such that
$$\Vert u_{n}\Vert ^{\frac{N}{N-1}}< m,\quad \forall n\geq n_{0}. $$
From (1.8), we also have
$$\frac{N^{2}}{2N-1}< \frac{N^{2}\sigma}{N-\eta+N\sigma+N\sigma \eta}. $$
Let t satisfy
$$ \frac{N^{2}}{2N-1}< t< \frac{N^{2}\sigma}{N-\eta+N\sigma+N\sigma \eta}. $$
For such t, we have
$$\frac{N^{2}}{2N-1}< t< \biggl(1-\frac{\eta t}{N} \biggr)\frac{N^{2}\sigma}{N-\eta+N\sigma}. $$
Let \(\beta\in \mathbb{R}\) such that
$$t< \beta< \biggl(1-\frac{\eta t}{N} \biggr)\frac{N^{2}\sigma}{N-\eta+N\sigma}= \biggl(1- \frac{\eta t}{N} \biggr)\frac{\alpha_{N}}{\alpha m}. $$
Notice \(\frac{m}{\Vert u_{n}\Vert ^{\frac{N}{N-1}}}> 1\), using Lemma 2.1 in Yang [27], we have
$$\int_{\mathbb{R}^{N}}\frac{ (e^{\alpha \vert u_{n}\vert ^{\frac{N}{N-1}}}-S_{N-2}(\alpha, u_{n}) )^{t}}{\vert x\vert ^{\eta t}}\,dx\leq C \int_{\mathbb{R}^{N}}\frac{e^{\beta\alpha m(\frac{\vert u_{n}\vert }{\Vert u_{n}\Vert })^{\frac{N}{N-1}}}-S_{N-2}(\beta\alpha m, \frac{\vert u_{n}\vert }{\Vert u_{n}\Vert })}{\vert x\vert ^{\eta t}}\,dx, $$
for each \(n\geq n_{0}\). By the choice of β, we have
$$\beta\alpha m< \biggl(1-\frac{\eta t}{N} \biggr)\alpha_{N}. $$
Then we conclude the proof by using the Trudinger-Moser inequality [23, 24]. □

Lemma 2.2

Suppose \(\{u_{n}\}\) is bounded in E and the assumptions of \((Q_{1})\)-\((Q_{3})\) and \((f_{0})\)-\((f_{1})\) are satisfied. If
$$Q(x)\frac{\vert f(u_{n}(x))u_{n}(x)\vert }{\vert x\vert ^{\eta}}\rightarrow Q(x)\frac{\vert f(u(x))u(x)\vert }{\vert x\vert ^{\eta}}\quad \textit{a.e. in } \mathbb{R}^{N}, $$
$$ \int_{\mathbb{R}^{N}}Q(x)\frac{f(u_{n})u_{n}}{\vert x\vert ^{\eta}}\,dx\rightarrow \int_{\mathbb{R}^{N}}Q(x)\frac{f(u)u}{\vert x\vert ^{\eta}}\,dx. $$


