 Research
 Open Access
 Published:
On the asymptotic expansion of certain plane singular integral operators
Boundary Value Problems volume 2017, Article number: 116 (2017)
Abstract
We discuss the problem of the asymptotic expansion for some operators in a general theory of pseudodifferential equations on manifolds with borders. Using the distribution theory one obtains certain explicit representations for these operators. These limit distributions are constructed with the help of the Fourier transform, the Dirac massfunction and its derivatives, and the wellknown distribution related to the Cauchy type integral.
Introduction
In the theory of pseudodifferential equations the main difficulty is studying model operators in canonical domains according to a local principle. It shows that for a Fredholm property of a general pseudodifferential operator on a compact manifold one needs the invertibility of its local representatives in each point of a manifold [1, 2]. The author wrote many times on the nature of these local representatives, these are distinct in dependence on a point of a manifold. Each ‘singularity’ of a compact manifold (a halfspace is a model situation for the smooth part of a boundary, cone for the conical point, wedge, etc.) corresponds to a certain distribution, and a convolution operator with this distribution describes a local representative of an initial pseudodifferential operator in a corresponding point of the manifold. All details can be found in [3–5]. But singularities can be of distinct dimensions and it is possible that such singularities of a low dimension can be obtained from analogous singularities of full dimension. This means we need to find distributions for limit cases when some of the parameters of the singularities tend to zero. This approach was partially realized in [6, 7], and [5] is devoted to multidimensional constructions. Our idea is the following. Limiting operators for thin singularities obtained in [6] may be a zero approximation for such thin singularities. It is desirable to obtain an asymptotic expansion with a small parameter for the distribution corresponding to such a singularity. We will consider here a twodimensional case and hope these studies will help us to transfer such constructions to multidimensional situations [5].
The theory of differential or more generally pseudodifferential equations and boundary value problems for manifolds with nonsmooth boundaries includes now a lot of interesting approaches and results.
Other approaches, technical tools and results in the theory of boundary value problems one can find in work of Mazya [8, 9], Plamenevskii [10], Schulze [11], Melrose [12–14], Taylor [15], Nistor [16], Dauge [17], Costabel [18], Mazzeo [19] and many others. We cannot enumerate all authors but in [3] a very large survey of these approaches is given.
The author wrote many times on another approach to studying solvability for pseudodifferential equations in domains with conical points and wedges, but now we would like to speak of the principal difference of our papers from other authors (Maz’ya, Plamenevski, Schulze and many others).
In all papers the conical domain is treated as a direct product of a circle and a halfaxis (but in my point of view, it is a cylinder), then they apply the Mellin transform on the halfaxis, and the initial problem is reduced to a problem in a domain with a smooth boundary with operatorvalued symbol. It follows further it is like the generalization of wellknown results on the case of an operator symbol. Of course, our approach is a generalization also, but it is a generalization on dimension space, and the principal difference is that we do not divide the cone, and it is treated as an emergent thing.
For convenience of the reader the theory of the solvability for considered pseudodifferential equations, already known in principle [3, 4], is given in the next section of this paper.
Solving pseudodifferential equations
Model operators and SobolevSlobodetskii spaces in a cone
Pseudodifferential operators are locally defined by the wellknown formula
if M is a compact smooth manifold because one can use the ‘freezing coefficients principle’ or, in other words, a ‘local principle’. For a manifold with a smooth boundary we need a new local formula for defining the operator A: more precisely near inner points of M we use the usual formula, but near the boundary points we need another formula:
where \({\mathbf{R}}^{m}_{+}=\{x\in{\mathbf{R}}^{m}: x=(x',x_{m}), x_{m}>0\}\).
For invertibility of such an operator with symbol \(A(\cdot,\xi)\) not depending on a spatial variable x one can apply the theory of the classical Riemann boundary value problems for upper and lower complex halfplanes with a parameter \(\xi'=(\xi_{1},\ldots,\xi_{m1})\). This step was systematically studied in [2]. But if the boundary ∂M has at least one conical point, this approach is not effective.
