Skip to content
Open Access

Approximate controllability of the coupled degenerate system with two boundary controls

Boundary Value Problems20172017:185

https://doi.org/10.1186/s13661-017-0916-4

Received: 29 July 2017

Accepted: 7 December 2017

Published: 16 December 2017

Abstract

In this paper, we investigate the approximate controllability of the coupled system with boundary degeneracy. The control functions act on the degenerate boundary. We prove the Carleman estimate and the unique continuation of the adjoint system. Then we get the approximate controllability by constructing the control functions.

Keywords

approximate controllabilitythe coupled degenerate systemboundary control

MSC

93B0593C2035K65

1 Introduction

In this paper, we investigate the approximate controllability of the coupled degenerate system
$$\begin{aligned}& u_{t}-\bigl(x^{p}u_{x}\bigr)_{x}+ \lambda_{1}u+\lambda_{2}v=0,\quad(x,t)\in(0,1)\times (0,T), \end{aligned}$$
(1.1)
$$\begin{aligned}& v_{t}-\bigl(x^{p}v_{x}\bigr)_{x}+ \lambda_{3}u+\lambda_{4}v=0,\quad(x,t)\in(0,1)\times (0,T), \end{aligned}$$
(1.2)
$$\begin{aligned}& u(0,t)=g_{1}\chi_{[T_{1},T_{2}]},\qquad u(1,t)=0,\quad t\in(0,T), \end{aligned}$$
(1.3)
$$\begin{aligned}& v(0,t)=g_{2}\chi_{[T_{1},T_{2}]},\qquad v(1,t)=0, \quad t \in(0,T), \end{aligned}$$
(1.4)
$$\begin{aligned}& u(x,0)=u_{0}(x),\qquad v(x,0)=v_{0}(x),\quad x \in(0,1), \end{aligned}$$
(1.5)
where \(0< p<1\), \(\lambda_{i}\in L^{\infty}((0,1)\times(0,T))\), \(i=1,2,3,4\), \(u_{0},v_{0}\in L^{2}(0,1)\), \(g_{1},g_{2}\in L^{2}(0,T)\) are the control functions, χ is the characteristic function, \(0< T_{1}< T_{2}< T\).
Recently, the controllability of the following degenerate parabolic equation has been investigated; see references [15]:
$$ u_{t}-\bigl(x^{p}u_{x}\bigr)_{x}+c(x,t)u=h \chi_{\omega},\quad(x,t)\in(0,1)\times (0,T), $$
(1.6)
where \(c\in L^{\infty}((0,1)\times(0,T))\). The degenerate equation (1.6) can be obtained by suitable transformations of the Prandtl equations; see [6]. The equation (1.6) is divided into two cases, the weak degenerate case \(0< p<1\) and the strong degenerate case \(p\ge2\). Different boundary conditions are proposed in two cases. When \(0< p<1\), the boundary condition is
$$ u(0,t)=u(1,t)=0,\quad t\in(0,T). $$
(1.7)
When \(p\ge1\), the boundary condition is
$$ x^{p} u_{x}(0,t)=u(1,t)=0,\quad t\in(0,T). $$
(1.8)
In both cases, the initial value condition is
$$ u(x,0)=u_{0}(x),\quad x\in(0,1), $$
(1.9)
where \(u_{0}\in L^{2}(0,1)\); see [2].

The authors prove that the problem (1.6), (1.7) or (1.8) and (1.9) is null controllable if \(0< p<2\), and the problem is not null controllable if \(p\ge2\), see the references [15]. On the other hand, it is shown that, for every \(p>0\), the problem (1.6), (1.7) or (1.8) and (1.9) is approximate controllability; see [7, 8]. In [9], the author investigated the null controllability of the coupled system with internal control.