From \((f_{0})\) and \((f_{1})\), for all \(\varepsilon>0\) and α, there exist positive constants δ, K, C, such that
$$\bigl\vert f(s)s\bigr\vert \leq \varepsilon \vert s\vert ^{N}+ \varepsilon C\vert s\vert ^{N+1}\bigl[e^{\alpha s^{\frac{N}{N-1}}}-S_{N-2}( \alpha, s)\bigr]+\max_{\delta\leq \vert s\vert \leq K}\bigl\vert f(s)s\bigr\vert ,\quad \forall s\in \mathbb{R}. $$
For \(R > 0\), then
$$\begin{aligned} & \int_{B_{R}(0)}Q(x)\frac{\vert f(u_{n})u_{n}\vert }{\vert x\vert ^{\eta}}\,dx \\ &\quad \leq \varepsilon \Vert Q\Vert _{L^{\infty}(\mathbb{R}^{N})} \int_{\mathbb{R}^{N}}\frac{\vert u_{n}\vert ^{N}}{\vert x\vert ^{\eta}}\,dx+ \varepsilon C\Vert Q\Vert _{L^{\infty}(\mathbb{R}^{N})} \int_{\mathbb{R}^{N}}\vert u_{n}\vert \frac{(e^{\alpha u_{n}^{\frac{N}{N-1}}}-S_{N-2}(\alpha, u_{n}))}{\vert x\vert ^{\eta}}\,dx \\ &\qquad {}+\max_{\delta\leq \vert s\vert \leq K}\bigl\vert f(s)s\bigr\vert \bigl\vert {B_{R}(0)}\bigr\vert . \end{aligned}$$
Here, \(\vert {B_{R}(0)}\vert \) denotes the volume of the ball \({B_{R}(0)}\). We can consider \(\alpha>0\) given by (2.1) and Lemma 2.1 implies that there exists \(t > 1\) such that, up to a subsequence,
$$\frac{e^{\alpha u_{n}^{\frac{N}{N-1}}}-S_{N-2}(\alpha, u_{n})}{\vert x\vert ^{\eta}} \in L^{t}\bigl(\mathbb{R}^{N}\bigr), \quad \forall n\in\mathbb{ N} , $$
and there exists \(C > 0\) such that
$$\int_{\mathbb{R}^{N}} \biggl(\frac{e^{\alpha \vert u_{n}\vert ^{\frac{N}{N-1}}}-S_{N-2}(\alpha, u_{n})}{\vert x\vert ^{\eta}} \biggr)^{t}\,dx \leq C,\quad \forall n\in \mathbb{N} . $$
By applying Hölder’s inequality with exponents t and its conjugate \(t'\) and using a continuous embedding, we see that there exist positive constants \(C_{1}\) and \(C_{2}\) such that
$$ \int_{B_{R}(0)}Q(x)\frac{\vert f(u_{n})u_{n}\vert }{\vert x\vert ^{\eta}}\,dx\leq\varepsilon C_{1}+\varepsilon C_{2}+\max_{\delta\leq \vert s\vert \leq K}\bigl\vert f(s)s\bigr\vert \bigl\vert {B_{R}(0)}\bigr\vert . $$
On the other hand, for all \(\varepsilon> 0\) and all \(\alpha> 0\), there exists \(C = C(\varepsilon, \alpha) > 0\) such that
$$\bigl\vert f(s)s\bigr\vert \leq \varepsilon \vert s\vert ^{N}+C\vert s\vert ^{N+1}\bigl(e^{\alpha s^{\frac{N}{N-1}}}-S_{N-2}( \alpha, s)\bigr),\quad \forall s\in \mathbb{R}. $$
Then we have
$$\begin{aligned} & \int_{\mathbb{R}^{N}\backslash B_{R}(0)}Q(x)\frac{\vert f(u_{n})u_{n}\vert }{\vert x\vert ^{\eta}}\,dx \\ &\quad \leq\varepsilon \Vert Q\Vert _{L^{\infty}(\mathbb{R}^{N})} \int_{\mathbb{R}^{N}\backslash B_{R}(0)}\frac{\vert u_{n}\vert ^{N}}{\vert x\vert ^{\eta}}\,dx \\ &\qquad {}+C \int_{\mathbb{R}^{N}\backslash B_{R}(0)}Q(x)\vert u_{n}\vert ^{N+1} \frac{(e^{\alpha u_{n}^{\frac{N}{N-1}}}-S_{N-2}(\alpha, u_{n}))}{\vert x\vert ^{\eta}}\,dx. \end{aligned}$$
By considering \(\alpha > 0\) given by (2.1) and applying the Holder inequality with exponents r given by \((Q_{3})\), t given by (2.2), and \(N^{2}\) such that
$$\frac{1}{r}+\frac{1}{t}+\frac{1}{N^{2}}=1, $$
from the Hölder inequality and there being a continuous embedding, there exist positive constants \(C_{3}\) and \(C_{4}\) such that
$$\int_{\mathbb{R}^{N}\backslash B_{R}(0)}Q(x)\frac{\vert f(u_{n})u_{n}\vert }{\vert x\vert ^{\eta}}\,dx\leq\varepsilon C_{3}+C_{4} \biggl( \int_{\mathbb{R}^{N}\backslash B_{R}(0)}Q(x)^{r}\,dx \biggr)^{\frac{1}{r}}. $$
Using \((Q_{3})\), we have
$$\int_{\mathbb{R}^{N}\backslash B_{R}(0)}Q(x)^{r}\,dx\rightarrow 0\quad \mbox{as } R \rightarrow +\infty. $$
Thus, for \(R > 0\) large enough,
$$ \int_{\mathbb{R}^{N}\backslash B_{R}(0)}Q(x)\frac{\vert f(u_{n})u_{n}\vert }{\vert x\vert ^{\eta}}\,dx\leq\varepsilon C_{3}+\varepsilon C_{4}. $$
From (2.4) and (2.5), the sequence
$$\biggl\{ Q(x)\frac{\vert f(u_{n})u_{n}\vert }{\vert x\vert ^{\eta}}\biggr\} $$
is equi-integrable. If
$$Q(x)\frac{\vert f(u_{n}(x))u_{n}(x)\vert }{\vert x\vert ^{\eta}}\rightarrow Q(x)\frac{\vert f(u(x))u(x)\vert }{\vert x\vert ^{\eta}} \quad \mbox{a.e. in } \mathbb{R}^{N}, $$
Vitali’s theorem implies (2.3). □

