- Research
- Open access
- Published:
Positive solutions to boundary value problems of p-Laplacian with fractional derivative
Boundary Value Problems volume 2017, Article number: 5 (2017)
Abstract
In this article, we consider the following boundary value problem of nonlinear fractional differential equation with p-Laplacian operator:
where \(1<\alpha\leq2\) is a real number, \(D^{\alpha}\) is the conformable fractional derivative, \(\phi_{p}(s)=\vert s\vert ^{p-2}s\), \(p>1\), \(\phi_{p}^{-1}=\phi_{q}\), \(1/p+1/q=1\), and \(f:[0, 1]\times[0,+\infty)\to[0,+\infty)\) is continuous. One of the difficulties here is that the corresponding Green’s function \(G(t, s)\) is singular at \(s= 0\). By the use of an approximation method and fixed point theorems on cone, some existence and multiplicity results of positive solutions are acquired. Some examples are presented to illustrate the main results.
1 Introduction
Recently, differential equations have been of great interest. Integer order differential equations with p-Laplacian have been subject to a lot of research [1, 2]. Now, many people pay attention to the existence and multiplicity of solutions for boundary value problems of fractional differential equations with p-Laplacian by the use of techniques of nonlinear analysis [3–6], upper and lower solutions method [7, 8], coincidence degree [9], Banach contraction mapping principle [10], etc.
Chen et al. [9] investigated the boundary value problem for a fractional differential equation with a p-Laplacian operator at resonance,
where \(0< \alpha, \beta\leq1\), \(1< \alpha+ \beta\leq2\), and \(D_{0+}^{\alpha}\) is the Caputo fractional derivative. \(\phi _{p}(s)=\vert s\vert ^{p-2}s\), \(p>1\), \(\phi_{p}^{-1}=\phi_{q}\), \(1/p+1/q=1\). By using the coincidence degree theory, a new result of the existence of solution is obtained.
Lu et al. [7] studied the following p-Laplacian fractional differential equations boundary problems:
where \(2< \alpha\leq3\), \(1< \beta\leq2\), \(D_{0+}^{\alpha}\), \(D_{0+}^{\beta}\) are the standard Riemann-Liouville fractional derivatives, \(\phi _{p}(s)=\vert s\vert ^{p-2}s\), \(p>1\), \(\phi_{p}^{-1}=\phi_{q}\), \(1/p+1/q=1\), and \(f:[0, 1]\times[0,+\infty)\to [0,+\infty)\) is continuous. By the properties of the Green’s function, the Guo-Krasnosel’skii fixed point theorem, the Leggett-Williams fixed point theorem, and the upper and lower solutions method, some new existence results are obtained.
To the best of our knowledge, most of the literature about boundary value problems did not involve the singularity of \(G(t, s)\). Therefore, in order to fill this gap in the literature, in this paper, we investigate the following p-Laplacian fractional differential equation boundary value problem:
where \(1<\alpha\leqslant2\) is a real number, \(D^{\alpha}\) is the conformable fractional derivative, \(\phi_{p}(s)=\vert s\vert ^{p-2}s\), \(p>1\), \(\phi_{p}^{-1}=\phi_{q}\), \(1/p+1/q=1\), \(f:[0, 1]\times[0,+\infty)\to [0,+\infty)\) is continuous. By the approximation method and fixed point theorems on cone, some existence and multiplicity results of positive solutions are obtained. For \(\alpha= 2\), Problem (1.1), (1.2) is called a fourth p-Laplacian boundary value problem, which has been studied in [11–13].
The rest of this paper is organized as follows. In Section 2, we recall some concepts relative to the new conformable fractional calculus and give some lemmas with respect to the corresponding Green’s function. In Section 3, we investigate the existence of positive solution for the boundary value problem (1.1), (1.2). In Section 4, the multiplicity of positive solutions is studied. In Section 5, we present some examples to illustrate our main results in Section 3 and Section 4, respectively.
2 Preliminaries and lemmas
For the convenience of the reader, we give some background material from fractional calculus theory to facilitate the analysis of Problem (1.1), (1.2). These results can be found in the recent literature; see [14–16].