Moreover, it is considered whether the degenerate problem is controllable if the control function acts on the degenerate boundary. The following problem is studied; see [1012]:
$$\begin{aligned}& u_{t}-\bigl(x^{p} u_{x}\bigr)_{x}+c(x,t)u=0,\quad(x,t) \in(0,1)\times(0,T), \end{aligned}$$
(1.10)
$$\begin{aligned}& u(0,t)=h\chi_{[T_{1},T_{2}]},\qquad u(1,t)=0,\quad t\in(0,T), \end{aligned}$$
(1.11)
$$\begin{aligned}& u(x,0)=u_{0}(x),\quad x\in(0,1), \end{aligned}$$
(1.12)
where \(0< p<1\). Note that it is not necessary that we propose the boundary condition on the degenerate boundary when \(1\le p<2\); see [13]. Further, there are a lot of work on the controllability; see references [1417] and so on.
The degenerate parabolic system (1.1)-(1.5) is the mathematical model coming from mathematical biology and physical phenomena; see [18, 19]. In the present paper, we prove the approximate controllability for the system (1.1)-(1.5). That is to say, for any \(\varepsilon>0\) and \(u_{0},v_{0},u_{1},v_{1}\in L^{2}(0,1)\), there exist \(g_{1},g_{2}\in L^{2}(0,T)\), such that the solution \((u,v)\) to the system (1.1)-(1.5) satisfies
$$\big\| u(x,T)-u_{1}(x)\big\| _{L^{2}(0,1)}^{2}+\big\| v(x,T)-v_{1}(x) \big\| _{L^{2}(0,1)}^{2}\le \varepsilon^{2}. $$
First, we prove the Carleman estimate for the adjoint system. Next, the unique continuation can be derived from the Carleman estimate. Then, by constructing the functional, we show the functional has a unique minimum point. Finally, we construct the control functions by the minimum point of the functional and get the approximate controllability.

The paper is organized as follows. In Section 2, we prove the Carleman estimate and the unique continuation for the adjoint system. In Section 3, we prove the approximate controllability of the coupled system (1.1)-(1.5).

2 Unique continuation for the adjoint system

In this section, we prove the unique continuation for the adjoint system by Carleman estimate.

First, we study the well-posedness of the adjoint system
$$\begin{aligned}& -y_{t}-\bigl(x^{p}y_{x}\bigr)_{x}+ \lambda_{1}y+\lambda_{3}z=f_{1},\quad(x,t)\in(0,1) \times (0,T), \end{aligned}$$
(2.1)
$$\begin{aligned}& -z_{t}-\bigl(x^{p}z_{x}\bigr)_{x}+ \lambda_{2}y+\lambda_{4}z=f_{2},\quad(x,t)\in(0,1) \times (0,T), \end{aligned}$$
(2.2)
$$\begin{aligned}& y(0,t)=0,\qquad y(1,t)=0,\quad t\in(0,T), \end{aligned}$$
(2.3)
$$\begin{aligned}& z(0,t)=0,\qquad z(1,t)=0, \quad t\in(0,T), \end{aligned}$$
(2.4)
$$\begin{aligned}& y(x,T)=y_{T}(x),\qquad z(x,T)=z_{T}(x),\quad x \in(0,1), \end{aligned}$$
(2.5)
where \(f_{1},f_{2}\in L^{2}((0,1)\times(0,T))\), \(y_{T},z_{T}\in L^{2}(0,1)\).
Define \(H_{p}^{1}(0,1)\), \(H_{p}^{2}(0,1)\) are the closures of \(C_{0}^{\infty}(0,1)\) with respect to the norms; see [1],
$$\begin{gathered} \|u\|_{H_{p}^{1}(0,1)}= \biggl( \int_{0}^{1}\bigl(u^{2}+x^{p}u_{x}^{2} \bigr)\,dx \biggr)^{1/2},\quad u\in H_{p}^{1}(0,1), \\ \|u\|_{H_{p}^{2}(0,1)}= \biggl( \int_{0}^{1}\bigl(u^{2}+x^{p}u_{x}^{2}+ \bigl(x^{p}u_{x}\bigr)_{x}^{2}\bigr)\,dx \biggr)^{1/2},\quad u\in H_{p}^{2}(0,1),\end{gathered} $$
respectively. Denote \(\mathbb{B}=L^{\infty}(0,T;L^{2}(0,1))\cap L^{2}(0,T;H_{p}^{1}(0,1))\) and \(\mathbb{D}=L^{2}(0,T;H_{p}^{2}(0,1))\cap H^{1}(0,T;L^{2}(0,1))\) with respect to the norms
$$\begin{gathered} \|u\|_{\mathbb{B}}= \biggl(\sup_{t\in(0,T)} \int_{0}^{1}\bigl(u(x,t)\bigr)^{2}\,dx+ \int _{0}^{T} \int_{0}^{1}\bigl(u^{2}+x^{p}u_{x}^{2} \bigr)\,dx\,dt \biggr)^{1/2}, \quad u\in\mathbb{B}, \\ \|u\|_{\mathbb{D}}= \biggl( \int_{0}^{T} \int_{0}^{1}u_{t}^{2}\,dx+ \int_{0}^{T} \int_{0}^{1}\bigl(u^{2}+x^{p}u_{x}^{2}+ \bigl(x^{p}u_{x}\bigr)_{x}^{2}\bigr)\,dx\,dt \biggr)^{1/2}, \quad u\in \mathbb{D},\end{gathered} $$
respectively.

