- Research
- Open access
- Published:
Lipschitz stability in an inverse problem for the Korteweg-de Vries equation on a finite domain
Boundary Value Problems volume 2017, Article number: 48 (2017)
Abstract
In this paper, we address an inverse problem for the Korteweg-de Vries equation posed on a bounded domain with boundary conditions proposed by Colin and Ghidaglia. More precisely, we retrieve the principal coefficient from the measurements of the solution on a part of the boundary and also at some positive time in the whole space domain. The Lipschitz stability of this inverse problem relies on a Carleman estimate for the linearized Korteweg-de Vries equation and the Bukhgeı̌m-Klibanov method.
1 Introduction
This paper is concerned with the Korteweg-de Vries (KdV) equation with a non-constant coefficient posed on a finite interval
where \(L,T>0\), \(Q=(0,L)\times(0,T)\), the initial data \(y_{0}\) is known and the unknown coefficient \(a=a(x)\) is assumed to be time independent.
The KdV equation,
was first derived by Korteweg and de Vries [1] in 1895 (or by Boussinesq [2] in 1876) as a model for the propagation of some surface water waves along a channel. In applications to physical problems, the independent variable x is often a coordinate representing position in the medium of propagation, t is proportional to elapsed time, and \(y(x,t)\) is a velocity or an amplitude at point x at time t. Based on the results in [3–6], if \(h=h(x)\) is the function describing the variations in depth of the channel, then the KdV equation becomes (after scaling)
Later, in [7], the main coefficient \(h^{2}y_{xxx}\) was corrected by \(h^{\frac{5}{2}}y_{xxx}\). Therefore, it is meaningful to consider the inverse problem of retrieving the principal coefficient in the KdV equation.
The KdV equation on a finite domain has been extensively studied in the past. Most of this work has been focused on the following system:
which possesses a different set of boundary conditions than those of system (1.1). In recent years, system (1.1) (\(a\equiv1\)) has attracted many authors’ attention. The well-posedness, controllability and stabilization of (1.1) (\(a\equiv1\)) have been studied in [8–13].
In this paper we intend to retrieve the principal coefficient \(a=a(x)\) of system (1.1) from the measurement of \(y(L,t)\) on \((0,T)\) and the measurement of \(y(x,T/2)\) on \((0,L)\). Stability estimates play a special role in the theory of inverse problems of mathematical physics that are ill-posed in the classical sense. They determine the choice of regularization parameters and the rate at which solutions of regularized problems converge to an exact solution. The results concerning the determination of coefficients for parabolic equations and hyperbolic equations are relatively rich (see [14–16] and the references therein). Concerning a dispersive equation, the results focused on the Schrödinger equation ([17–19]). However, to the best of our knowledge, the only result in the literature concerning the determination of coefficients for the KdV equation is in [20], where the author considered the KdV equation with boundary conditions as in (1.2).
Let us introduce the following notations for functional spaces appearing in this paper:
To precisely state the results in this article, we introduce the sets
The following theorem is the main result of this article.
Theorem 1.1
Let \(a_{0}\), α and K be given positive constants, \(y_{0}\in W\) and \(a,\tilde{a}\in\Sigma(a_{0},\alpha)\). Assume that there exists \(\eta>0\) such that \(\inf\{\vert\tilde{y}_{xxx}(x,\frac{T}{2})\vert, x\in(0,L)\}\geq\eta\). Then there exists a positive constant \(C=C(T,\alpha,\eta,\alpha _{0},K,L)\) such that
for all y and ỹ satisfying \(\max\{ \Vert y \Vert _{Y}, \Vert \tilde{y} \Vert _{Y}\}\leq K\).
Remark 1.1
Compared with [20], Theorem 1.1, the symmetry hypothesis on the initial data is replaced by a condition on the trajectory.
Remark 1.2
To prove Theorem 1.1, we need to establish a Carleman estimate for a linearized KdV equation with boundary conditions in (1.2). To the best of our knowledge, it is the first attempt to establish the Carleman estimate for a third order operator with these boundary conditions.
The rest of this paper is organized as follows. Section 2 is devoted to a Carleman estimate for the linearized KdV equation with non-constant main coefficient. In Section 3, we prove Theorem 1.1 following the Bukhgeı̌m-Klibanov method.
2 Carleman estimate
In this section, we provide the suitable Carleman estimate for the study of the stability of our inverse problem.