Firstly one proves that functional I has the geometry of the mountain-pass theorem, more exactly, we have the following lemma.

Lemma 2.3


If \(V(x) \geq V_{0 }> 0\) in \(\mathbb{R}^{N}\), \((V_{1})\), \((f_{0})\)-\((f_{2})\) are satisfied, then the functional I verifies the following properties:
  1. (i)
    There exist \(r, \rho > 0\), such that when \(\Vert u\Vert =r\),
    $$I(u)\geq \rho. $$
  2. (ii)

    There exists \(e\in B_{r}^{c}(0)\) with \(I(e)<0\).

By Lemma 2.3, using a version of the mountain-pass theorem without the Palais-Smale condition (see [31]), we obtain the existence of a sequence \(\{u_{n}\}\) in E satisfying
$$ I(u_{n})\rightarrow c\quad \mbox{and} \quad I'(u_{n})\rightarrow 0\quad \mbox{in }X', $$
where \(c=\inf_{\gamma\in \Gamma}\max_{t\in[0, 1]}I(\gamma(t))>0\), \(\Gamma=\{\gamma \in C([0, 1], X): \gamma(0) = 0, I(\gamma(1)) < 0\}\).

Lemma 2.4


Suppose \(V(x) \geq V_{0 }> 0\) in \(\mathbb{R}^{N}\), \((V_{1})\), \((f_{0})\)-\((f_{2})\) are satisfied, let \(\{u_{n}\}\) be an arbitrary Palais-Smale sequence, then \(\{u_{n}\}\) is bounded and there exists a subsequence of \(\{u_{n}\}\) (still denoted by \(\{u_{n}\}\)), \(u\in E\) such that
$$ \textstyle\begin{cases} Q(x)\frac{f(u_{n})}{\vert x\vert ^{\eta}}\rightarrow Q(x)\frac{f(u)}{\vert x\vert ^{\eta}}\quad \textit{strongly in } L^{1}_{\mathrm{loc}}(\mathbb{R}^{N}), \\ \triangledown u_{n}\rightarrow \triangledown u\quad \textit{almost everywhere in }\mathbb{R}^{N},\\ \vert \triangledown u_{n}\vert ^{N-2}\triangledown u_{n}\rightharpoonup \vert \triangledown u\vert ^{N-2}\triangledown u\quad \textit{weakly in } (L^{N/(N-1)}(\mathbb{R}^{N}))^{N} . \end{cases} $$

Furthermore, u is a weak solution of \((P_{\eta})\).