Definition 2.1

A pair of functions \((y,z)\in\mathbb{B}\times \mathbb{B}\) is called a solution to the system (2.1)-(2.5), if for any \(\varphi,\psi\in\mathbb{B}\) with \(\varphi_{t},\psi_{t}\in L^{2}((0,1)\times(0,T))\) and \(\varphi(x,0)=0\), \(\psi(x,0)=0\), \(x\in(0,1)\), the following integral equalities hold:
$$\begin{gathered} \int_{0}^{T} \int_{0}^{1}\bigl(y\varphi_{t}+x^{p}y_{x} \varphi_{x}+\lambda _{1}y\varphi+\lambda_{3}z \varphi\bigr) \,dx\,dt= \int_{0}^{T} \int _{0}^{1}f_{1}\varphi \,dx\,dt + \int_{0}^{1}y_{T}(x)\varphi(x,T)\,dx, \\ \int_{0}^{T} \int_{0}^{1}\bigl(z\psi_{t}+x^{p}z_{x} \psi_{x}+\lambda_{2}y\psi +\lambda_{4}z\psi \bigr)\,dx\,dt= \int_{0}^{T} \int_{0}^{1}f_{2}\psi \,dx\,dt + \int_{0}^{1}z_{T}(x)\psi(x,T)\,dx.\end{gathered} $$

By energy estimates, one can prove the well-posedness as the case of the single equations.

Theorem 2.1

There exists a unique solution \((y,z)\in\mathbb{B}\times\mathbb{B}\) to the problem (2.1)-(2.5) satisfying
$$\begin{gathered} \|y\|_{\mathbb{B}}+\|z\|_{\mathbb{B}}+\big\| x^{p}y_{x}(0,t) \big\| _{L^{2}(T_{1},T_{2})}+\big\| x^{p}y_{x}(0,t)\big\| _{L^{2}(T_{1},T_{2})}+ \big\| x^{p}z_{x}(0,t)\big\| _{L^{2}(T_{1},T_{2})} \\ \quad\le C_{1} \bigl(\|f_{1}\|_{L^{2}((0,1)\times(0,T))}+\|f_{2}\| _{L^{2}((0,1)\times(0,T))}+\|y_{T}\|_{L^{2}(0,1)}+\|z_{T} \|_{L^{2}(0,1)} \bigr),\end{gathered} $$
where \(C_{1}\) is depending only on T, \(T_{1}\), \(\|\lambda_{i}\|_{L^{\infty}((0,1)\times(0,T))}\), \(i=1,2,3,4\). Further, if \((y_{T},z_{T})\in H_{p}^{1}(0,1)\times H_{p}^{1}(0,1)\), then there exists a constant \(C_{2}\) depending only on T, \(T_{1}\), \(\|\lambda_{i}\|_{L^{\infty}((0,1)\times (0,T))}\), \(i=1,2,3,4\), such that
$$\begin{aligned} \|y\|_{\mathbb{D}}+\|z\|_{\mathbb{D}} \le C_{2} \bigl(\|f_{1} \|_{L^{2}((0,1)\times(0,T))}+\|f_{2}\|_{L^{2}((0,1)\times (0,T))}+\|y_{T} \|_{H_{p}^{1}(0,1)}+\|z_{T}\|_{H_{p}^{1}(0,1)} \bigr). \end{aligned}$$

The proof is similar to Proposition 2.1 in [11] and Proposition 2.1 in [12].