Let us consider the operator
defined on
Here \(b\in L^{\infty}(0,T;W^{1,\infty}(0,L))\), \(d\in L^{\infty}(Q)\) and \(a\in\Sigma(a_{0},\alpha)\).
Consider \(\beta\in C^{3}([0,L])\) such that for some \(r>0\) we have
We define, for each \(\lambda>0\), the functions
for \((x,t)\in Q\). It is not difficult to see that θ satisfies the following properties:
Theorem 2.1
Let ϕ, θ and P be defined as above. There exist \(s_{0}>0\), \(\lambda_{0}>0\) and a constant \(C=C(T,s_{0},\lambda_{0},a_{0},\alpha,L)>0\) such that, for every \(s\geq s_{0}\), \(\lambda\geq \lambda_{0}\),
Proof
Following the method in [21], it is enough to prove (2.1) for \(\widetilde{P}=\partial_{t}+a(x)\partial_{xxx}\). In fact, assume that we have proved (2.1) for P̃, we have
By choosing \(s>0\) and \(\lambda>0\) large, it is possible to absorb \(\int_{Q}e^{-2s\phi}(u_{x}^{2}+u^{2})\,dx\,dt\) with the left-hand side of (2.1), concluding that (2.1) also holds for P.
Let \(s>0\) and consider the operator \(P_{\phi}\) defined in \(\mathcal {W}_{s}=\{e^{-s\phi}u\mid u\in\mathcal{V}\}\) by
We then obtain the decomposition \(P_{\phi}w=P_{1}w+P_{2}w+Rw\), where
Thus
Let us now consider \(\langle P_{1}w,P_{2}w\rangle_{L^{2}(Q)}\).
Claim that
where
Indeed, (2.3) follows easily from the following equations:
Similar to [20], we obtain
where \(I_{R}\) gathers the non-dominating terms and satisfies the requirement that, for any \(\varepsilon>0\), there exist \(s_{0}>0\), \(\lambda_{0}>0\) such that if \(s\geq s_{0}\), \(\lambda\geq\lambda _{0}\), we have
Then we consider the boundary terms. Write
where \(B_{R}\) can be estimated as follows:
For any \(\varepsilon>0\), there exist \(s_{0}>0\), \(\lambda_{0}>0\) such that if \(s\geq s_{0}\), \(\lambda\geq\lambda_{0}\), we have
Now we estimate each term of the right-hand side in (2.6).
It is easy to deduce that
Noting that \(u(0,t)=u_{t}(0,t)=u_{x}(L,t)=u_{xx}(L,t)=0\), \(t\in(0,T)\), we have
Since \(\beta_{x}\geq r>0\) and \(\theta>0\), we can obtain from (2.7)
Taking (2.7) into account and choosing s and λ large enough, we obtain
Therefore
Combining (2.3)-(2.5), consequently,
Returning w to \(e^{-s\phi}u\), we can obtain (2.1). □
3 Inverse problem
We first state the well-posedness results for the KdV equation considered in this paper.
Following the methods developed in [20] with minor changes, we have
Theorem 3.1
Let \(a_{0}\), α be given positive constants, \(a\in \Sigma(a_{0},\alpha)\) and \(y_{0}\in W\). Then system (1.1) has a unique solution in Y.
Next, the local stability of the nonlinear inverse problem stated in Theorem 1.1 will be proved following the ideas in [22]. For the sake of clarity, we divided the proof in several steps.
Step 1. Local study of the inverse problem. Let a, ã, y and ỹ be defined as in Theorem 1.1. Define \(u(x,t):=y(x,t)-\tilde{y}(x,t)\) and \(\sigma(x):=\tilde {a}(x)-a(x)\). Then u solves the following equation:
In order to obtain an estimate of σ in terms of \(u(L,\cdot)\) and \(u(\cdot,\frac{T}{2})\), we derive equation (3.1) with respect to time. Thus, \(v(x,t):=u_{t}(x,t)\) satisfies the following equation:
where \(f=\sigma(x)\tilde{y}_{xxxt}-y_{xt}u-\tilde{y}_{t}u_{x}\).
Step 2. First use of the Carleman estimate. Similarly to the proof of the Carleman estimate, we set \(w=e^{-s\phi }v\). Then we work on the term
where \(P_{1}\) has been defined in (2.2).
On the one hand,
On the other hand,
where
Applying (2.7), we obtain
For s and λ large enough, it follows immediately that
Combining (3.2)-(3.4) and the Carleman estimate (2.8), we conclude that
where we use the fact that \(1+\tilde{y}\in L^{\infty}(0,T;W^{1,\infty }(0,L))\) and \(y_{x}\in L^{\infty}(Q)\).
