- Research
- Open Access
- Published:
General decay for weak viscoelastic Kirchhoff plate equations with delay boundary conditions
Boundary Value Problems volume 2017, Article number: 96 (2017)
Abstract
We consider a weak viscoelastic Kirchhoff plate model with time-varying delay in the boundary. By using a suitable energy and Lyapunov function, we obtain a decay rate for the energy, which depends on the behavior of g and α.
1 Introduction
The equation which describes the small vibration of a thin homogeneous, isotropic plate of uniform thickness h is given by
where Ω is an open bounded set of \({\mathbb {R}}^{2}\) with a sufficiently smooth boundary \(\Gamma=\Gamma_{0} \cup\Gamma_{1}\). Here, \(\Gamma_{0}\) and \(\Gamma_{1} \) are closed and disjoint. Let us denote by \(\nu= (\nu_{1} , \nu_{2} )\) the external unit normal vector to Γ, and let us denote by \(\eta=( - \nu_{2} , \nu_{1} )\) the unit tangent vector positively oriented on Γ. The differential operators \({\mathcal {B}}_{1}\) and \({\mathcal {B}}_{2}\) are given by
and the operators \(B_{1}\) and \(B_{2}\) are defined by
The constants in the above equations have the following physical meanings: ρ is mass density, D is flexural rigidity, \(\mu\in(0,\frac{1}{2})\) is Poisson’s ratio, m is distribution of external force, \(m\cdot\nu\) is a bending moment about the normal vector, \(m\cdot\eta\) is a bending moment about the tangent vector and f is vertical loading on the faces of the plate. For simplicity, we assume that the bending moments about both the tangent and the normal vectors are zero. To simplify equation (1.1), we make the change of variable \(t\rightarrow t\sqrt{D(0)/\rho h}\) in the time scale and we take \(\gamma=h^{2}/12\), \(g(t)=D'(t)\) for any \(t>0\); with these notations the initial boundary value problem (1.1) is equivalent to
Rivera et al. [1] showed exponential and polynomial decay of the solutions to viscoelastic plate equation (1.2). They considered a relaxation function satisfying
for some positive constant \(c_{i}\), \(i=0, 1, 2\). The uniform stabilization of Kirchhoff plates with linear or nonlinear boundary feedback was investigated by several authors [2–6].
It is well known that delay effects often arise in many practical problems because these phenomena depend not only on the present state but also on the past history of the system. In recent years, the behavior of solutions for the PDEs with time delay effects has become an active area of research; see, for instance, [7–11] and the references therein. Datko et al. [9] proved that a small delay in a boundary control is a source of instability. To stabilize a system involving delay terms, additional control terms will be necessary. Nicaise and Pignotti [11] considered the following wave equation with a linear damping and delay term inside the domain:
They obtained some stability results in the case \(0<\mu_{2} <\mu_{1} \). It is also showed in the case \(\mu_{2} \geq\mu_{1}\) that there exists a sequence of arbitrary small (or large) delays such that instabilities occur. Moreover, the same results were proved when both the damping and the delay acted on the boundary. Kirane and Said-Houari [10] investigated the following linear viscoelastic wave equation with a linear damping and a delay term
where \(\mu_{1}\) and \(\mu_{2}\) are positive constants. They showed that its energy was exponentially decaying when \(\mu_{2} \leq\mu_{1}\). Dai and Yang [7] improved the results of [10] under weaker conditions. They also obtained an exponential decay results for the energy of problem (1.3) in the case \(\mu_{1}=0\). Furthermore, Nicaise and Pignotti [12] considered the following wave equation with time-dependent delay term:
where \(\tau(t)>0\) is the time-varying delay, \(\mu_{1}\) and \(\mu_{2}\) are real numbers with \(\mu_{1}>0\). They analyzed the exponential stability result under the condition
where d is a constant such that \(\tau'(t) \leq d <1\), \(\forall t>0\). Liu [13] investigated the viscoelastic wave equation (1.3) with time-varying delay term under condition (1.4).