Definition 2.1
Let \(\alpha\in(n, n+ 1]\) and f be a n-differentiable function at \(t> 0\), then the fractional conformable derivative of order α at \(t> 0\) is given by
provided the limit of the right hand side exists. If f is α-differentiable in some \((0, a)\), \(a> 0\), and \(\lim_{t\rightarrow0^{+}}D^{\alpha}f(t)\) exists, then define
Remark 2.1
As a basic example, given \(\alpha\in(n, n+ 1]\), we have
where \(k= 0, 1, \dots , n\).
Lemma 2.1
Let \(t>0\), \(\alpha\in(n, n+1]\). The function \(f(t)\) is \((n+ 1)\)-differentiable if and only if f is α-differentiable, moreover, \(D^{\alpha}f(t)= t^{n+ 1- \alpha}f^{(n+ 1)}(t)\).
Proof
Let \(h= \epsilon t^{n+ 1- \alpha}+ O(\epsilon^{2})\). With Definition 2.1, we have
The proof is complete. □
Definition 2.2
[14]
Let \(\alpha\in(n, n+1]\). The fractional integral of order \(\alpha> 0\) at \(t> 0\) of a function \(f: (0, \infty)\rightarrow R\) is given by
where \(I^{n+ 1}\) denotes the integration operator of order \(n+ 1\).
Lemma 2.2
Let \(\alpha\in(n, n+ 1]\) and f be a continuous function defined in \((0, +\infty)\), one has \(D^{\alpha}I^{\alpha }f(t)=f(t)\) for \(t> 0\).
Proof
Since \(f(t)\) is continuous, \(I^{\alpha}f(t)\) is \((n+ 1)\)-differentiable. In view of Lemma 2.1 one has
The proof is complete. □
Lemma 2.3
[16] Mean value theorem
Let \(a\geq0\) and \(f: [a, b]\rightarrow R\) be a function with the properties that
- (1):
-
f is continuous on \([a, b]\),
- (2):
-
f is α-differentiable on \((a, b)\) for some \(\alpha \in(0, 1)\).
Then there exists \(c\in(a, b)\) such that
Lemma 2.4
Let \(\alpha\in(n, n+ 1]\), f be a α-differentiable function at \(t> 0\), then \(D^{\alpha}f(t)= 0\) for \(t\in (0, \infty)\) if and only if \(f(t)= a_{0}+ a_{1}t+ \cdots + a_{n- 1}t^{n- 1}+ a_{n}t^{n}\), where \(a_{k}\in R\), for \(k= 0, 1, \dots ,n\).
Proof
The sufficiency follows by Remark 2.1.
Next, given \(t_{1}, t_{2}\in (0, \infty)\) with \(t_{1}< t_{2}\), by Lemma 2.3, there exists \(\xi\in(t_{1}, t_{2})\) such that
By means of \(D^{\alpha}f(\xi)= 0\), we have \(f^{(n)}(t_{2})= f^{(n)}(t_{1})\), with arbitrary \(t_{1}, t_{2}\), one has \(f^{(n)}(t)\equiv C\) and \(f(t)= a_{0}+ a_{1}t+ \cdots + a_{n- 1}t^{n- 1}+ a_{n}t^{n}\), for \(t\in (0, \infty)\). □
With Lemma 2.2 and Lemma 2.4, the following lemma is immediate.
Lemma 2.5
Assume that \(u\in C(0, +\infty)\) with a fractional derivative of order \(\alpha\in(n, n+ 1]\) that belongs to \(C(0, 1)\cap L(0, 1)\). Then
for some \(c_{k}\in R\), \(k= 0, 1, \dots , n\).
Now, we present the Green’s function. In the following arguments, we always suppose that \(\alpha\in(1, 2]\).
Lemma 2.6
Given \(y\in C[0, 1]\), the unique solution of
is
where
Proof
Applying Lemma 2.5 we reduce equation (2.5) to an equivalent integral equation,
for some \(c_{0}, c_{1} \in R\). By (2.6), we have \(c_{0}= 0\), \(c_{1}= \int_{0}^{1}(t- s)s^{\alpha-2}y(s)\,ds\). Therefore, the unique solution of Problem (2.5), (2.6) is
The proof is complete. □
We point out here that (2.7) becomes the usual Green’s function when \(\alpha= 2\).