3 Proof of the theorem

Proof of Theorem 1.1

By Lemma 2.3 and Lemma 2.4, we see that the Palais-Smale sequence \(\{u_{n}\}\) at the mountain pass level c is bounded in E and its weak limit u is a critical point of the functional I.

We will show that u is nonzero. Since \(\{u_{n}\}\) is a Palais-Smale sequence, Lemma 2.2 implies that
$$\lim_{n\rightarrow\infty} \Vert u_{n}\Vert ^{N}=\lim _{n\rightarrow\infty} \int_{\mathbb{R}^{N}}Q(x)\frac{f(u_{n})u_{n}}{\vert x\vert ^{\eta}}\,dx= \int_{\mathbb{R}^{N}}Q(x)\frac{f(u)u}{\vert x\vert ^{\eta}}\,dx. $$
Recalling that u is a critical point of I, we conclude that
$$\lim_{n\rightarrow\infty} \Vert u_{n}\Vert ^{N}= \int_{\mathbb{R}^{N}}Q(x)\frac{f(u)u}{\vert x\vert ^{\eta}}\,dx=\Vert u\Vert ^{N}. $$
If \(u\equiv0\), then
$$\lim_{n\rightarrow\infty} \Vert u_{n}\Vert ^{N}=0. $$
Since \(I\in C^{1}(E, \mathbb{R})\), we have
$$I(u_{n})\rightarrow 0, $$
and it is a contradiction because \(I(u_{n})\rightarrow c\) and \(c > 0\). This way, we conclude that u is nonzero.
Now, we will show that u is a ground state. Setting
$$m=\inf_{u\in \Lambda}I(u),\quad \Lambda:=\bigl\{ u\in E\backslash\{0 \}:I'(u)u=0\bigr\} . $$
Since \(\{u_{n}\}\) is a Palais-Smale sequence, we see that
$$\begin{aligned} 2c&=\liminf_{n\rightarrow\infty}2I(u_{n})=\liminf _{n\rightarrow\infty}\bigl(2I(u_{n})-I'(u_{n})u_{n} \bigr) \\ &=\liminf_{n\rightarrow\infty} \int_{\mathbb{R}^{N}}Q(x)\frac{(f(u_{n})u_{n}-2F(u_{n}))}{\vert x\vert ^{\eta}}\,dx. \end{aligned}$$
By Fatou’s lemma,
$$2c\geq \int_{\mathbb{R}^{N}}Q(x)\frac{(f(u)u-2F(u))}{\vert x\vert ^{\eta}}\,dx. $$
If u is a critical point of I, we have
$$2I(u)=\bigl(2I(u)-I'(u)u\bigr)= \int_{\mathbb{R}^{N}}Q(x)\frac{(f(u)u-2F(u))}{\vert x\vert ^{\eta}}\,dx. $$
Hence, we can conclude that \(I(u) \leq c\), thus \(m\leq c\). On the other hand, as in the proof of Theorem 3.1 in [32], let \(u\in \Lambda\) and define \(h:(0, +\infty)\rightarrow \mathbb{R}\) by \(h(t)=I(tu)\). We see that h is differentiable and
$$h'(t)=I'(tu)u=t^{N-1}\Vert u\Vert ^{N}- \int_{\mathbb{R}^{N}}Q(x)\frac{f(tu)u}{\vert x\vert ^{\eta}}\,dx,\quad \forall t>0. $$
Since \(I'(u)u=0\), we get
$$h'(t)=I'(tu)u-t^{N-1}I'(u)u, $$
$$h'(t)=t^{N-1} \int_{\mathbb{R}^{N}}\frac{Q(x)}{\vert x\vert ^{\eta}} \biggl(\frac{f(u)}{u^{N-1}}-\frac{f(tu)}{(tu)^{N-1}} \biggr)u^{N}\,dx,\quad \forall t>0. $$
Using the condition \((f_{4})\), we conclude that \(h'(t)>0\) for \(0< t<1\) and \(h'(t)<0\) for \(t>1\), since \(h'(1)=0\), thus,
$$I(u)=\max_{t\geq0}I(tu). $$
Now, define \(\gamma:[0, 1]\rightarrow E\), \(\gamma(t)=tt_{0}u\), where \(t_{0}\) is a real number which satisfies \(I(t_{0}u)<0\), we have \(\gamma\in \Gamma\), and therefore
$$c\leq\max_{t\in[0, 1]}I\bigl(\gamma(t)\bigr)\leq\max _{t\geq0}I(tu)=I(u), $$
\(u\in \Lambda\) is arbitrary, \(c\leq m\), thus \(I(u)=c=m\). This ends the proof of Theorem 1.1. □