A conical point at the boundary is such a point for which its neighborhood is diffeomorphic to the cone \(C^{a}_{+}=\{x\in{\mathbf{R}}^{m}: x_{m}>a \vert x' \vert , x'=(x_{1},\ldots,x_{m1}), a>0\}\), hence a local definition for pseudodifferential operator near the conical point is the following:
To describe a solvability picture for the model elliptic pseudodifferential equation with the operator (1)
with symbol \(A(\cdot,\xi)\) nondepending on a spatial variable x in multidimensional cone \(C^{a}_{+}=\{x\in{\mathbf{R}}^{2}: x_{2}>a \vert x_{1} \vert , a>0\}\) earlier we considered the special singular integral operator [4]
This operator served a conical singularity in the general theory of boundary value problems for elliptic pseudodifferential equations on manifolds with a nonsmooth boundary. The operator \(K_{a}\) is a convolution operator, and the parameter a is the size of an angle, \(x_{2}>a \vert x_{1} \vert \), \(a=\cot\alpha\).
To study the invertibility property for the operator (1) we have introduced the concept of the wave factorization for an elliptic symbol near a singular boundary point [3, 4] and using this property we have described Fredholm properties for equation (2). We use SobolevSlobodetskii spaces for studying these properties.
Definition 1
By definition the SobolevSlobodetskii space \(H_{s}({\mathbf{R}}^{m})\) consists of distributions u for which their Fourier transforms are locally integrable functions \(\tilde{u}(\xi)\) such that
We will denote the Fourier image of the space \(H_{s}({\mathbf{R}}^{m})\) by \(\tilde{H}_{s}({\mathbf{R}}^{m})\). \(\tilde{H}_{s}({\mathbf{R}}^{m})\) and, consequently, \(H_{s}({\mathbf{R}}^{m})\) are Hilbert spaces with respect to the inner product
and formula (3) defines the norm in the spaces \(H_{s}({\mathbf{R}}^{m})\) and \(\tilde{H}_{s}({\mathbf{R}}^{m})\).
If \(s=0\) then \(\tilde{H}_{0}({\mathbf{R}}^{m})=L_{2}({\mathbf{R}}^{m})\), and by virtue of Plancherel’s theorem \(H_{0}({\mathbf{R}}^{m})=F^{1}\tilde{H}_{0}({\mathbf{R}}^{m})=L_{2}({\mathbf{R}}^{m})\).
In the case \(s=n\) (\(n>0\), n integer) \(H_{n}({\mathbf{R}}^{m})\) consists of functions \(u(x)\) that are integrable with their square functions, for which their generalized derivatives \(\partial D^{k}u(x)\) under \(1\le \vert k \vert \le n\) are integrable with their square functions also. The norm (3) in this case is equivalent to the following norm:
In the case \(s=n\), \(n>0\), n integer, the distributions from \(H_{n}({\mathbf{R}}^{m})\) are derivatives of functions from \(L_{2}({\mathbf{R}}^{m})\) whose order is not higher than n.
By definition, the space \(H_{s}(C^{a}_{+})\) consists of distributions from \(H_{s}({{\mathbf{R}}}^{m})\), which support belongs to \(\overline{C^{a}_{+}}\). The norm in the space \(H_{s}(C^{a}_{+})\) is induced by the norm from \(H_{s}({\mathbf{R}}^{m})\). The righthand side v is chosen from the space \(H_{s\alpha}^{0}(C^{a}_{+})\), which is the space of distributions \(S'(C^{a}_{+})\), admitting the continuation on \(H_{s\alpha}({\mathbf {R}}^{m})\). The norm in the space \(H_{s\alpha}^{0}(C^{a}_{+})\) is defined
where the infimum is chosen from all continuations l.
Wave factorization and solvability
Let us return to equation (2). We will recall some of our preliminary results [3, 4]. The symbol \(\stackrel{*}{C^{a}_{+}}\) denotes a conjugate cone for \(C^{a}_{+}\):
\(C^{a}_{}\equivC^{a}_{+}, T(C^{a}_{+})\) denotes a radial tube domain over the cone \(C^{a}_{+}\) [20], i.e. the domain in a complex space \({\mathbf{C}}^{2}\) of type \({\mathbf{R}}^{2}+iC^{a}_{+}\).