Noting that \(w=e^{-s\phi}v=e^{-s\phi}u_{t}\), it follows from (3.1) that
Step 3. Second use of the Carleman estimate. Considering
\(\tilde{y}_{xxxt}\in L^{2}(0,T;H^{1}(0,L))\), \(y_{xt}\in L^{\infty }(Q)\) and \(\tilde{y}_{t}\in L^{\infty}(Q)\), we have
Then we can apply the Carleman estimate (2.1) to (3.1),
From (3.5)-(3.8), choosing s large enough, we deduce that
Taking into account that \(v=u_{t}=\partial_{t}(y-\tilde{y})\), the result of Theorem 1.1 directly follows from (3.9).
References
Korteweg, DJ, de Vries, G: On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 39, 422-443 (1895)
Boussinesq, J: Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’Acad. des Sci. Inst. Nat. France 23, 1-680 (1877)
Grimshaw, R: Evolution equations for long, nonlinear internal waves in stratified shear flows. Stud. Appl. Math. 65, 159-188 (1981)
Grimshaw, R: Solitary waves propagating over variable topography. Tsunami Nonlinear Waves 65, 51-64 (2007)
Johnson, RS: On the development of a solitary wave moving over an uneven bottom. Proc. Camb. Philos. Soc. 73, 183-203 (1973)
Ghergu, M, Rădulescu, V: Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics. Springer Monographs in Mathematics. Springer, Heidelberg (2012)
Israwi, S: Variable depth KdV equations and generalizations to more nonlinear regimes. Modél. Math. Anal. Numér. 44, 347-370 (2010)
Guilleron, JP: Null controllability of a linear KdV equation on an interval with special boundary conditions. Math. Control Signals Syst. 26, 375-401 (2014)
Cerpa, E, Rivas, I, Zhang, BY: Boundary controllability of the Korteweg-de Vries equation on a bounded domain. SIAM J. Control Optim. 51, 2976-3010 (2013)
Kramer, E, Rivas, I, Zhang, BY: Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain. ESAIM Control Optim. Calc. Var. 19, 358-384 (2013)
Rivas, I, Usman, M, Zhang, BY: Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-de Vries equation on a finite domain. Math. Control Relat. Fields 1, 61-81 (2011)
Jia, C, Zhang, BY: Boundary stabilization of the Korteweg-de Vries equation and the Korteweg-de Vries-Burgers equation. Acta Appl. Math. 118, 25-47 (2012)
Pava Angulo, J, Natali, F: (Non)linear instability of periodic traveling waves: Klein-Gordon and KdV type equations. Adv. Nonlinear Anal. 3, 95-123 (2014)
Yamamoto, M: Carleman estimates for parabolic equations and applications. Inverse Probl. 25, 123013 (2009)
Yamamoto, M: Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl. 78, 65-98 (1999)
Imanuvilov, OY, Yamamoto, M: Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Probl. 17, 717-728 (2001)
Mercado, A, Osses, A, Rosier, L: Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights. Inverse Probl. 24, 015017 (2008)
Baudouin, L, Puel, JP: Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Probl. 18, 1537-1554 (2002)
Cardoulis, L, Cristofol, M, Gaitan, P: Inverse problem for the Schrödinger operator in an unbounded strip. J. Inverse Ill-Posed Probl. 16, 127-164 (2008)
Baudouin, L, Cerpa, E, Crépeau, E, Mercado, A: On the determination of the principal coefficient from boundary measurements in a KdV equation. J. Inverse Ill-Posed Probl. 22, 819-845 (2013)
Meléndez, PG: Lipschitz stability in an inverse problem for the main coefficient of a Kuramoto-Sivashinsky type equation. J. Math. Anal. Appl. 408, 275-290 (2013)
Baudouin, L, Cerpa, E, Crépeau, E, Mercado, A: Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation. Appl. Anal. 92, 2084-2102 (2013)
Acknowledgements
I sincerely thank the referee for the interesting comments. I also thank Professor Yong Li for many useful suggestions and help. This research was supported by the Fundamental Research Funds for the Central Universities (2412016KJ012) and the NSFC Grant (11601073).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The author declares that there are no competing interests regarding the publication of this paper.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Chen, M. Lipschitz stability in an inverse problem for the Korteweg-de Vries equation on a finite domain. Bound Value Probl 2017, 48 (2017). https://doi.org/10.1186/s13661-017-0779-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-017-0779-8