Skip to content

Advertisement

  • Research
  • Open Access

A regularity criterion for the Keller-Segel-Euler system

Boundary Value Problems20172017:124

https://doi.org/10.1186/s13661-017-0860-3

Received: 12 May 2017

Accepted: 24 June 2017

Published: 29 August 2017

Abstract

We consider a Keller-Segel-Euler model and prove a regularity criterion of the local strong solutions in a 3D bounded domain Ω.

Keywords

Keller-Segel-Eulerchemotaxisregularity criterionbounded domain

MSC

22E4653C3557S20

1 Introduction

Let Ω be a bounded domain in \({\mathbb {R}^{3}}\) with smooth boundary Ω and ν be the unit outward normal vector to Ω. We consider the regularity problem for the following Keller-Segel-Euler model:
$$\begin{aligned} &\partial_{t}u+u\cdot\nabla u+\nabla\pi+n\nabla\phi=0, \end{aligned}$$
(1.1)
$$\begin{aligned} &\operatorname {div}u=0, \end{aligned}$$
(1.2)
$$\begin{aligned} &\partial_{t}n+u\cdot\nabla n-\Delta n=-\nabla\cdot \bigl(nr(p) \nabla p \bigr), \end{aligned}$$
(1.3)
$$\begin{aligned} &\partial_{t}p+u\cdot\nabla p-\Delta p=-nf(p) \quad\mbox{in } \Omega \times(0,\infty), \end{aligned}$$
(1.4)
$$\begin{aligned} &u\cdot\nu=0, \qquad\frac{\partial n}{\partial\nu}=\frac{\partial p}{\partial\nu}=0 \quad\mbox{on } \partial \Omega \times(0,\infty ), \end{aligned}$$
(1.5)
$$\begin{aligned} &(u,n,p) (\cdot,0)=(u_{0},n_{0},p_{0})\quad \mbox{in } \Omega\subset {\mathbb {R}^{3}}. \end{aligned}$$
(1.6)
Here \(u,\pi,n\) and p denote the fluid velocity field, scalar pressure, cell concentration, and oxygen concentration, respectively. The functions \(f(p)\) and \(r(p)\) are two given smooth functions of p denoting the oxygen consumption rate and chemotactic sensitivity, respectively. The function ϕ denotes the potential function.
When \(\phi=0\), system (1.1) and (1.2) reduces to the well-known Euler system, Ferrari [1] showed the regularity criterion
$$ \operatorname {rot}u\in L^{1} \bigl(0,T;L^{\infty}(\Omega) \bigr). $$
(1.7)

On the other hand, when \(u=0\), system (1.3) and (1.4) reduces to the classical Keller-Segel chemotaxis model [24], which received many studies [511] on well-posedness and pattern formation of solutions.

For completeness, we also cite [1214] which show some regularity criteria for the Keller-Segel-Navier-Stokes model.

The aim of this paper is to prove a regularity criterion of local smooth solutions to problem (1.1)-(1.6). We will prove the following.

Theorem 1.1

Let \(u_{0}\in H^{3}, n_{0}, p_{0}\in H^{2}, \operatorname {div}u_{0}=0, n_{0}, p_{0}\geq0\) in Ω and \(n_{0}\cdot\nu=0, \frac{\partial n_{0}}{\partial\nu}=\frac{\partial p_{0}}{\partial\nu}=0\) on Ω. Suppose that ϕ is a smooth function. Let \((u,n,p)\) be a local smooth solution to problem (1.1)-(1.6). If (1.7) and
$$ \nabla p\in L^{\frac{2q}{q-3}} \bigl(0,T;L^{q} \bigr), \quad 3< q\leq \infty, $$
(1.8)
hold true with \(0< T<\infty\), then the solution can be extended beyond \(T>0\).