We consider symbols \(A(\xi)\) satisfying the condition
which are elliptic, and the number \(\alpha\in{\mathbf{R}}\) is called an order of the operator A.
To describe the solvability picture for equation (2) we use the following.
Definition 2
Wave factorization with respect to the cone \(C^{a}_{+}\) for the symbol \(A(\xi)\) is called a representation in the form
where the factors \(A_{\neq}(\xi)\), \(A_{=}(\xi)\) must satisfy the following conditions:

(1)
\(A_{\neq}(\xi)\), \(A_{=}(\xi)\) are defined for all admissible values \(\xi\in{\mathbf{R}}^{2}\), without maybe the points \(\{\xi\in {\mathbf{R}}^{2}: \vert \xi_{1} \vert ^{2}=a^{2}\xi^{2}_{2}\}\);

(2)
\(A_{\neq}(\xi)\), \(A_{=}(\xi)\) admit an analytical continuation into radial tube domains \(T(\stackrel{*}{C^{a}_{+}})\), \(T(\stackrel{*}{C^{a}_{}})\), respectively, with estimates
$$\begin{gathered} \bigl\vert A_{\neq}^{\pm1}(\xi+i \tau) \bigr\vert \leq c_{1}\bigl(1+ \vert \xi \vert + \vert \tau \vert \bigr)^{\pm\kappa}, \\ \bigl\vert A_{=}^{\pm1}(\xii\tau) \bigr\vert \leq c_{2}\bigl(1+ \vert \xi \vert + \vert \tau \vert \bigr)^{\pm(\alpha\kappa)}, \forall \tau\in\stackrel{*}{C^{a}_{+}}. \end{gathered} $$
The number \(\kappa\in{\mathbf{R}}\) is called the index of the wave factorization.
For \(\vert \kappas \vert <1/2\) one has the existence and uniqueness theorem [3]. For this purpose we need a certain lemma.
Lemma 1
Let functions \(B_{\ne}(\xi+i\tau)\), \(B_{=}(\xi+i\tau)\) be analytical in \(T(\stackrel{*}{C^{a}_{+}})\) and \(T(\stackrel{*}{C^{a}_{}})\) and satisfy the estimates
Then the multiplication operator by the function \(B_{\ne}(\xi)\) boundedly acts from space \(\tilde{H}_{s}(C_{+}^{a})\) into \(\tilde{H}_{s\alpha}(C_{+}^{a})\), and the multiplication operator by the function \(B_{=}(\xi)\) from space \(\tilde{H}_{s}({\mathbf{R}}^{2}\setminus\overline{C_{+}^{a}})\) into space \(\tilde{H}_{s\alpha}({\mathbf{R}}^{2}\setminus\overline{C_{+}^{a}})\).
Proof
The fact that multiplication operators by functions \(B_{\ne}(\xi)\), \(B_{=}(\xi)\) boundedly act from spaces \(\tilde{H}_{s}(C_{+}^{a})\), \(\tilde{H}_{s}({\mathbf{R}}^{2}\setminus\overline{C_{+}^{a}})\) into space \(\tilde{H}_{s\alpha}({\mathbf{R}}^{2})\) is well known [2]. For clarity we denote \(u\in\tilde{H}_{s}(C_{+}^{a})\) by \(u_{+}\) and \(u\in\tilde{H}_{s}({\mathbf{R}}^{2}\setminus\overline{C_{+}^{a}})\) by \(u_{}\). Let us show that \(B_{\ne}(\xi)\tilde{u}_{+}(\xi)\in\tilde{H}_{s\alpha}(C_{+}^{a})\) for any \(\tilde{u}_{+}\in\tilde{H}_{s}(C_{+}^{a})\).