The stability result of viscoelastic wave equations without time delay has been studied by many authors. Cavalcanti et al. [14] established an exponential rate of decay for a viscoelastic wave equation under the condition \(-\xi_{1} g(t) \leq g'(t) \leq-\xi_{2} g(t) \), \(t\geq0\), for some positive constant \(\xi_{i}\), \(i=1, 2\). Later, this assumption was relaxed by several authors. Berrimi and Messaoudi [15] proved exponential and polynomial decay rates under the condition \(g'(t) \leq-\xi g^{p}(t)\), \(t\geq0\), \(1\leq p< \frac{3}{2} \), for a positive constant ξ. Messaoudi [16] considered the following weak viscoelastic equation:
where α and g are positive nonincreasing functions defined on \({\mathbb {R}}^{+}\). Under some assumptions on the relaxation function g and the potential α, the author obtained a general decay result which depends on the behavior of g and α. For more results on weak viscoelastic equations, we can refer to [17–19] and the references therein.
Recently, Yang [20] showed the existence and energy decay of solutions for the following Euler-Bernoulli equation with a delay:
under some restrictions on \(\mu_{1}\) and \(\mu_{2}\). The author proved an exponential decay results for the energy in two cases (\(\mu_{1} \neq0\) or \(\mu_{1}=0\)). Moreover, the stability of partial differential equations with time delay effects has been discussed by many authors [21–29].
Then, a natural problem is what would happen when a delay term occurs in (1.2). Motivated by these results [16, 18, 20, 29], we consider a decay rate of the solutions for the following weak viscoelastic Kirchhoff plate equations (1.2) with time-varying delay in the boundary:
where \(\mu_{1}\) is a positive constant, \(\mu_{2}\) is a real number, \(\tau(t)>0\) represents the time-varying delay, g and α are real functions satisfying some conditions to be specified later.
When the viscoelastic term is modulated by a time-dependent coefficient \(\alpha(t)\), we prove an energy decay result of the solutions for weak viscoelastic Kirchhoff plate equations (1.7) in the case \(\mu_{1} \neq0\) or \(\mu_{1} = 0\), respectively. In order to achieve this goal, we need a restriction of the size between the parameter \(\mu_{2}\) and the kernel g.
The paper is organized as follows. In Section 2, we give some preparations for our consideration and our main results. In Section 3, we study an energy decay of the solutions for problem (1.7). By introducing suitable energy and Lyapunov functionals, we obtain a decay estimate for the energy, which depends on the behavior of both α and g.
2 Preliminaries
In this section, we introduce some material needed in the proof of our result and state the main result. We denote
For simplicity, we denote \(\|\cdot\|_{L^{2}(\Omega)}\) and \(\|\cdot\|_{L^{2} (\Gamma_{1})}\) by \(\|\cdot\|\) and \(\|\cdot\|_{\Gamma_{1}}\), respectively. To study the existence of solution of system (1.7), we introduce the following spaces:
Let us define the following bilinear symmetric form:
Based on the integration by parts formula, a simple calculation yields
Since \(\Gamma_{0} \neq\emptyset\), we know that \(\sqrt{a(u,u)}\) is equivalent to the \(H^{2} (\Omega)\) norm on W, that is,
where \(c_{0}\) and \(\tilde{c}_{0}\) are generic positive constants. The Sobolev imbedding theorem and a trace estimate imply that for some positive constants \(C_{p} \), \(C_{s}\), \(\tilde{C_{p}} \) and \(\tilde{C_{s}}\),
For the relaxation function g and the potential α, as in [16], we assume that
-
(H1)
\(g, \alpha: {\mathbb {R}}^{+} \rightarrow{\mathbb {R}}^{+}\) are nonincreasing differentiable functions satisfying
$$ \begin{aligned}[c] &g(0)>0,\quad l_{0} := \int_{0}^{\infty}g(s) \,ds < \infty, \\ &\alpha(t)>0, \quad 1-2 \alpha(t) \int_{0}^{t} g(s) \,ds \geq l >0, \quad\hbox{for } t\geq0, \end{aligned}$$(2.2)and there exists a nonincreasing differentiable function \(\xi: {\mathbb {R}}^{+} \rightarrow{\mathbb {R}}^{+}\) satisfying
$$ \xi(t)>0,\quad g'(t) \leq- \xi(t) g(t), \quad\hbox{for } t\geq0 $$(2.3)and
$$ \lim_{t\rightarrow\infty} \frac{-\alpha'(t)}{\xi(t)\alpha(t)} =0 . $$(2.4)
Remark 2.1
Note that (H1) implies \({\lim_{t\rightarrow\infty} \frac{-\alpha'(t)}{\alpha(t)} =0.}\)
Since the function g is continuous and positive, we obtain
for all \(t\geq t_{0}>0\). This fact will be used subsequently in the proof of our main result.
