Lie, S: On integration of a class of linear partial differential equations by means of definite integrals. Arch. Math. 6(3), 328-368 (1881)
MATH
Google Scholar
Ovsiannikov, LV: Group Analysis of Differential Equations. Academic Press, New York (1982)
MATH
Google Scholar
Ibragimov, NH: Transformation Groups Applied to Mathematical Physics. Nauka, Moscow (1983). English translation by D. Reidel, Dordrecht, 1985
Google Scholar
Olver, PJ: Application of Lie Groups to Differential Equations. Springer, New York (1993)
Book
MATH
Google Scholar
Bluman, GW, Anco, SC: Symmetry and Integration Methods for Differential Equations. Applied Mathematical Sciences, vol. 154. Springer, New York (2002)
MATH
Google Scholar
Marin, M: On weak solutions in elasticity of dipolar bodies with voids. J. Comput. Appl. Math. 82(1-2), 291-297 (1997)
Article
MATH
MathSciNet
Google Scholar
Marin, M: Harmonic vibrations in thermoelasticity of microstretch materials. J. Vib. Acoust. 132(4), 044501 (2010)
Article
Google Scholar
Marin, M, Agarwal, RP, Codarcea, L: A mathematical model for three-phase-lag dipolar thermoelastic bodies. J. Inequal. Appl. 2017(1), 109 (2017)
Article
MATH
MathSciNet
Google Scholar
Marin, M, Baleanu, D: On vibrations in thermoelasticity without energy dissipation for micropolar bodies. Bound. Value Probl. 2016(1), 111 (2016)
Article
MATH
MathSciNet
Google Scholar
Gao, B: Analysis of a nonlinear surface wind waves model via Lie group method. Electron. J. Differ. Equ. 2016, Article ID 228 (2016)
Article
MATH
MathSciNet
Google Scholar
Zhao, ZL, Han, B: Lie symmetry analysis of the Heisenberg equation. Commun. Nonlinear Sci. Numer. Simul. 45, 220-234 (2017)
Article
MathSciNet
Google Scholar
Zhao, ZL, Han, B: On symmetry analysis and conservation laws of the AKNS system. Z. Naturforsch. A 71, 741-750 (2016)
Google Scholar
Lazar, M, Mitrović, D: Existence of solutions for a scalar conservation law with a flux of low regularity. Electron. J. Differ. Equ. 2016, Article ID 325 (2016)
Article
MATH
MathSciNet
Google Scholar
Leveque, RJ: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1992)
Book
MATH
Google Scholar
Bokhari, AH, Al-Dweik, AY, Kara, AH, Mahomed, FM, Zaman, FD: Double reduction of a nonlinear \((2+1)\) wave equation via conservation laws. Commun. Nonlinear Sci. Numer. Simul. 16, 1244-1253 (2011)
Article
MATH
MathSciNet
Google Scholar
Sjöberg, A: On double reductions from symmetries and conservation laws. Nonlinear Anal., Real World Appl. 10, 3472-3477 (2009)
Article
MATH
MathSciNet
Google Scholar
Noether, E: Invariante variationsprobleme. Nachr. Ges. Wiss. Gött., Math.-Phys. Kl. 2, 235-257 (1918). English traslation in Transp. Theor. Stat. Phys. 1(3), 186-207 (1971)
MATH
Google Scholar
Marwat, DNK, Kara, AH, Hayat, T: Conservation laws and associated Noether type vector fields via partial Lagrangians and Noether’s theorem for the liang equation. Int. J. Theor. Phys. 47, 3075-3081 (2008)
Article
MATH
MathSciNet
Google Scholar
Naz, R: Conservation laws for some compacton equations using the multiplier approach. Appl. Math. Lett. 25(2), 257-261 (2012)
Article
MATH
MathSciNet
Google Scholar
Ibragimov, NH: A new conservation theorem. J. Math. Anal. Appl. 333, 311-328 (2007)
Article
MATH
MathSciNet
Google Scholar
Ibragimov, NH, Khamitovaa, RS, Valenti, A: Self-adjointness of a generalized Camassa-Holm equation. Appl. Math. Comput. 218, 2579-2583 (2011)
MATH
MathSciNet
Google Scholar
Naz, R: Conservation laws for a complexly coupled KdV system, coupled Burgers’ system and Drinfeld-Sokolov-Wilson system via multiplier approach. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1177-1182 (2010)
Article
MATH
MathSciNet
Google Scholar
Morris, R, Kara, AH: Double reduction/analysis of the Drinfeld-Sokolov-Wilson equation. Appl. Math. Comput. 219, 6473-6483 (2013)
MATH
MathSciNet
Google Scholar
Hirota, R, Grammaticos, B, Ramani, A: Soliton structure of the Drinfeld-Sokolov-Wilson equation. J. Math. Phys. 27, 1499-1505 (1986)
Article
MATH
MathSciNet
Google Scholar
Jimbo, M, Miwa, T: Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19, 943-1001 (1983)
Article
MATH
MathSciNet
Google Scholar
Hickman, M, Hereman, W, Larue, J, Göktas, Ü: Scaling invariant Lax pairs of nonlinear evolution equations. Appl. Anal. 91(2), 381-402 (2012)
Article
MATH
MathSciNet
Google Scholar
Arora, R, Kumar, A: Solution of the coupled Drinfeld’s-Sokolov-Wilson (DSW) system by homotopy analysis method. Adv. Sci. 5(10), 1105-1111 (2013)
Google Scholar
Matjila, C, Muatjetjeja, B, Khalique, CM: Exact solutions and conservation laws of the Drinfeld-Sokolov-Wilson system. Abstr. Appl. Anal. 271960, 1 (2014)
Article
Google Scholar