Remark 1.1

We observe that (1.1)-(1.4) is invariant under the scaling transform \((u,\pi,n, p,\phi)\rightarrow(u_{\lambda},\pi_{\lambda},n_{\lambda},p_{\lambda},\phi_{\lambda})\), where
$$\begin{aligned} &u_{\lambda}:=\lambda u \bigl(\lambda^{2}t,\lambda x \bigr),\qquad \pi_{\lambda}:=\lambda ^{2}\pi \bigl(\lambda^{2}t,\lambda x \bigr), \\ &n_{\lambda}:=\lambda^{2}n \bigl(\lambda^{2}t,\lambda x \bigr),\qquad p_{\lambda}:=p \bigl(\lambda^{2}t,\lambda x \bigr),\qquad \phi_{\lambda}:=\phi \bigl(\lambda^{2}t,\lambda x \bigr). \end{aligned}$$

This implies that the regularity criteria (1.7) and (1.8) are optimal in the sense of scaling.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Since local existence results can be proved by using standard arguments, say, Galerkin method, we only deal with the a priori estimates.

First of all, from the equations of \(n,p\) and the maximum principle, we easily see that
$$ n\geq0,0\leq p\leq C,\quad \int n \,dx= \int n_{0} \,dx, $$
(2.1)
where the constant depends only on the initial data.
For any \(m\geq2\), testing (1.3) by \(n^{m-1}\), using the boundary and incompressibility conditions, and denoting \(w:=n^{\frac {m}{2}}\), we calculate
$$\frac{1}{m}\frac{d}{dt} \int w^{2} \,dx+\frac{4(m-1)}{m^{2}} \int \vert \nabla w \vert ^{2} \,dx=(m-1) \int wr(p) (\nabla p\cdot\nabla w)\,dx. $$
Using the smoothness of \(r(p)\) and (2.1), we infer that
$$\begin{aligned} &\frac{1}{m}\frac{d}{dt} \int w^{2} \,dx+\frac{4(m-1)}{m^{2}} \int \vert \nabla w \vert ^{2} \,dx \\ &\quad \leq C \int \vert \nabla p \vert w \vert \nabla w \vert \,dx \\ &\quad\leq C \Vert \nabla p \Vert _{L^{p}} \Vert w \Vert _{L^{\frac{2q}{q-2}}} \Vert \nabla w \Vert _{L^{2}} \\ &\quad\leq C \Vert \nabla p \Vert _{L^{p}} \bigl( \Vert w \Vert _{L^{2}}^{1-\frac{3}{q}} \Vert \nabla w \Vert _{L^{2}}^{1+\frac{3}{q}}+ \Vert w \Vert _{L^{2}} \Vert \nabla w \Vert _{L^{2}} \bigr) \\ &\quad\leq \frac{m-1}{m^{2}} \Vert \nabla w \Vert _{L^{2}}^{2}+C \bigl( \Vert \nabla p \Vert _{L^{p}}^{\frac{2q}{q-3}}+1 \bigr) \Vert w \Vert _{L^{2}}^{2}, \end{aligned}$$
which gives
$$ \Vert n \Vert _{L^{2}(0,T;H^{1})}+ \Vert n \Vert _{L^{\infty}(0,T;L^{m})}\leq C,\quad \forall m\geq 2. $$
(2.2)
Here we have used Young’s inequality and the Gagliardo-Nirenberg inequality for functions on a bounded domain:
$$ \Vert f \Vert _{L^{\frac{2q}{q-2}}}\leq C \bigl( \Vert f \Vert _{L^{2}}^{1-\frac{3}{q}} \Vert \nabla f \Vert _{L^{2}}^{\frac{3}{q}}+ \Vert f \Vert _{L^{2}} \bigr). $$
(2.3)
Testing (1.1) by u, using (1.2) and (2.2), we find that