As in [12], for the time-varying delay, we assume that \(\tau\in W^{2, \infty}([0, T])\) for \(T>0\), and there exist positive constants \(\tau_{0}\), \(\tau_{1}\) and d satisfying
and that \(\mu_{1}\) and \(\mu_{2}\) satisfy
Let us introduce the function as in [12]
Then problem (1.7) is equivalent to
We can prove the existence of weak solution by making use of the classical Faedo-Galerkin method. Then, using elliptic regularity and second order estimates, we can show the regularity of the solution. We state a well-posedness result without a proof here (see [1, 10, 12, 20]).
Lemma 2.1
Let (2.6) and (2.7) be satisfied and g, α satisfy (H1). If \((u_{0}, u_{1} )\in W \times V \), \(f_{0}\in L^{2}(\Gamma_{1}\times(0,1))\) and \(T>0\), then there exists a unique weak solution \((u, u_{t})\in C([0, T];W\times V)\) of problem (2.8). Moreover, if \((u_{0}, u_{1}) \in (W\cap H^{4}(\Omega)) \times(V\cap H^{3} (\Omega))\), \(f_{0} \in H^{2}(\Gamma_{1}\times(0,1))\), then the solution of (2.8) has the following regularity:
Inspired by [12, 16], we define a modified energy functional as
where ζ and λ are positive constants satisfying
Note that this choice of ζ is possible from assumption (2.7).
The main result of this paper is the following.
Theorem 2.1
Let (2.6) be satisfied and g, α satisfy (H1). Assume that either one of the following two conditions holds:
-
(i)
\(0< |\mu_{2}| <\sqrt{1-d} \mu_{1} \),
-
(ii)
\(\mu_{1} =0\), \(0<|\mu_{2} | < \mu_{0}\) and \(\alpha(t)\xi(t)>\xi_{0}\), \(\forall t \ge t_{1}\).
Then there exist positive constants k and K such that, for any solution of problem (1.7), the energy satisfies
where \(\mu_{0}\) and \(\xi_{0}\) are positive constants given by (3.29) and (3.33), respectively.
3 General decay of solutions
In this section we show a general decay rate. To simplify calculation, in our analysis we introduce the following notation:
We give some estimates related to the convolution operator. By the symmetry of \(a(\cdot, \cdot)\) and direct calculations, we shall see that
and
To prove our result, we need to introduce the following auxiliary functionals:
We divide the proof of Theorem 2.1 into two cases as follows.
Case 1: \(0<|\mu_{2} |< \sqrt{1-d} \mu_{1}\).
First, we consider the functional
where \(\epsilon_{1}\) and \(\epsilon_{2}\) are positive constants. We easily get the following lemmas.