Lemma 2.7
Let \(y\in C[0,1]\) and \(1<\alpha\leq2\). Then the fractional differential equation boundary value problem
has a unique solution,
Proof
Apply the operator \(I^{\alpha}\) on both sides of (2.8), with Lemma 2.5, we have
So,
for some \(C_{0}, C_{1} \in\mathbb{R}\). By the boundary conditions \(D^{\alpha}u(0)= D^{\alpha}u(1)= 0\), we have
Therefore, the solution \(u(t)\) of the fractional differential equation boundary value problem (2.8) and (2.9) satisfies
Thus, the fractional differential equation boundary value problem (2.8) and (2.9) is equivalent to the problem
Lemma 2.6 implies that the fractional differential equation boundary value problem (2.8) and (2.9) has a unique solution,
The proof is complete. □
Lemma 2.8
The function \(G(t, s)\) defined by (2.7) satisfies the following properties:
- (i):
-
\(G(t, s)> 0\), for all \(t, s\in(0, 1)\);
- (ii):
-
\(\min_{\frac{1}{4}\leq t\leq\frac{3}{4}}G(t, s)\geq\frac{1}{4}\max_{0\leq t\leq1}G(t, s)= \frac{1}{4}G(s, s)\), for \(s\in(0, 1)\).
Proof
Observing the expression of \(G(t, s)\), it is clear that \(G(t, s)> 0\) for \(t, s\in(0, 1)\). Next, for given \(s\in(0, 1)\) we consider the partial derivative of \(G(t, s)\) with respect to t,
This shows that \(G(t, s)\) is decreasing with respect to t for \(s\leq t\), and increasing for \(t\leq s\).
So,
and
Let
Clearly, \(\gamma(s)\geq\frac{1}{4}\), \(s\in(0, 1)\), the proof is complete. □
It should be noted that the constant bound is new for fractional derivatives. It was pointed out that the Riemann-Liouville fractional derivative does not allow one to get a positive constant boundary (see [3], Remark 2.2).
Lemma 2.9
[17]
- (1):
-
If \(1< q \leq2\), then
$$\bigl\vert \phi_{q} (u+ v)- \phi_{q} (u)\bigr\vert \leq2^{2-q}\vert v\vert ^{q-1} $$for all \(u, v\in R\).
- (2):
-
If \(q> 2\), then
$$\bigl\vert \phi_{q} (u+ v)- \phi_{q} (u)\bigr\vert \leq(q-1) \bigl(\vert u\vert + \vert v\vert \bigr)^{q-2}\vert v \vert $$for all \(u, v\in R\).
Lemma 2.10
[18]
Suppose E is a Banach space and \(T_{n}: E\rightarrow E\), \(n= 3, 4, \dots\) are completely continuous operators, \(T: E\rightarrow E\). If \(\Vert T_{n}u- Tu\Vert \) uniformly converges to zero when \(n\rightarrow\infty\) for all bounded set \(\Omega\subseteq E\), then \(T: E\rightarrow E\) is completely continuous.
Definition 2.3
The map θ is said to be a nonnegative continuous concave functional on a cone P of a Banach space E provided that \(\theta: P\rightarrow[0, \infty) \) is continuous and
for all \(x, y\in P\) and \(0< t< 1\).
The following fixed point theorems are useful in our proofs.
Lemma 2.11
[19]
Let E be a Banach space, \(P\subseteq E\) a cone, and \(\Omega_{1}\), \(\Omega_{2}\) two bounded open balls of E centered at the origin with \(\overline{\Omega_{1}}\subset\Omega_{2}\). Suppose that \(\mathcal{A}: P\cap(\overline{\Omega_{2}}\backslash\Omega_{1})\rightarrow P\) is a completely continuous operator such that either
- (i):
-
\(\Vert \mathcal{A} x\Vert \leq \Vert x\Vert \), \(x\in P\cap\partial\Omega _{1}\), and \(\Vert \mathcal{A} x\Vert \geq \Vert x\Vert \), \(x\in P\cap\partial\Omega _{2}\) or
- (ii):
-
\(\Vert \mathcal{A} x\Vert \geq \Vert x\Vert \), \(x\in P\cap\partial \Omega_{1}\), and \(\Vert \mathcal{A} x\Vert \leq \Vert x\Vert \), \(x\in P\cap\partial \Omega_{2}\)
holds. Then \(\mathcal{A}\) has a fixed point in \(P\cap(\overline{\Omega _{2}}\backslash\Omega_{1})\).