$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \int \vert u \vert ^{2} \,dx&= - \int n\nabla\phi\cdot u \,dx \\ &\leq \Vert n \Vert _{L^{3}} \Vert \nabla\phi \Vert _{L^{6}} \Vert u \Vert _{L^{2}} \leq C \Vert \nabla\phi \Vert _{L^{6}} \Vert u \Vert _{L^{2}}, \end{aligned}$$
which gives
$$ \Vert u \Vert _{L^{\infty}(0,T;L^{2})}\leq C. $$
(2.4)
Taking curl to (1.1), using (1.2), we infer that
$$ \partial_{t}\omega+u\cdot\nabla\omega=\omega\cdot\nabla u-\nabla n \times\nabla\phi, $$
(2.5)
where \(\omega:=\operatorname {curl}u\). Testing (2.5) by ω, using (1.2) and (2.2), we deduce
$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \int \vert \omega \vert ^{2} \,dx&= \int(\omega\cdot\nabla u-\nabla n\times\nabla\phi)\cdot\omega \,dx \\ &\leq \Vert \omega \Vert _{L^{\infty}} \Vert \nabla u \Vert _{L^{2}} \Vert \omega \Vert _{L^{2}}+ \Vert \nabla n \Vert _{L^{2}} \Vert \nabla\phi \Vert _{L^{\infty}} \Vert \omega \Vert _{L^{2}} \\ &\leq C \Vert \omega \Vert _{L^{\infty}} \Vert \omega \Vert _{L^{2}}^{2}+ \Vert \nabla n \Vert _{L^{2}} \Vert \nabla\phi \Vert _{L^{\infty}} \Vert \omega \Vert _{L^{2}}, \end{aligned}$$
which implies
$$\begin{aligned} & \Vert \omega \Vert _{L^{\infty}(0,T;L^{2})}\leq C, \end{aligned}$$
(2.6)
$$\begin{aligned} & \Vert u \Vert _{L^{\infty}(0,T;L^{6})}\leq C. \end{aligned}$$
(2.7)
By using the regularity theory of parabolic equations [15], it follows from (1.3), (1.5), (1.6), (2.1), (2.2), and (2.7) that
$$\begin{aligned} & \Vert \nabla n \Vert _{L^{2}(0,T;L^{\tilde{r}})} \\ &\quad\leq C \bigl(1+ \Vert un \Vert _{L^{2}(0,T;L^{\tilde{r}})}+ \bigl\Vert nr(p)\nabla p \bigr\Vert _{L^{2}(0,T;L^{\tilde{r}})} \bigr) \\ &\quad \leq C \bigl(1+ \Vert u \Vert _{L^{\infty}(0,T;L^{6})} \Vert n \Vert _{L^{\infty}(0,T;L^{\frac {6\tilde{r}}{6-\tilde{r}}})}+ \bigl\Vert r(p) \bigr\Vert _{L^{\infty}} \Vert n \Vert _{L^{\infty}(0,T;L^{\frac{q\tilde{r}}{q-\tilde{r}}})} \Vert \nabla p \Vert _{L^{2}(0,T;L^{\tilde{q}})} \bigr) \\ &\quad \leq C \end{aligned}$$
(2.8)
for some \(3<\tilde{r}<6\) and \(\tilde{r}< q\).
Now we turn to the higher order regularity of the velocity field. Testing (2.5) by \(\vert \omega \vert ^{\tilde{r}-2}\omega\), using (1.2) and (2.8), we obtain
$$\frac{d}{dt} \Vert \omega \Vert _{L^{\tilde{r}}}^{\tilde{r}}\leq C \Vert \omega \Vert _{L^{\infty}} \Vert \omega \Vert _{L^{\tilde{r}}}^{\tilde{r}}+C \Vert \nabla\phi \Vert _{L^{\infty}} \Vert \nabla n \Vert _{L^{\tilde{r}}} \Vert \omega \Vert _{L^{\tilde{r}}}^{\tilde{r}-1}, $$
which gives
$$\begin{aligned} & \Vert \omega \Vert _{L^{\infty}(0,T;L^{\tilde{r}})}\leq C, \end{aligned}$$
(2.9)