Lemma 3.1
For \(N>0\) large enough, there exist positive constants \(C_{1}\) and \(C_{2}\) such that
Proof
By applying Young’s inequality, the Cauchy-Schwarz inequality, (2.1) and (2.2), we clearly have
which gives us
where \(C_{3}=\max \{ \alpha(0)(\epsilon_{1}+\epsilon_{2}), \epsilon_{2} (C_{p} + \gamma C_{s} )l_{0} , \frac{\epsilon_{1} (C_{p}+\gamma C_{s} )\alpha(0)}{ l} \}\). Choosing \(N>0\) large, we complete the proof of Lemma 3.1. □
Lemma 3.2
Let (2.6) and (2.7) be satisfied and g, α satisfy (H1). Then, for all regular solutions of problem (1.7), there exist positive constants \(\alpha_{0}\) and \(\alpha_{1}\) satisfying
Proof
Multiplying (1.7) by \(u_{t} (t) \), we get the identity
Applying (3.1) to (3.6), we have
From Young’s inequality, we obtain
By (2.6), we get
Combining (3.7)-(3.9) and (H1), we have
By using condition (2.9), we obtain
which implies the desired inequality (3.5). The proof is now complete. □
Lemma 3.3
Under assumption (2.2), the functional Φ satisfies the estimate
Proof
By using (1.7) and (3.2), we get
From Young’s inequality and (2.1), we see that, for any \(\eta>0\),
Combining (2.2), (3.12) and (3.13) with (3.11) and choosing \(\eta=\frac {l}{2 \tilde{C}_{p}}\), we have (3.10). □
Lemma 3.4
Under assumption (2.2), the functional Ψ satisfies the estimate
Proof
Similarly, we find that
Now, we estimate the terms on the right-hand side of (3.15). Young’s inequality, (2.1) and (2.2) give that
where \(\delta>0\). From the above estimates, we obtain (3.14). □
Lemma 3.5
For \(t_{0} > 0\) and sufficiently large \(N>0\), there exist \(k_{1}>0\), \(k_{2}>0\) and \(t_{1}\geq t_{0}\) such that
where \(k_{1}\) and \(k_{2}\) depend on \(g_{0}\).
Proof
By using (2.1) and Young’s inequality, we get
Then, using (2.5), (3.3), (3.5), (3.10), (3.14) and (3.17), we have
We first choose \(\delta>0\) so small that
Then, we obtain
Hence δ is fixed, the choice of any two positive constants \(\epsilon_{1}\) and \(\epsilon_{2}\) satisfying
will make
As long as δ, \(\epsilon_{1}\) and \(\epsilon_{2}\) are fixed, we take N large enough such that
and
Since \({\lim_{t\rightarrow \infty}\frac{-\alpha'(t)}{\alpha(t)} =0,}\) we can take \(t_{1} \geq t_{0}\) sufficiently large so that
Therefore, we get (3.16) for some positive constants \(k_{1}\) and \(k_{2}\) depending on \(g_{0}\). □
Multiplying (3.16) by \(\xi(t)\) and using (2.3) and (3.5), we find that
From \(\xi'(t) \leq0\), (2.2) and the definition of \(E(t)\), we obtain
By (2.4), we can choose \(t_{2} \geq t_{1}\) such that \(k_{1} + \frac{2k_{2} \alpha'(t)}{l \alpha(t) \xi(t)} (\int_{0}^{t} g(s) \,ds ) >0\) for \(t\geq t_{2}\). Let \({\mathcal {L}}(t) = \xi(t) L(t) + 2k_{2} E(t) \), then from (3.4) we can see that \({\mathcal {L}}(t)\) is equivalent to \(E(t)\). Then we deduce that
for some positive constant k depending on \(g_{0}\), α and ξ. Integrating this over \((t_{2} , t)\), we get
Using the equivalence of \({\mathcal {L}}(t)\) and \(E(t)\) again, we have
for some positive constant K depending on the initial data.
Case 2: \(\mu_{1}=0\), \(|\mu_{2}|>0\).
First, we define the Lyapunov function
where \(\varepsilon_{1}\) and \(\varepsilon_{2}\) are positive constants.