Lemma 2.12
[20]
Let P be a cone in a real Banach space E, \(P_{c}= \{x\in P \vert \Vert x\Vert \leq c\}\), θ a nonnegative continuous concave functional on P such that \(\theta(x)\leq \Vert x\Vert \), for all \(x\in\overline{P_{c}}\), and \(P(\theta, b, d)= \{x\in P\vert b\leq\theta(x), \Vert x\Vert \leq d\}\). Suppose \(\mathcal{A}: \overline{P_{c}}\rightarrow\overline{P_{c}}\) is completely continuous and there exist constants \(0< a< b< d\leq c\) such that
- (C1):
-
\(\{x\in P(\theta, b, d) \vert \theta(x)> b\}\) is non-empty, and \(\theta(\mathcal{A}x)> b\), for \(x\in P(\theta, b, d)\);
- (C2):
-
\(\Vert \mathcal{A}x\Vert < a\), for \(x\leq a\);
- (C3):
-
\(\theta(\mathcal{A}x)> b\), for \(x\in P(\theta, b, c)\) with \(\Vert \mathcal{A}x\Vert > d\).
Then \(\mathcal{A}\) has at least three fixed points \(x_{1}\), \(x_{2}\), \(x_{3}\) with
Remark 2.2
[20]
If we have \(d= c\), then condition (C1) of Lemma 2.12 implies condition (C3) of Lemma 2.12.
3 Existence results
Let \(E= C[0, 1]\) be endowed with the ordering \(u\leq v\) if \(u(t)\leq v(t)\) for all \(t\in[0, 1]\), and the maximum norm \(\Vert u\Vert = \max_{0\leq t\leq1}\vert u(t)\vert \). Define
Define the nonnegative continuous concave functional θ by
Given the continuous function \(f\in C([0, 1]\times[0, \infty))\), define \(T, T_{n}: P\rightarrow E\) as
Lemma 3.1
\(T: P\rightarrow P\) is completely continuous.
Proof
Firstly, we show that \(T_{n}: P\rightarrow P\) are completely continuous for \(n= 3, 4, \ldots\) . Given \(u\in P\), with Lemma 2.8 and the nonnegativity of \(f(t, u)\), one has
so
And next, if \(u\in P\),
As a consequence \(T_{n}: P\rightarrow P\). The continuity of \(T_{n}\) follows by the continuity of \(G(t, s)\) and \(f(t, u)\). Let \(\Omega \subset P\) be bounded, i.e., there exists a positive constant \(M> 0\) such that \(\Vert u\Vert \leq M\) for all \(u\in\Omega\). Let
then, for \(u\in\Omega\), we have
Hence, \(T_{n}(\Omega)\) is bounded for \(n= 3, 4, \dots\). On the other hand, given \(\epsilon> 0\), let
then, for each \(u\in\Omega\), \(t_{1}, t_{2}\in[0, 1]\), \(t_{1}< t_{2}\), and \(t_{2}- t_{1}< \delta\), one has
That is to say that \(T_{n}(\Omega)\) has equicontinuity. In fact, we consider three situations.
(1) \(0< t_{1}< t_{2}< \frac{1}{n}\).
(2) \(0< t_{1}< \frac{1}{n}< t_{2}< 1\).
(3) \(\frac{1}{n}< t_{1}< t_{2}< 1\).
By the means of the Arzela-Ascoli theorem, we see that \(T_{n}: P\rightarrow P\) are completely continuous operators.
Secondly, it is clear that \(T: P\rightarrow P\). We prove that \(T_{n}: P\rightarrow P\) uniformly converges to T and \(T: P\rightarrow P\) is completely continuous too.