$$\begin{aligned} & \Vert u \Vert _{L^{\infty}(0,T;L^{\infty})}\leq C. \end{aligned}$$
(2.10)
Testing (1.1) by \(u_{t}\), using (1.2), (2.2), (2.9), and (2.10), we get
$$\begin{aligned} \Vert u_{t} \Vert _{L^{2}}\leq \Vert u\cdot\nabla u+n \nabla\phi \Vert _{L^{2}} \leq \Vert u \Vert _{L^{\infty}} \Vert \nabla u \Vert _{L^{2}}+ \Vert n \Vert _{L^{3}} \Vert \nabla\phi \Vert _{L^{6}}\leq C, \end{aligned}$$
whence
$$ \Vert u_{t} \Vert _{L^{\infty}(0,T;L^{2})}\leq C. $$
(2.11)
Testing (1.4) by \(-\Delta p\), using (2.1) and (2.2), we deduce
$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \int \vert \nabla p \vert ^{2} \,dx+ \int \vert \Delta p \vert ^{2} \,dx&= \int \bigl(u\cdot\nabla p-nf(p) \bigr)\Delta p \,dx \\ &\leq \bigl( \Vert u \Vert _{L^{\infty}} \Vert \nabla p \Vert _{L^{2}}+ \bigl\Vert f(p) \bigr\Vert _{L^{\infty}} \Vert n \Vert _{L^{2}} \bigr) \Vert \Delta p \Vert _{L^{2}} \\ &\leq C \bigl( \Vert \nabla p \Vert _{L^{2}}+1 \bigr) \Vert \Delta p \Vert _{L^{2}} \\ &\leq \frac{1}{2} \Vert \Delta p \Vert _{L^{2}}^{2}+C \Vert \nabla p \Vert _{L^{2}}^{2}, \end{aligned}$$
which implies
$$ \Vert p \Vert _{L^{\infty}(0,T;H^{1})}+ \Vert p \Vert _{L^{2}(0,T;H^{2})}\leq C. $$
(2.12)
To achieve higher order regularity of p, we decompose p as
$$p:=p_{1}+p_{2}, $$
where \(p_{1}\) and \(p_{2}\) satisfy
$$\textstyle\begin{cases} \partial_{t}p_{1}-\Delta p_{1}=-\operatorname {div}(up)&\mbox{in } \Omega \times(0,T),\\ \frac{\partial p_{1}}{\partial\nu}=0&\mbox{on }\partial\Omega \times(0,T),\\ p_{1}(x,0)=0&\mbox{in }\Omega \end{cases} $$
and
$$\textstyle\begin{cases} \partial_{t}p_{2}-\Delta p_{2}=-nf(p)& \mbox{in } \Omega\times (0,T),\\ \frac{\partial p_{2}}{\partial\nu}=0&\mbox{on }\partial\Omega \times(0,T),\\ p_{2}(x,0)=p_{0}(x)&\mbox{in }\Omega, \end{cases} $$
respectively.
By using the regularity theory of general parabolic equations (cf. [15]), (2.2), (2.5), and (2.7), we have
$$\begin{aligned} & \Vert \nabla p_{1} \Vert _{L^{m}(0,T;L^{m})}\leq C,\quad \forall m>2, \end{aligned}$$
(2.13)
$$\begin{aligned} &\Vert p_{2} \Vert _{W_{m}^{2,1}(\overline{\Omega}\times[0,T])}\leq C,\quad \forall m>5, \end{aligned}$$
(2.14)
whence
$$ \Vert \nabla p \Vert _{L^{m}(0,T;L^{m})}\leq C. $$
(2.15)
Similarly, by the regularity theory of heat equations [15], we have
$$ \Vert \nabla n \Vert _{L^{m}(0,T;L^{m})}\leq C,\quad \forall m>3. $$
(2.16)
By the well-known \(L^{\infty}\)-estimate of the heat equation, we discover that
$$ \Vert n \Vert _{L^{\infty}(\Omega\times[0,T])}\leq C. $$
(2.17)
Applying \(\partial_{t}\) to (1.3), testing by \(n_{t}\), using (1.2), (2.11), and (2.17), we get