Similar to Case 1, from Lemma 3.1, we can obtain, for \(\varepsilon_{1}, \varepsilon_{2}>0\) small enough,
where \(\beta_{1}\) and \(\beta_{2}\) are positive constants. From Lemma 3.2, we get
Similar to Lemmas 3.3 and 3.4, we have
where \(C_{0}=\max\{ 1, \frac{\mu_{2}^{2} \tilde{C}_{p}}{2l} \}\) and
respectively. By (3.18), (3.20)-(3.22) and (2.1), we obtain
Now, we choose \(\delta>0\) small enough such that
As long as δ is fixed, we take \(\varepsilon_{2}\) such that
Then we get
From the choice of δ, we have
Then we select \(\varepsilon_{1}\) such that
By (3.23) and (3.25), we obtain
and
Now, we add a restriction condition on γ, that is, we suppose that
Note that \(e^{\lambda\tau_{1} } \rightarrow1\) as \(\lambda\rightarrow0\). Hence, if we take λ small enough, and from (3.27) and (3.28), there exists a positive constant ζ such that
And then, we see that
and
If we choose \(|\mu_{2} | > 0\) such that
where \(\mu_{0}\) depends on \(g_{0}\), we find that
and
Consequently, from Remark 2.1, (3.24), (3.26), (3.27), (3.30) and (3.31), there exist two positive constants \(k_{3}\) and \(k_{4}\) such that, for \(t_{1} \geq t_{0}\),
where \(k_{3}\) and \(k_{4}\) depend on \(g_{0}\). Multiplying (3.32) by \(\xi(t)\) and using (2.3), (3.20), (3.31) and the definition of \(E(t)\), we get, for \(t\geq t_{1}\),
By \(\xi'(t) \leq0\), we have, for \(t\geq t_{1}\),
Now, we add a restriction condition on α and ξ, that is, we assume that
From (2.4), we can take \(t_{2} \geq t_{1}\) such that \(k_{3} -\frac{4k_{4}\alpha(0)}{\alpha(t)\xi(t)} ( (g_{0}-\delta)\varepsilon_{2} -\varepsilon_{1} C_{0} ) + \frac{2k_{4} \alpha'(t)}{l \alpha(t) \xi(t)} (\int_{0}^{t} g(s) \,ds ) >0\) for \(t\geq t_{2}\). Hence, there exists a positive constant k such that
where \({\mathcal {F}}(t) = \xi(t) F(t) + 2k_{4} E(t)\). From (3.19), we can see that \({\mathcal {F}}(t)\) is equivalent to \(E(t)\). Integrating this over \((t_{2} , t)\) and using the equivalence of \({\mathcal {F}}(t)\) and \(E(t)\) again, we obtain (2.10). Then, we complete the proof.
Example
If g decays exponentially, \(\xi(t)=a\) and \(\alpha(t)=\frac{b}{1+t}+c\), then (2.10) gives us
where \(a, b, c>0\).
4 Conclusions
In the present paper, we consider a decay rate of the solutions for weak viscoelastic Kirchhoff plate equations with time-varying delay in the boundary. By introducing suitable energy and Lyapunov functions, we obtain a decay estimate for the energy, which depends on the behavior of both α and g. On the other hand, different from the previous literature, we use the memory term instead of the damping term to control the delay term.