The author would like to thank the referee for his/her valuable comments, which have led to an improvement of the presentation of this paper. This work was supported by the National Natural Science Foundation of China (11471147) and the college project of Chongqing University of Education in China (KY201548C).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

Department of Mathematics and Information Engineering, Chongqing University of Education


  1. Brézis, H: Elliptic equations with limiting Sobolev exponents. Commun. Pure Appl. Math. 39, 517-539 (1986) MathSciNetView ArticleMATHGoogle Scholar
  2. Brézis, H, Nirenberg, L: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437-477 (1983) MathSciNetView ArticleMATHGoogle Scholar
  3. Bartsch, T, Willem, M: On an elliptic equation with concave and convex nonlinearities. Proc. Am. Math. Soc. 123, 3555-3561 (1995) MathSciNetView ArticleMATHGoogle Scholar
  4. Capozzi, A, Fortunato, D, Palmieri, G: An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2, 463-470 (1985) MathSciNetMATHGoogle Scholar
  5. Garcia, A, Alonso, P: Existence and non-uniqueness for the p-Laplacian. Commun. Partial Differ. Equ. 12, 1389-1430 (1987) MATHGoogle Scholar
  6. Kryszewski, W, Szulkin, A: Generalized linking theorem with an application to semilinear Schrödinger equation. Adv. Differ. Equ. 3, 441-472 (1998) MathSciNetMATHGoogle Scholar
  7. Alama, S, Li, YY: Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Differ. Equ. 96, 89-115 (1992) MathSciNetView ArticleMATHGoogle Scholar
  8. Ding, WY, Ni, WM: On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Ration. Math. Anal. 31, 283-308 (1986) MathSciNetView ArticleMATHGoogle Scholar
  9. Jeanjean, L: Solutions in spectral gaps for a nonlinear equation of Schrödinger type. J. Differ. Equ. 112, 53-80 (1994) MathSciNetView ArticleMATHGoogle Scholar
  10. Adimurthi, A: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the N-Laplacian. Ann. Sc. Norm. Super. Pisa XVII, 393-413 (1990) MathSciNetMATHGoogle Scholar
  11. Adimurthi, A, Yadava, SL: Multiplicity results for semilinear elliptic equations in a bounded domain of \(\mathbb{R}^{2}\) involving critical exponent. Ann. Sc. Norm. Super. Pisa XVII, 481-504 (1990) MathSciNetMATHGoogle Scholar
  12. De Figueiredo, DG, Do Ó, JM, Ruf, B: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Commun. Pure Appl. Math. IV, 135-152 (2002) MathSciNetView ArticleMATHGoogle Scholar
  13. De Figueiredo, DG, Miyagaki, OH, Ruf, B: Elliptic equations in \(\mathbb{R}^{2}\) with nonlinearities in the critical growth range. Calc. Var. 3, 139-153 (1995) MathSciNetView ArticleMATHGoogle Scholar
  14. Do Ó, JM: Semilinear Dirichlet problems for the N-Laplacian in \(\mathbb{R}^{N}\) with nonlinearities in the critical growth range. Differ. Integral Equ. 9, 967-979 (1996) MathSciNetMATHGoogle Scholar
  15. Panda, R: On semilinear Neumann problems with critical growth for the N-Laplacian. Nonlinear Anal. 26, 1347-1366 (1996) MathSciNetView ArticleMATHGoogle Scholar
  16. Moser, J: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1091 (1971) MathSciNetView ArticleMATHGoogle Scholar