$$\begin{aligned} &\frac{1}{2}\frac{d}{dt} \int n_{t}^{2} \,dx+ \int \vert \nabla n_{t} \vert ^{2} \,dx \\ &\quad= \int u_{t}n\nabla n_{t} \,dx+ \int \bigl(n_{t}r(p)\nabla p+nr'(p)p_{t} \nabla p+nr(p)\nabla p_{t} \bigr)\nabla n_{t} \,dx \\ &\quad\leq \Vert u_{t} \Vert _{L^{2}} \Vert n \Vert _{L^{\infty}} \Vert \nabla n_{t} \Vert _{L^{2}}+C \Vert n_{t} \Vert _{L^{3}} \Vert \nabla p \Vert _{L^{6}} \Vert \nabla n_{t} \Vert _{L^{2}} \\ &\qquad{}+C \Vert n \Vert _{L^{\infty}} \Vert p_{t} \Vert _{L^{3}} \Vert \nabla p \Vert _{L^{6}} \Vert \nabla n_{t} \Vert _{L^{2}}+C \Vert n \Vert _{L^{\infty}} \Vert \nabla p_{t} \Vert _{L^{2}} \Vert \nabla n_{t} \Vert _{L^{2}} \\ &\quad\leq C \Vert \nabla n_{t} \Vert _{L^{2}}+C \Vert n_{t} \Vert _{L^{2}}^{\frac{1}{2}} \Vert \nabla p \Vert _{L^{6}} \Vert \nabla n_{t} \Vert _{L^{2}}^{\frac{3}{2}} \\ &\qquad{}+C \Vert p_{t} \Vert _{L^{3}} \Vert \nabla p \Vert _{L^{6}} \Vert \nabla n_{t} \Vert _{L^{2}}+C \Vert \nabla p_{t} \Vert _{L^{2}} \Vert \nabla n_{t} \Vert _{L^{2}}. \end{aligned}$$
(2.18)
Here we used the fact \(\int n_{t} \,dx=0\) and the Gagliardo-Nirenberg inequality
$$ \Vert n_{t} \Vert _{L^{3}}^{2}\leq C \Vert n_{t} \Vert _{L^{2}} \Vert \nabla n_{t} \Vert _{L^{2}}. $$
(2.19)
Applying \(\partial_{t}\) to (1.4), testing by \(p_{t}\), using (1.2), (2.11), (2.1), and (2.17), we have
$$\begin{aligned} &\frac{1}{2}\frac{d}{dt} \int p_{t}^{2} \,dx+ \int \vert \nabla p_{t} \vert ^{2} \,dx \\ &\quad= \int u_{t} p\nabla p_{t} \,dx- \int \bigl(n_{t}f(p)+nf'(p)p_{t} \bigr)p_{t} \,dx \\ &\quad\leq \Vert u_{t} \Vert _{L^{2}} \Vert p \Vert _{L^{\infty}} \Vert \nabla p_{t} \Vert _{L^{2}}+C \Vert n_{t} \Vert _{L^{2}} \Vert p_{t} \Vert _{L^{2}}+C \Vert n \Vert _{L^{\infty}} \Vert p_{t} \Vert _{L^{2}}^{2} \\ &\quad\leq C \Vert \nabla p_{t} \Vert _{L^{2}}+C \Vert n_{t} \Vert _{L^{2}} \Vert p_{t} \Vert _{L^{2}}+C \Vert p_{t} \Vert _{L^{2}}^{2}. \end{aligned}$$
(2.20)
Combining (2.18) and (2.20) and using the Gronwall inequality, we conclude that
$$\begin{aligned} & \Vert n_{t} \Vert _{L^{\infty}(0,T;L^{2})}+ \Vert n_{t} \Vert _{L^{2}(0,T;H^{1})}\leq C, \end{aligned}$$
(2.21)
$$\begin{aligned} & \Vert p_{t} \Vert _{L^{\infty}(0,T;L^{2})}+ \Vert p_{t} \Vert _{L^{2}(0,T;H^{1})}\leq C. \end{aligned}$$
(2.22)
Now using the \(H^{2}\)-theory of Poisson’s equation, we have
$$\begin{aligned} & \Vert p \Vert _{L^{\infty}(0,T;H^{2})}+ \Vert p \Vert _{L^{2}(0,T;H^{3})}\leq C, \end{aligned}$$
(2.23)
$$\begin{aligned} & \Vert n \Vert _{L^{\infty}(0,T;H^{2})}+ \Vert n \Vert _{L^{\infty}(0,T;H^{3})}\leq C. \end{aligned}$$
(2.24)