The space \(\tilde{H}_{s}(C_{+}^{a})\) has an explicit description [3]: \(\tilde{u}_{+}\in\tilde{H}_{s}(C_{+}^{a})\) if and only if \(\tilde{u}_{+}(\xi+i\tau)\) is analytical in \(T(\stackrel{*}{C^{a}_{+}})\) and the quantity
is finite and coincides with
Then evidently, \(B_{\ne}(\xi+i\tau)\tilde{u}_{+}(\xi+i\tau)\) is analytical in \(T(\stackrel{*}{C^{a}_{+}})\) and
i.e., \(B_{\ne}(\xi)\tilde{u}_{+}(\xi)\in\tilde{H}_{s\alpha }(C_{+}^{a})\).^{Footnote 1}
Now let us consider \(B_{=}(\xi)\tilde{u}_{}(\xi)\). Let at first \(u_{}\in C_{0}^{\infty}({\mathbf{R}}^{2}\setminus\overline{C_{+}^{a}})\). Of course \(F^{1}B_{=}\equiv b\) exists in the distribution sense and \(\operatorname{supp} b\subset\overline{C_{+}^{a}}\), as above. Then \(F^{1}(B_{=}\tilde{u}_{})=b*u_{}\). By the definition of a convolution
where \(\overline{u_{}(xy)}\) is considered as a function on y (x is fixed), and notation \(b(y)\) means that functional b acts on y, a variable. Let us show that \((b*u_{})(x)=0\) under \(x\in C_{+}^{a}\). Consider two cases: \(y\inC_{+}^{a}\) and \(y\notinC_{+}^{a}\). In the first case \(xy\in C_{+}^{a}\) and, thus \(u_{}(xy)=0\) because \(\operatorname{supp} u_{}(xy)\subset{\mathbf {R}}^{2}\setminus C_{+}^{a}\). In the second case \((b*u_{})\) vanishes because \(y\notin\operatorname{supp} b\).
Transfer to the general case \(u_{}\in H_{s}({\mathbf{R}}^{2}\setminus\overline{C_{+}^{a}})\) is realized by virtue of the density of class \(C_{0}^{\infty}({\mathbf{R}}^{2}\setminus \overline{C_{+}^{a}})\) in space \(H_{s}({\mathbf{R}}^{2}\setminus\overline{C_{+}^{a}})\).
So, it was shown that \(B_{=}(\xi)\tilde{u}_{}(\xi)\in\tilde{H}_{s\alpha }({\mathbf{R}}^{2})\) and \(\operatorname{supp} F^{1}(B_{=}\tilde{u}_{})\subset ({\mathbf{R}}^{2}\setminus C_{+}^{a})\). Hence, \(B_{=}(\xi)\tilde{u}_{}(\xi)\in\tilde{H}_{s\alpha}({\mathbf{R}}^{2}\setminus \overline{C_{+}^{a}})\). □
As above we use the notation \(u_{+}\) for the function \(u\in H_{s}(C^{a}_{+})\).
Theorem 1
If the elliptic symbol \(A(\xi)\) admits wave factorization with respect to the cone \(C^{a}_{+}\) and \(\vert \kappas \vert <1/2\), then equation (2) has a unique solution \(u_{+}\in H_{s}(C^{a}_{+})\) for an arbitrary righthand side \(v\in H^{0}_{s\alpha}(C^{a}_{+})\),
where lv is an arbitrary continuation of v on the whole \(H_{s\alpha }({\mathbf{R}}^{2})\).
A priori estimate holds:
Proof
We give here this proof to explain the appearance of the operator \(K_{a}\) because it plays a crucial role in our studies.