Zhao, ZL, Zhang, YF, Han, Z: Symmetry analysis and conservation laws of the Drinfeld-Sokolov-Wilson system. Eur. Phys. J. Plus 129, Article ID 143 (2014). doi:10.1140/epjp/i2014-14143-x
Article
Google Scholar
Nadjafikhah, M, Bakhshandeh-Chamazkoti, R, Mahdipour-Shirayeh, A: A symmetry classification for a class of \((2+1)\)-nonlinear wave equation. Nonlinear Anal., Theory Methods Appl. 71(11), 5164-5169 (2009)
Article
MATH
MathSciNet
Google Scholar
Patera, J, Sharp, RT, Winternitz, P, Zassenhaus, H: Invariants of real low dimension Lie algebras. J. Math. Phys. 17, 986-994 (1976)
Article
MATH
MathSciNet
Google Scholar
Thomova, Z, Winternitz, P: Maximal Abelian subalgebras of pseudoeuclidean Lie algebras. Linear Algebra Appl. 291(3), 245-274 (1999)
Article
MATH
MathSciNet
Google Scholar
Grigoriev, YN, Ibragimov, NH, Kovalev, VF, Meleshko, SV: Symmetry of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics. Lecture Notes in Physics, vol. 806. Springer, Dordrecht (2010)
Book
MATH
Google Scholar
Zhao, ZL, Han, B: On optimal system, exact solutions and conservation laws of the Broer-Kaup system. Eur. Phys. J. Plus 130, Article ID 223 (2015). doi:10.1140/epjp/i2015-15223-1
Article
Google Scholar
Kudryashov, NA: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 24, 1217-1231 (2005)
Article
MATH
MathSciNet
Google Scholar
Kudryashov, NA: Exact solitary waves of the Fisher equation. Phys. Lett. A 342, 99-106 (2005)
Article
MATH
MathSciNet
Google Scholar
Vitanov, NK: Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 2050-2060 (2010)
Article
MATH
MathSciNet
Google Scholar
Vitanov, NK: Modified method of simplest equation: powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs. Commun. Nonlinear Sci. Numer. Simul. 16, 1176-1185 (2011)
Article
MATH
MathSciNet
Google Scholar
Vitanov, NK, Dimitrova, ZI, Kantz, H: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa-Holm equation. Appl. Math. Comput. 219, 7480-7492 (2013)
MATH
MathSciNet
Google Scholar
Zhao, ZL, Zhang, YF, Han, Z, Rui, WJ: A generalization of the simplest equation method and its application to \((3+1)\)-dimensional KP equation and generalized Fisher equation. Phys. Scr. 89(7), 075201 (2014)
Article
Google Scholar
Fan, EG, Zhang, J, Hon, YC: A new complex line soliton for the two-dimensional KdV-Burgers equation. Phys. Lett. A 291, 376-380 (2001)
Article
MATH
MathSciNet
Google Scholar
Fan, EG, Hon, YC: Applications of extended tanh method to special types of nonlinear equation. Appl. Math. Comput. 141, 351-358 (2003)
MATH
MathSciNet
Google Scholar
Zheng, XD, Chen, Y, Zhang, HQ: Generalized extended tanh-function method and its application to \((1+1)\)-dimensional dispersive long wave equation. Phys. Lett. A 311, 145-157 (2003)
Article
MATH
MathSciNet
Google Scholar
Zayed, EME, Abdelaziz, MAM: Exact solutions for the nonlinear Schrödinger equation with variable coefficients using the generalized extended tanh-function, the sine-cosine and the exp-function methods. Appl. Math. Comput. 218, 2259-2268 (2011)
MATH
MathSciNet
Google Scholar
Liu, HZ, Li, JB, Liu, L: Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations. J. Math. Anal. Appl. 368, 551-558 (2010)
Article
MATH
MathSciNet
Google Scholar
Liu, HZ, Geng, YX: Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid. J. Differ. Equ. 254, 2289-2303 (2013)
Article
MATH
MathSciNet
Google Scholar
Groza, G, Ali Khan, SM, Pop, N: Approximate solutions of boundary value problems for ODEs using Newton interpolating series. Carpath. J. Math. 25(1), 73-81 (2009)
MATH
MathSciNet
Google Scholar
Naz, R, Mahomed, FM, Hayat, T: Conservation laws for third-order variant Boussinesq system. Appl. Math. Lett. 23, 883-886 (2010)
Article
MATH
MathSciNet
Google Scholar
Naz, R, Mahomed, FM, Mason, DP: Comparison of different approaches to conservation laws for some partial differential equations fluid mechanics. Appl. Math. Comput. 205, 212-230 (2008)
MATH
MathSciNet
Google Scholar
Han, Z, Zhang, YF, Zhao, ZL: Double reduction and exact solutions of Zakharov-Kuznetsov modified equal width equation with power law nonlinearity via conservation laws. Commun. Theor. Phys. 60, 699-706 (2013)
Article
MATH
MathSciNet
Google Scholar
Adem, AR, Khalique, CM: New exact solutions and conservation laws of a coupled Kadomtsev-Petviashvili system. Comput. Fluids 81, 10-16 (2013)
Article
MATH
MathSciNet
Google Scholar
Anderson, RL, Ibragimov, NH: Lie-Bäcklund Transformations in Applications. SIAM, Philadelphia (1979)
Book
MATH
Google Scholar
Vu, KT, Jefferson, GF, Carminati, J: Finding higher symmetries of differential equations using the MAPLE package DESOLVII. Commun. Comput. Phys. 183, 1044-1054 (2012)
Article
MATH
MathSciNet
Google Scholar