To further improve the regularity of u, we recall some technical lemmas in [1, 16, 17].

Lemma 2.1

[1]

If \(f,g\in H^{s}(\Omega)\cap C(\Omega)\), then
$$ \Vert fg \Vert _{H^{s}}\leq C \bigl( \Vert f \Vert _{H^{s}} \Vert g \Vert _{L^{\infty}}+ \Vert f \Vert _{L^{\infty}} \Vert g \Vert _{H^{s}} \bigr). $$
(2.25)
If \(f\in H^{s}(\Omega)\cap C^{1}(\Omega)\) and \(g\in H^{s-1}(\Omega)\cap C(\Omega)\), then for \(\vert \alpha \vert \leq s\),
$$ \bigl\Vert D^{\alpha}(fg)-fD^{\alpha}g \bigr\Vert _{L^{2}}\leq C \bigl( \Vert f \Vert _{H^{s}} \Vert g \Vert _{L^{\infty}}+ \Vert f \Vert _{W^{1,\infty}} \Vert g \Vert _{H^{s-1}} \bigr). $$
(2.26)

Lemma 2.2

[1, 17]

For any \(u\in H^{3}(\Omega)\) with \(\operatorname {div}u=0\) in Ω and \(u\cdot\nu=0\) on Ω, there holds
$$ \Vert \nabla u \Vert _{L^{\infty}}\leq \bigl(1+ \Vert \operatorname {curl}u \Vert _{L^{\infty}}\log \bigl(e+ \Vert u \Vert _{H^{3}} \bigr) \bigr). $$
(2.27)

Lemma 2.3

[16]

For any \(u\in W^{s,p}\) with \(\operatorname {div}u=0\) in Ω and \(u\cdot\nu=0\) on Ω, there holds
$$ \Vert u \Vert _{W^{s,p}}\leq C \bigl( \Vert u \Vert _{L^{p}}+ \Vert \operatorname {curl}u \Vert _{W^{s-1,p}} \bigr) $$
(2.28)
for any \(s>1\) and \(p\in(1,\infty)\).
Now, applying Δ to (2.5), testing by Δω, using (1.2), (2.25), (2.26), (2.10), (2.28), (2.27), and (2.24), we conclude that
$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \int \vert \Delta\omega \vert ^{2} \,dx={}&-\sum _{i} \int \bigl[\partial_{i}\Delta(u_{i} \omega)-u_{i}\partial_{i}\Delta\omega \bigr]\cdot \Delta \omega \,dx \\ &{}+ \int\Delta(\omega\cdot\nabla u)\cdot\Delta\omega \,dx- \int \Delta(\nabla n\times\nabla\phi)\cdot\Delta\omega \,dx \\ \leq{}&C \bigl( \Vert \nabla u \Vert _{L^{\infty}} \Vert \Delta\omega \Vert _{L^{2}}+ \Vert \omega \Vert _{L^{\infty}} \Vert \nabla \Delta u \Vert _{L^{2}} \bigr) \Vert \Delta\omega \Vert _{L^{2}} \\ &{}+C \bigl( \Vert \nabla\phi \Vert _{L^{\infty}} \Vert \nabla\Delta n \Vert _{L^{2}}+ \Vert \nabla n \Vert _{L^{\infty}} \Vert \nabla \Delta\phi \Vert _{L^{2}} \bigr) \Vert \Delta\omega \Vert _{L^{2}}, \end{aligned}$$
which gives
$$\begin{aligned} & \Vert \Delta\omega \Vert _{L^{\infty}(0,T;L^{2})}\leq C, \\ & \Vert u \Vert _{L^{\infty}(0,T;H^{3})}\leq C. \end{aligned}$$

This completes the proof of Theorem 1.1.