References
Munoz Rivera, JE, Lapa, EC, Barreto, R: Decay rates for viscoelastic plates with memory. J. Elast. 44, 61-87 (1996)
Horn, MA, Lasiecka, I: Asymptotic behavior with respect to thickness of boundary stabilizing feedback for the Kirchhoff plate. J. Differ. Equ. 114, 396-433 (1994)
Ji, G, Lasiecka, I: Nonlinear boundary feedback stabilization for a semilinear Kirchhoff plate with dissipation acting only via moments-limiting behavior. J. Math. Anal. Appl. 229, 452-479 (1999)
Komornik, V: On the nonlinear boundary stabilization of Kirchhoff plates. Nonlinear Differ. Equ. Appl. 1, 323-337 (1994)
Lagnese, JE: Boundary Stabilization of Thin Plates. Society for industrial and Applied Mathematics, Philadelphia (1989)
Lasiecka, I, Triggiani, R: Sharp trace estimates of solutions to Kirchhoff and Euler-Bernoulli equations. Appl. Math. Optim. 28, 277-306 (1993)
Dai, Q, Yang, ZF: Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 65, 885-903 (2014)
Datko, R: Not all feedback stabilized hyperbolic systems are robust with respect to small time delay in their feedbacks. SIAM J. Control Optim. 26, 697-713 (1988)
Datko, R, Lagness, J, Poilis, MP: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24, 152-156 (1986)
Kirane, M, Said-Houari, B: Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62, 1065-1082 (2011)
Nicaise, S, Pignotti, C: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45(5), 1561-1585 (2006)
Nicaise, S, Pignotti, C: Interior feedback stabilization of wave equations with time dependence delay. Electron. J. Differ. Equ. 2011, Article ID 41 (2011)
Liu, WJ: General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback. J. Math. Phys. 54(4), Article ID 043504 (2013)
Cavalcanti, MM, Domingos Cavalcanti, VN Soriano, JA: Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electron. J. Differ. Equ. 2002, Article ID 44 (2002)
Berrimi, S, Messaoudi, SA: Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal. 64(10), 2314-2331 (2006)
Messaoudi, SA: General decay of solutions of a weak viscoelastic equation. Arab. J. Sci. Eng. 36, 1569-1579 (2011)
Feng, B, Li, H: Energy decay for a viscoelastic Kirchhoff plate equation with a delay term. Bound. Value Probl. 2016, Article ID 174 (2016)
Liu, WJ: General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term. Taiwan. J. Math. 17(6), 2101-2115 (2013)
Park, SH: Stability for a viscoelastic plate equation with p-Laplacian. Bull. Korean Math. Soc. 52(3), 907-914 (2015)
Yang, ZF: Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay. Z. Angew. Math. Phys. 66, 727-745 (2015)
Ammari, K, Nicaise, S, Pignotti, C: Stability of an abstract-wave equation with delay and a Kelvin-Voigt damping. Asymptot. Anal. 95(1-2), 21-38 (2015)
Chen, M, Liu, WJ, Zhou, W: Existence and general stabilization of the Timoshenko system of thermo-viscoelasticity of type III with frictional damping and delay terms. Adv. Nonlinear Anal. (2016). doi:10.1515/anona-2016-0085
Feng, B: Global well-posedness and stability for a viscoelastic plate equation with a time delay. Math. Probl. Eng. 2015, Article ID 585021 (2015)
Gilbert, P: Stabilization of viscoelastic wave equations with distributed or boundary delay. Z. Anal. Anwend. 35(3), 359-381 (2016)
Liu, WJ, Chen, M: Well-posedness and exponential decay for a porous thermoelastic system with second sound and a time-varying delay term in the internal feedback. Contin. Mech. Thermodyn. 29(3), 731-746 (2017)
Liu, WJ, Chen, K, Yu, J: Existence and general decay for the full von Karman beam with a thermo-viscoelastic damping, frictional dampings and a delay term. IMA J. Math. Control Inf. (2015). doi:10.1093/imamci/dnv056
Messaoudi, SA, Fareh, A, Doudi, N: Well posedness and exponential stability in a wave equation with a strong damping and a strong delay. J. Math. Phys. 57, 111501 (2016)
Nicaise, S, Pignotti, C: Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete Contin. Dyn. Syst., Ser. S 9(3), 791-813 (2016)
Park, SH: Decay rate estimates for a weak viscoelastic beam equation with time-varying delay. Appl. Math. Lett. 31, 46-51 (2014)
Acknowledgements
This work was supported by the Dong-A University research fund.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Park, SH., Kang, JR. General decay for weak viscoelastic Kirchhoff plate equations with delay boundary conditions. Bound Value Probl 2017, 96 (2017). https://doi.org/10.1186/s13661-017-0820-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-017-0820-y
Keywords
- Kirchhoff plate
- relaxation function
- general decay
- memory term
- time-varying delay