With the use of Lemma 2.9, we have
Given \(\epsilon> 0\), let
then \(\Vert T_{n}u- Tu\Vert < \epsilon\), for all \(n> N\). In fact,
By the use of Lemma 2.10, \(T: P\rightarrow P\) is completely continuous. □
Denote
Theorem 3.1
Let \(f(t, u)\) be continuous on \([0, 1]\times[0, \infty)\). Assume that there exist two different positive constants \(r_{2}\), \(r_{1}\), and \(r_{2}\neq r_{1}\) such that
- (H1):
-
\(f(t, u)\leq\phi_{p} (Mr_{1})\), for \((t, u)\in[0, 1]\times[0, r_{1}]\);
- (H2):
-
\(f(t, u)\geq\phi_{p} (Nr_{2})\), for \((t, u)\in[\frac {1}{4}, \frac{3}{4}]\times[\frac{1}{4}r_{2}, r_{2}]\).
Then Problem (1.1), (1.2) has at least one positive solution u such that \(\min\{r_{2}, r_{1}\}\leq \Vert u\Vert \leq\max\{r_{2}, r_{1}\}\).
Proof
By Lemma 3.1, \(T:P\rightarrow P\) is completely continuous. Without loss of generality, suppose \(0< r_{1}< r_{2}\), and let
For \(u\in\partial\Omega_{1}\), we have \(0\leq u(t)\leq r_{1}\) for all \(t\in[0, 1]\). It follows from (H1) that
So,
For \(u\in\partial\Omega_{2}\), by the definition of P, we have
By assumption (H2), for \(t\in[\frac{1}{4}, \frac{3}{4}]\), we have
So,
Therefore, by Lemma 2.11, we complete the proof. □
4 Multiplicity
Theorem 4.1
Suppose \(f(t, u)\) is continuous on \([0, 1]\times[0, \infty)\) and there exist constants \(0< a< \frac{1}{4}b\) such that the following assumptions hold:
- (A1):
-
\(f(t, u)\leq\phi_{p} (Ma)\), for \((t, u)\in[0, 1]\times [0, a]\);
- (A2):
-
\(f(t, u)\geq\phi_{p} (\frac{1}{4}Nb)\), for \((t, u)\in [\frac{1}{4}, \frac{3}{4}]\times[\frac{1}{4}b, b]\);
- (A3):
-
\(f(t, u)\leq\phi_{p} (Mb)\), for \((t, u)\in[0, 1]\times [0, b]\).
Then the boundary value problem (1.1), (1.2) has at least three positive solutions \(u_{1}\), \(u_{2}\), \(u_{3}\) with
Proof
We show that all the conditions of Lemma 2.12 are satisfied. If \(u\in\overline{P}_{b}\), then \(\Vert u\Vert \leq b\). Assumption (A3) implies \(f(t, u(t))\leq Mb\) for \(0\leq t\leq1\), consequently,
Hence, \(T: \overline{P}_{b}\rightarrow\overline{P}_{b}\). Similarly, if \(u\in\overline{P}_{a}\), then assumption (A1) yields \(f(t, u(t))\leq Ma\), \(0\leq t\leq1\). Therefore, condition (C2) of Lemma 2.12 is satisfied.
Choose
Then \(u(t)\in P(\theta, \frac{1}{4}b, b), \theta(u)= \theta(\frac {5b}{8})> \frac{1}{4}b\), consequently,
Hence, if \(u\in P(\theta, \frac{1}{4}b, b)\), then \(\frac{1}{4}b\leq u(t)\leq b\) for \(\frac{1}{4}\leq t\leq\frac{3}{4}\). From assumption (A2), we have \(f(t, u(t))\geq N(\frac{1}{4}b)\) for \(\frac{1}{4}\leq t\leq\frac{3}{4}\). So
That is,
This shows that condition (C1) of Lemma 2.12 is satisfied.
By Lemma 2.12 and Remark 2.2, Problem (1.1), (1.2) has at least three positive solutions \(u_{1}\), \(u_{2}\), \(u_{3}\), satisfying
The proof is complete. □
5 Some examples
Example 5.1
Consider the following boundary value problem:
By a simple computation, we obtain \(M= 3.75\), \(N\approx5.987\). Choose \(r_{1}= 1\), \(r_{2}= \frac{1}{3}\), then
With the use of Theorem 3.1, the fractional differential equation boundary value problem (5.1) and (5.2) has at least one positive solution u such that \(\frac{1}{3}\leq \Vert u\Vert \leq1\).