Let us denote
Taking into account wave factorization after applying to (4) the Fourier transform we have
According to the properties of wave factorization elements \(A_{\ne}(\xi)\), \(A_{=}(\xi)\) we have \(A_{\ne}(\xi)\tilde{u}_{+}(\xi)\in\tilde{H}_{s\kappa}(C_{+}^{a})\), \(A_{=}^{1}(\xi)\tilde{u}_{}(\xi)\in\tilde{H}_{s\kappa} ({\mathbf{R}}^{2}\setminus\overline{C_{+}^{a}})\) (because \(\tilde{u}_{}\in\tilde{H}_{s\alpha} ({\mathbf{R}}^{2}\setminus\overline{C_{+}^{a}})\)), \(A_{=}^{1}(\xi)\tilde{lv}(\xi)\in\tilde{H}_{s\kappa}({\mathbf{R}}^{2})\), where κ is index of wave factorization. Since \(\vert s\kappa \vert <1/2\), \(\tilde{H}_{s\kappa}({\mathbf {R}}^{2})\) admits a unique representation as a sum of two orthogonal subspaces \(\tilde{H}_{s\kappa}(C_{+}^{a})\) and \(\tilde{H}_{s\kappa} ({\mathbf{R}}^{2}\setminus\overline{C_{+}^{a}})\) [3] so that
and it implies
A priori estimate is
taking into account boundedness of operator \(K_{a}\) in \(\tilde{H}_{s}({\mathbf{R}}^{2})\) for \(\vert s \vert <1/2\) and boundedness of continuation operator l [3]. □
Remark 1
If \(\vert \kappas \vert >1/2\) there are additional conditions or solvability conditions for the righthand side to obtain a unique solvability for equation (2) in appropriate SobolevSlobodetskii spaces [3].
An initial approximation
The operator \(K_{a}\) can be treated as a convolution operator with the following distribution:
and starting from this assertion we will work with this distribution taking into account its relationship with the operator \(K_{a}\).
We will consider two spaces of basic functions for distributions. If \(D({\mathbf{R}}^{2})\) denotes a space of infinitely differentiable functions with a compact support then \(D'({\mathbf{R}}^{2})\) is the corresponding space of distributions over the space \(D({\mathbf {R}}^{2})\); analogously if \(S({\mathbf{R}}^{2})\) is the Schwartz space of functions infinitely differentiable rapidly decreasing at infinity, then \(S'({\mathbf{R}}^{2})\) is a corresponding space of distributions over \(S({\mathbf{R}}^{2})\).
When \(a\to+\infty\) one obtains [6] the following limit distribution:
where the notation for distribution \(\mathcal {P}\) is taken from Vladimirov’s work [20, 21], and ⊗ denotes the direct product of distributions. Here δ denotes onedimensional Dirac massfunction, which acts on \(\varphi\in D({\mathbf{R}})\) in the following way:
and the distribution \(\mathcal {P}\frac{1}{x}\) is defined by the formula
Let us note that the distribution (5) corresponds to the operator (see, for example [2])
Our main goal in this paper is obtaining an asymptotical expansion for the twodimensional distribution
with respect to small \(a^{1}\). It is defined by the corresponding formula \(\forall\varphi\in D({\mathbf{R}}^{2})\)
A decomposition formula for distributions
We will use the standard Maclaurin formula
and make the change of a variable \(a\xi_{2}=t\), \(a^{1}=b\), then formula (6) will become
Remark 2
In [6] the author has considered the two cases \(a\to\infty\) and \(a\to0\); the first case corresponds to a zero angle but the second one corresponds to a halfspace; the last was done for a comparison with [2]. Since the halfspace case is studied in [2] in detail we do not stop in this here.
Then we represent \({\mathbf{R}}^{2}=M\cup({\mathbf{R}}^{2}\setminus M)\) where M is a square with a line size N, so we have
A rough decomposition
Let us consider here \(\varphi\in D({\mathbf{R}}^{2})\). Since the support of φ is a compact set we have one summand in formula (7); therefore we might work with the formula
immediately.
More naturally it will be to proceed in the following way using a Maclaurin series:
If t varies in a line segment then \(bt\sim b\), \(b\to0\), and we can use the following formal representations [7]:
A sharp decomposition
Here we consider \(\varphi\in S({\mathbf{R}}^{2})\).
A formal use of the Maclaurin formula for the first integral in (7) will lead to the following result:
and we need to give a certain meaning to the expression in brackets.
Let us denote
and reproduce some calculations.