  17. Pohozaev, S: The Sobolev embedding in the special case pl = n. In: Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965. Mathematics Sections, pp. 158-170. Moscov. Energet. Inst., Moscow (1965) Google Scholar
  18. Trudinger, NS: On embeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473-484 (1967) MathSciNetMATHGoogle Scholar
  19. Cao, DM: Nontrivial solution of semilinear elliptic equations with critical exponent in \(\mathbb{R}^{2}\). Commun. Partial Differ. Equ. 17, 407-435 (1992) View ArticleMATHGoogle Scholar
  20. Panda, R: Nontrivial solution of a quasilinear elliptic equation with critical growth in \(\mathbb{R}^{N}\). Proc. Indian Acad. Sci. Math. Sci. 105, 425-444 (1995) MathSciNetView ArticleMATHGoogle Scholar
  21. Do Ó, JM: N-Laplacian equations in \(\mathbb{R}^{N}\) with critical growth. Abstr. Appl. Anal. 2, 301-315 (1997) MathSciNetView ArticleMATHGoogle Scholar
  22. Alves, CO, Figueiredo, GM: On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in \(\mathbb{R}^{N}\). J. Differ. Equ. 246, 1288-1311 (2009) MathSciNetView ArticleMATHGoogle Scholar
  23. Adimurthi, A, Yang, Y: An interpolation of Hardy inequality and Trudinger-Moser inequality in \(\mathbb{R}^{N}\) and its applications. Int. Math. Res. Not. 13, 2394-2426 (2010) MathSciNetMATHGoogle Scholar
  24. Souza, M, Do Ó, JM: On singular Trudinger-Moser type inequalities for unbounded domains and their best exponents. Potential Anal. 38, 1091-1101 (2013) MathSciNetView ArticleMATHGoogle Scholar
  25. Do Ó, JM, Medeiros, E, Severo, U: On a quasilinear nonhomogeneous elliptic equation with critical growth in \(\mathbb{R}^{N}\). J. Differ. Equ. 246, 1363-1386 (2009) MathSciNetView ArticleMATHGoogle Scholar
  26. Yang, Y: Adams type inequalities and related elliptic partial differential equations in dimension four. J. Differ. Equ. 252, 2266-2295 (2012) MathSciNetView ArticleMATHGoogle Scholar
  27. Yang, Y: Existence of positive solutions to quasilinear elliptic equations with exponential growth in the whole Euclidean space. J. Funct. Anal. 262, 1679-1704 (2012) MathSciNetView ArticleMATHGoogle Scholar
  28. Lam, N, Lu, G: Existence and multiplicity of solutions to equations of n-Laplacian type with critical exponential growth in \(\mathbb{R}^{N}\). J. Funct. Anal. 262, 1132-1165 (2012) MathSciNetView ArticleMATHGoogle Scholar
  29. Alves, CO, Souto, M, Montenegro, M: Existence of solution for two classes of elliptic problems in \(\mathbb{R}^{N}\) with zero mass. J. Differ. Equ. 252(10), 5735-5750 (2012) MathSciNetView ArticleMATHGoogle Scholar
  30. Abreu, R: Existence of a ground state solution for a singular elliptic problem in unbounded domain and dimension 2. Nonlinear Anal. 98, 104-109 (2014) MathSciNetView ArticleMATHGoogle Scholar
  31. Willem, M: Minimax Theorems. Birkhauser, Basel (1996) View ArticleMATHGoogle Scholar
  32. Do Ó, JM, Souza, M, Medeiros, E, Severo, U: An improvement for the Trudinger-Moser inequality and applications. J. Differ. Equ. 256, 1317-1349 (2014) MathSciNetView ArticleMATHGoogle Scholar


© The Author(s) 2017