Next, we prove the unique continuation. Consider the problem
$$\begin{aligned}& w_{t}+\bigl(x^{p}w_{x}\bigr)_{x}=F,\quad(x,t) \in(0,1)\times(0,T), \end{aligned}$$
(2.6)
$$\begin{aligned}& w(0,t)=w(1,t)=0,\quad t\in(0,T), \end{aligned}$$
(2.7)
where \(F\in L^{2}((0,1)\times(0,T))\). Then we have the following two lemmas.

Lemma 2.1

(Theorem 2.3 [10])

Let \(w\in\mathbb{D}\) be the solution to the problem (2.6) and (2.7) and satisfying
$$\bigl(x^{p}w_{x}\bigr) (0,t)=\bigl(x^{p}w_{x} \bigr) (1,t)=0. $$
Then, for fixed \(q\in(1-p,1-p/2)\), there exist two positive constants C and \(s_{0}\) such that, for all \(s\ge s_{0}\),
$$\begin{gathered} \int_{0}^{T} \int_{0}^{1}s^{3}l^{3}(t)x^{2p+3q-4}w^{2}e^{-2s x^{q}l(t)}\,dx\,dt + \int_{0}^{T} \int_{0}^{1}s l(t)x^{2p+q-2}w_{x}^{2} e^{-2s x^{q} l(t)}\,dx\,dt \\ \quad\le C \int_{0}^{T} \int_{0}^{1}F^{2}e^{-2s x^{q} l(t)}\,dx\,dt,\end{gathered} $$
where \(l(t)=\frac{1}{t(T-t)}\).

From Lemma 2.1, we can prove the Carleman estimate for the system (2.1)-(2.5).

Theorem 2.2

Let \((y,z)\in\mathbb{D}\times\mathbb{D}\) be the solution to the system (2.1)-(2.4) and suppose that, for a.e. \(t\in(0,T)\),
$$\bigl(x^{p}y_{x}\bigr) (0,t)=\bigl(x^{p}y_{x} \bigr) (1,t)=\bigl(x^{p}z_{x}\bigr) (0,t)= \bigl(x^{p}z_{x}\bigr) (1,t)=0. $$
Then, for fixed \(q\in(1-p,1-p/2)\), there exist positive constants \(C_{1}\) and \(s_{1}\) such that, for all \(s\ge s_{1}\),
$$\begin{gathered} \int_{0}^{T} \int_{0}^{1}s^{3}l^{3}(t)x^{2p+3q-4}y^{2}e^{-2s x^{q} l(t)}\,dx\,dt + \int_{0}^{T} \int_{0}^{1}s l(t)x^{2p+q-2}y_{x}^{2}e^{-2s x^{q} l(t)}\,dx\,dt \\ \qquad{}+ \int_{0}^{T} \int_{0}^{1}s^{3}l^{3}(t)x^{2p+3q-4}z^{2}e^{-2s x^{q} l(t)}\,dx\,dt + \int_{0}^{T} \int_{0}^{1}s l(t)x^{2p+q-2}z_{x}^{2}e^{-2s x^{q} l(t)}\,dx\,dt \\ \quad\le C_{1} \biggl( \int_{0}^{T} \int_{0}^{1}|f_{1}|^{2}e^{-2s x^{q}l(t)}\,dx\,dt+ \int _{0}^{T} \int_{0}^{1}|f_{2}|^{2}e^{-2s x^{q} l(t)}\,dx\,dt \biggr). \end{gathered}$$