First \(T_{k,N}(\xi_{1})\equiv0\), \(\forall k=2n1\), \(n\in{\mathbf{N}}\). So the nontrivial case is \(k=2n\), \(n\in{\mathbf{N}}\). Let us recall \(T_{0,\infty}(\xi_{1})=\pi i2^{1}\xi_{1}^{1}\) [6, 7]. For other cases we can calculate this integral so we have the following:
\(k=2\),
\(k=4\),
\(k=6\),
and so on. One can easily write all expressions for arbitrary \(T_{2n,N}(\xi_{1})\).
In general one can write
where \(P_{2n1}(N,\xi_{1})\) is a certain polynomial of order \(2n1\) on variables \(N,\xi_{1}\).
Therefore instead of formula (8) we can write
Let us describe the polynomial \(P_{2n1}(N,\xi_{1})\) more precisely. Obviously
Further we rewrite the equality (9) in the following form:
We will start from two last summands. The second summand does not play any role because
The third summand we will represent according to Lemma 2 (see below) taking into account that we can pass to the limit under \(N\to+\infty\),
For the first summand we consider separately the case \(Nb\sim1\) (\(N\to \infty\), \(b\to0\)). In other words we consider a special limit to justify the decomposition. Then
Therefore
One can note if desirable
A local behavior of a boundary operator
Lemma 2
If a distribution a acts on the function \(\varphi\in S({\mathbf {R}})\) in the following way:
then this distribution a is the following:
where the sign ∼ means here the inverse Fourier transform \(F^{1}\).
Proof
Indeed, we have \(F\delta={\mathbf{1}}\), where 1 is an identity in a distribution sense so that \(F^{1}{\mathbf {1}}=\delta\). Since
denoting \(\psi=F^{1}\varphi\) we write
so we have the required identity. □
Theorem 2
The following formula:
where \(c_{m,n}(a)\to0\), \(a\to+\infty\), holds in a distribution sense.
Proof
Returning to formula (8) and using calculations \(T_{k,N}(\xi_{1})\) and Lemma 2 we obtain the required assertion. □
Remark 3
One can easily reconstruct the coefficients \(c_{m,n}(a)\) starting from the above calculations.
Towards a pseudodifferential equation
Let us return to equation (2). For \(\vert \kappas \vert <1/2\) one has the existence and uniqueness theorem [3]
where lv is an arbitrary continuation of v on the whole \(H_{s}({\mathbf{R}}^{2})\).
Below we denote \(lv\equiv V\).
Theorem 3
If the symbol \(A(\xi)\) admits the wave factorization with respect to the cone \(C^{a}_{+}\) and \(\vert \kappas \vert <1/2\) then equation (2) has a unique solution in the space \(H^{s}(C^{a}_{+})\), and for the large ‘a’ it can be represented in the form
assuming \(\widetilde{V}\in S({\mathbf{R}}^{2}), A_{=}^{1}\widetilde{V}\) means the function \(A_{=}^{1}(\xi)\widetilde{V}(\xi)\).
Proof
We need to apply Theorem 2 and to recall correlations between distributions and pseudodifferential operators. It proves the theorem. □
Remark 4
The reader can easily write an analog of Theorem 3 corresponding to a rough decomposition.
Conclusion
It was shown that the solution of equation (2) for a smooth enough righthand side v can be represented in the form (10). It shows that in this series the first summand belongs to the space \(H_{s}(C^{a}_{+})\) only. Secondary summands can be useful for certain special situations related to some additional properties of the righthand side v.
References
 1.
Milkhin, S, Prößdorf, S: Singular Integral Operators. Akademie Verlag, Berlin (1986)
 2.
Eskin, G: Boundary Value Problems for Elliptic Pseudodifferential Equations. Am. Math. Soc., Providence (1981)
 3.
Vasil’ev, VB: Wave Factorization of Elliptic Symbols: Theory and Applications. Kluwer Academic, Dordrecht (2000)
 4.