Example 5.2
Consider the following boundary value problem:
where
We obtain \(M= 3.75\), \(N\approx5.987\). Choose \(a= 0.1\), \(b= 4\), then
With the use of Theorem 4.1, the fractional differential equation boundary value problem (5.3) and (5.4) has at least three positive solutions \(u_{1}\), \(u_{2}\), and \(u_{3}\) with
References
Agarwal, RP, Lü, HS, O’Regan, D: Eigenvalues and the one-dimensional p-Laplacian. J. Math. Anal. Appl. 266, 383-400 (2002)
Avery, R, Henderson, J: Existence of three positive pseudo-symmetric solutions for and the one-dimensional p-Laplacian. J. Math. Anal. Appl. 277, 395-404 (2003)
Zhao, C, Cui, YJ: Monotone iterative technique for nonlinear four-order two-point boundary value problem. J. Shandong Univ. Sci. Technol. Nat. Sci. 35(6), 108-113 (2016) (in Chinese)
Han, ZL, Lu, HL, Sun, SS, Yang, DW: Positive solutions to boundary-value problems of p-Laplacian fractional differential equations with a parameter in the boundary. Electron. J. Differ. Equ. 2012, 213 (2012)
Liu, ZH, Lu, L: A class of BVPs for nonlinear fractional differential equations with p-Laplacian operator. Electro. J. Qual. Theo. Differ. Equ. 2012, 70 (2012)
Wang, J, Xiang, H, Liu, Z: Existence of concave positive solutions for boundary-value problem of nonlinear fractional differential equation with p-Laplacian operator. Int. J. Math. Math. Sci. 2010, Article ID 495138 (2010)
Lu, HL, Han, ZL, Sun, SR, Liu, J: Existence on positive solutions for boundary value problems of nonlinear fractional differential equations with p-Laplacian. Adv. Differ. Equ. 2013, 30 (2013)
Wang, J, Xiang, H: Upper and lower solutions method for a class of singular fractional boundary-value problems with p-Laplacian operator. Abstr. Appl. Anal. 2010, Article ID 971824 (2010)
Chen, T, Liu, W, Hu, ZG: A boundary value problem for fractional differential equation with p-Laplacian operator at resonance. Nonlinear Anal. 75, 3210-3217 (2012)
Liu, X, Jia, M, Xiang, X: On the solvability of a fractional differential equation model involving the p-Laplacian operator. Comput. Math. Appl. 64, 3267-3275 (2012)
Bai, ZB Zhang, S, Sun, SJ, Yin, C: Monotone iterative method for a class of fractional differential equations. Electro. J. Differ. Equ. 2016, 1-8 (2016)
Wu, HH, Sun, SJ: Multiple positive solutions for a fourth order boundary value via variational method. J. Shandong Univ. Sci. Technol. Nat. Sci. 33(2), 96-99 (2014) (in Chinese)
Zhang, XG, Liu, LS: Positive solutions of fourth-order four-point boundary value problems with p-Laplacian operator. J. Math. Anal. Appl. 336, 1414-1423 (2007)
Batarfi, H, Losada, J, Nieto, JJ, Shammakh, W: Three-point boundary value problems for conformable fractional differential equations. J. Funct. Spaces 205, 1-3 (2015)
Dong, X, Bai, Z, Zhang, W: Positive solutions for nonlinear eigenvalue problems with conformable fractional differential derivatives. J. Shandong Univ. Sci. Technol. Nat. Sci. 35(3), 85-91 (2016) (in Chinese)
Khalil, R, Al Horani, M, Yousef, A, Sababheh, M: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65-70 (2014)
Yan, P: Nonresonance for one-dimensional p-Laplacian with regular restoring. J. Math. Anal. Appl. 285, 141-154 (2003)
Guo, DJ: Nonlinear Functional Analysis. Shandong Science and Technology Publishing House, Jinan (2001) (in Chinese)
Krasnosel’skii, MA: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)
Leggett, RW, Williams, LR: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 30, 637-688 (1979)
Acknowledgements
The authors express their sincere thanks to the anonymous reviews for their valuable suggestions and corrections for improving the quality of the paper. This work is supported by NSFC (11571207, 11371364), the Taishan Scholar project, and SDUST graduate innovation project SDKDYC170343.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Dong, X., Bai, Z. & Zhang, S. Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound Value Probl 2017, 5 (2017). https://doi.org/10.1186/s13661-016-0735-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-016-0735-z