Proof

It follows from Lemma 2.1 that there exist C and \(s_{0}\) such that, for all \(s\ge s_{0}\),
$$\begin{gathered} \int_{0}^{T} \int_{0}^{1}s^{3}l^{3}(t)x^{2p+3q-4}y^{2}e^{-2s x^{q} l(t)}\,dx\,dt + \int_{0}^{T} \int_{0}^{1}s l(t)x^{2p+q-2}y_{x}^{2}e^{-2s x^{q} l(t)}\,dx\,dt \\ \qquad{}+ \int_{0}^{T} \int_{0}^{1}s^{3}l^{3}(t)x^{2p+3q-4}z^{2}e^{-2s x^{q} l(t)}\,dx\,dt + \int_{0}^{T} \int_{0}^{1}s l(t)x^{2p+q-2}z_{x}^{2}e^{-2s x^{q} l(t)}\,dx\,dt \\ \quad\le C \biggl( \int_{0}^{T} \int_{0}^{1}|f_{1}|^{2}e^{-2s x^{q} l(t)}\,dx\,dt+ \int _{0}^{T} \int_{0}^{1}|f_{2}|^{2}e^{-2s x^{q} l(t)}\,dx\,dt \\ \qquad{}+\bigl(\|\lambda_{1}\|_{L^{\infty}(0,1)\times(0,T)}^{2}+\| \lambda_{2}\| _{L^{\infty}(0,1)\times(0,T)}^{2}\bigr) \int_{0}^{T} \int_{0}^{1}|y|^{2}e^{-2s x^{q} l(t)}\,dx\,dt \\ \qquad{}+\bigl(\|\lambda_{3}\|_{L^{\infty}(0,1)\times(0,T)}^{2}+\| \lambda_{4}\| _{L^{\infty}(0,1)\times(0,T)}^{2}\bigr) \int_{0}^{T} \int_{0}^{1}|z|^{2}e^{-2s x^{q} l(t)}\,dx\,dt \biggr).\end{gathered} $$
Note that \(2p+3q-4<0\) due to \(q\in(1-p,1-p/2)\). Take
$$s_{1}=\max\Biggl\{ s_{0}, 2^{-5/3}T^{2}C^{1/3} \Biggl(\sum_{i=1}^{4}\|\lambda_{i} \| _{L^{\infty}(0,1)\times(0,T)}^{2}\Biggr)^{1/3}\Biggr\} . $$
Then, for \(s>s_{1}\), we have
$$\begin{aligned} \begin{gathered} \int_{0}^{T} \int_{0}^{1}s^{3}l^{3}(t)x^{2p+3q-4}y^{2}e^{-2s x^{q} l(t)}\,dx\,dt + \int_{0}^{T} \int_{0}^{1}s l(t)x^{2p+q-2}y_{x}^{2}e^{-2s x^{q} l(t)}\,dx\,dt \\ \qquad{}+ \int_{0}^{T} \int_{0}^{1}s^{3}l^{3}(t)x^{2p+3q-4}z^{2}e^{-2s x^{q} l(t)}\,dx\,dt + \int_{0}^{T} \int_{0}^{1}s l(t)x^{2p+q-2}z_{x}^{2}e^{-2s x^{q} l(t)}\,dx\,dt \\ \quad\le 2C \biggl( \int_{0}^{T} \int_{0}^{1}|f_{1}|^{2}e^{-2s x^{q} l(t)}\,dx\,dt+ \int _{0}^{T} \int_{0}^{1}|f_{2}|^{2}e^{-2s x^{q} l(t)}\,dx\,dt\biggr).\end{gathered} \end{aligned}$$
The proof is complete. □

Similar to the proof of Theorem 3.1 [10] and Proposition 4.2 [12], one can prove the following unique continuation properties.

Theorem 2.3

Let \((y,z)\in\mathbb{D}\times\mathbb{D}\) be the solution to the system (2.1)-(2.4) and suppose that, for almost every \(t\in(0,T)\),
$$\bigl(x^{p}y_{x}\bigr) (0,t)=\bigl(x^{p}z_{x} \bigr) (0,t)=0. $$
If \(f_{1}(x,t)=f_{2}(x,t)=0\), then \(y(x,t)=0\), \(z(x,t)=0\), where \((x,t)\in (0,1)\times(0,T)\).

Theorem 2.4

Let \((y,z)\in\mathbb{B}\times\mathbb{B}\) be the solution to the system (2.1)-(2.5) and suppose that, for almost every \(t\in(0,T)\),
$$\bigl(x^{p}y_{x}\bigr) (0,t)=\bigl(x^{p}z_{x} \bigr) (0,t)=0. $$
If \(f_{1}(x,t)=f_{2}(x,t)=0\), then \(y(x,t)=0\), \(z(x,t)=0\), where \((x,t)\in (0,1)\times(0,T)\).

3 Approximate controllability for the control system

In this section, we prove the approximate controllability for the control system (1.1)-(1.5).