3 Conclusion

We consider the 3D Keller-Segel-Euler system in a bounded domain. It is a challenging open problem whether the local solution exists globally. Here, a regularity criterion in terms of the vorticity and oxygen concentration is established to guarantee smoothness up to time T. It will help people to gain understanding of the model. We hope to find more inside structures and establish refined regularity criteria.

Declarations

Acknowledgements

The first, second and fourth authors are partially supported by the National Natural Science Foundation of China (Grant No. 11171154 and 11501346). The third author extends his appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Applied Mathematics, Nanjing Forestry University, Nanjing, P.R. China
(2)
School of Mathematics, Shanghai University of Finance and Economics, Shanghai, P.R. China
(3)
Department of Mathematics, College of Science, King Saud University, Riyadh, Saudi Arabia
(4)
School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai, P.R. China

References

  1. Ferrari, A: On the blow-up of solutions of 3-D Euler equations in a bounded domain. Commun. Math. Phys. 155, 277-294 (1993) MathSciNetView ArticleMATHGoogle Scholar
  2. Keller, E, Segel, L: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399-415 (1970) View ArticleMATHGoogle Scholar
  3. Keller, E, Segel, L: Model for chemotaxis. J. Theor. Biol. 30, 225-234 (1971) View ArticleMATHGoogle Scholar
  4. Keller, E, Segel, L: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 235-248 (1971) View ArticleMATHGoogle Scholar
  5. Biler, P: Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9, 347-359 (2009) MathSciNetMATHGoogle Scholar
  6. Corrias, L, Perthame, B, Zaag, H: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72, 1-28 (2004) MathSciNetView ArticleMATHGoogle Scholar
  7. Hillen, T, Painter, K: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183-217 (2009) MathSciNetView ArticleMATHGoogle Scholar
  8. Horstmann, D: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences: I. Jahresber. Dtsch. Math.-Ver. 105, 103-165 (2003) MathSciNetMATHGoogle Scholar
  9. Sleeman, B, Ward, M, Wei, J: Existence, stability, and dynamics of spike patterns in a chemotaxis model. SIAM J. Appl. Math. 65, 790-817 (2005) MathSciNetView ArticleMATHGoogle Scholar
  10. Winkler, M: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 34, 176-190 (2011) MathSciNetView ArticleMATHGoogle Scholar
  11. Wrzosek, D: Long time behaviour of solutions to a chemotaxis model with volume filling effect. Proc. R. Soc. Edinb., Sect. A, Math. 136, 431-444 (2006) MathSciNetView ArticleMATHGoogle Scholar
  12. Chae, M, Kang, K, Lee, J: Global existence and temporal decay in Keller-Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39(7), 1205-1235 (2014) MathSciNetView ArticleMATHGoogle Scholar
  13. Fan, J, Zhao, K: Global dynamics of a coupled chemotaxis-fluid model on bounded domains. J. Math. Fluid Mech. 16(2), 351-364 (2014) MathSciNetView ArticleMATHGoogle Scholar
  14. Xie, H, Ma, C: On blow-up criteria for a coupled chemotaxis fluid model. J. Inequal. Appl. 2017, 30 (2017) MathSciNetView ArticleMATHGoogle Scholar
  15. Amann, H: Maximal regularity for nonautonomous evolution equations. Adv. Nonlinear Stud. 4, 417-430 (2004) MathSciNetView ArticleMATHGoogle Scholar
  16. Bourguignon, J, Brezis, H: Remarks on the Euler equation. J. Funct. Anal. 15, 341-363 (1974) MathSciNetView ArticleMATHGoogle Scholar
  17. Shirota, T, Yanagisawa, T: A continuation principle for the 3D Euler equations for incompressible fluids in a bounded domain. Proc. Jpn. Acad., Ser. A, Math. Sci. 69, 77-82 (1993) View ArticleMATHGoogle Scholar

Copyright

© The Author(s) 2017

Advertisement