Vasilyev, VB: Elliptic equations and boundary value problems in nonsmooth domains. In: Rodino, L, Wong, MW, Zhu, HT (eds.) Pseudo Differential Operators: Analysis, Applications and Computations. Ball, JA, Dym, H, Kaashoek, MA, Langer, H, Tretter, C (series eds.) Operator Theory: Advances and Applications, vol. 213, pp. 105121. Birkhäuser, Basel (2011)
 5.
Vasilyev, VB: New constructions in the theory of elliptic boundary value problems. In: Constanda, C, Kirsch, A (eds.) Integral Methods in Science and Engineering. Theoretical and Computational Advances, pp. 629641. Birkhäuser, Basel (2015)
 6.
Vasilyev, VB: Asymptotical analysis of singularities for pseudo differential equations in canonical nonsmooth domains. In: Constanda, C, Harris, PE (eds.) Integral Methods in Science and Engineering. Computational and Analytic Aspects, pp. 379390. Birkhäuser, Boston (2011)
 7.
Vasilyev, VB: Some problems of pseudodifferential operators theory. Mat. Visn. Nauk. Tov. Im. Shevchenka 10, 219226 (2013)
 8.
Kozlov, VA, Mazya, VG, Rossmann, J: Elliptic Boundary Value Problems in Domains with Point Singularities. Am. Math. Soc., Providence (1997)
 9.
Mazya, V, Rossmann, J: Elliptic Equations in Polyhedral Domains. Am. Math. Soc., Providence (2010)
 10.
Plamenevskii, B: Solvability of algebras of pseudodifferential operators with piecewise smooth coefficients on smooth manifolds. St. Petersburg Math. J. 21, 317351 (2010)
 11.
Schulze, BW: PseudoDifferential Boundary Value Problems, Conical Singularities and Asymptotics. Akademie Verlag, Berlin (1994)
 12.
Melrose, RB: Pseudodofferential operators, corners and singular limits. In: Satake, I (ed.) Proceedings of the International Congress of Mathematicians, Kyoto, Japan, 2129 August 1990, pp. 217234. Springer, Berlin (1991)
 13.
Melrose, RB, Piazza, P: Analytic ktheory on manifolds with corners. Adv. Math. 92, 126 (1992)
 14.
Kottke, C, Melrose, RB: Generalized blowup of corners and fiber products. Trans. Am. Math. Soc. 367, 651705 (2015)
 15.
Hofmann, S, Mitrea, M, Taylor, ME: Symbol calculus for operators of layer potential type on Lipschitz surfaces with vmo normals, and related pseudodifferential operator calculus. Anal. PDE 8, 115181 (2015)
 16.
Mazzurato, A, Nistor, V: Wellposedness and regularity for the elasticity equation with mixed boundary conditions on polyhedral domains and domains with cracks. Arch. Ration. Mech. Anal. 195, 2573 (2010)
 17.
Costabel, M, Dauge, M, Nicaise, S: Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22, 1250015 (2012)
 18.
Costabel, M, Dauge, M, Nicaise, S: Singularities of eddy current problems. ESAIM: Math. Model. Numer. Anal. 37, 807831 (2003)
 19.
Mazzeo, R, Melrose, RB: Pseudodifferential operators on manifolds with fibred boundaries. Asian J. Math. 2, 833866 (1998)
 20.
Vladimirov, VS: Equations of Mathematical Physics. Dekker, New York (1971)
 21.
Vladimirov, VS: Methods of the Theory of Generalized Functions. Taylor & Francis, London (2002)
Acknowledgements
The author thanks the anonymous referee for making several helpful corrections and suggestions.
Author information
Additional information
Funding
Not applicable.
Abbreviations
Not applicable.
Availability of data and materials
Not applicable.
Ethics approval and consent to participate
Not applicable.
Competing interests
The author declares that he has no competing interests.
Consent for publication
Not applicable.
Authors’ contributions
The author read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Vasilyev, V. On the asymptotic expansion of certain plane singular integral operators. Bound Value Probl 2017, 116 (2017). https://doi.org/10.1186/s1366101708470
Received:
Accepted:
Published:
Keywords
 pseudodifferential operator
 distribution
 singularity
 asymptotic expansion