Define the mapping
$${\mathscr {L}}:\mathbb{X}\to\mathbb{T}, \qquad (y_{T},z_{T}) \longmapsto\bigl(x^{p}y_{x}(0,t)\chi_{{\omega_{1}}},x^{p}z_{x}(0,t) \chi _{{\omega_{1}}}\bigr), $$
where \(\mathbb{X}=L^{2}(0,1)\times L^{2}(0,1)\) with the norm
$$\big\| (w_{1},w_{2})\big\| _{\mathbb{X}}= \bigl(\|w_{1} \|_{L^{2}(0,1)}^{2}+\|w_{2}\| _{L^{2}(0,1)}^{2} \bigr)^{1/2}, \quad(w_{1},w_{2})\in\mathbb{X} $$
and \(\mathbb{T}=L^{2}(T_{1},T_{2})\times L^{2}(T_{1},T_{2})\) with the norm
$$\big\| (w_{1},w_{2})\big\| _{\mathbb{T}}= \bigl(\|w_{1} \|_{L^{2}(T_{1},T_{2})}^{2}+\|w_{2}\| _{L^{2}(T_{1},T_{2})}^{2} \bigr)^{1/2}, \quad(w_{1},w_{2})\in\mathbb{T}. $$
For any \((u_{1},v_{1})\in\mathbb{X}\), define the functional
$$\begin{aligned} J\bigl((y_{T},z_{T})\bigr)=\frac{1}{2}\big\| \bigl(x^{p}y_{x}(0,t),x^{p}z_{x}(0,t) \bigr)\big\| _{\mathbb{T}}^{2} +\varepsilon\big\| (y_{T},z_{T}) \big\| _{\mathbb{X}}-\bigl\langle (u_{1},v_{1}),(y_{T},z_{T}) \bigr\rangle _{\mathbb{X}}, \end{aligned}$$
where \((y_{T},z_{T})\in\mathbb{X}\) and \(\langle\cdot,\cdot\rangle _{\mathbb{X}}\) is the inner product in \(\mathbb{X}\).

Proposition 3.1

\(J(\cdot)\) is strictly convex and satisfies
$$ \liminf _{\|(y_{T},z_{T})\|_{\mathbb{X}}\to+\infty} \frac{J((y_{T},z_{T}))}{\|(y_{T},z_{T})\|_{\mathbb {X}}}\geq\varepsilon. $$
(3.1)
Furthermore, \(J(\cdot)\) achieves its minimum at a unique point \((\hat{y}_{T},\hat{z}_{T})\) in \(\mathbb{X}\) and
$$ ({\hat{y}_{T}},{\hat{z}_{T}})=0 \textit{ a.e. in } \Omega \quad\Longleftrightarrow\quad\big\| (u_{1},v_{1})\big\| _{\mathbb{X}}\leq \varepsilon. $$
(3.2)

The proof is similar to the proof of Proposition 3.1 in [7].

Now, we are ready to prove the approximate controllability of the system (1.1)-(1.5).

Theorem 3.1

The system (1.1)-(1.5) is approximately controllable. That is to say, for any given \(u_{0},v_{0},u_{1},v_{1}\in L^{2}(0,1)\) and \(\varepsilon>0\), there exist \(g_{1},g_{2}\in L^{2}(T_{1},T_{2})\) such that the weak solution \((u,v)\) to the system (1.1)-(1.5) satisfies
$$ \big\| \bigl(u(x,T)-u_{1},v(x,T)-v_{1}\bigr) \big\| _{\mathbb{X}}\le\varepsilon. $$
(3.3)

Proof

Without loss of generality, we assume
$$ u_{0}(x)=0,\qquad v_{0}(x)=0,\quad\mbox{a.e. } x\in(0,1). $$
(3.4)

If \(\|(u_{1},v_{1})\|_{\mathbb{X}}\le\varepsilon\), (3.3) holds by taking \(g_{1},g_{2}=0\). Now we suppose \(\|(u_{1},v_{1})\|_{\mathbb{X}}>\varepsilon\).

In this case, Proposition 3.1 yields \((\hat{y}_{T},\hat{z}_{T})\neq(0,0)\). For any \((\theta_{0},\psi_{0})\in{\mathbb{X}}\), denote \((\theta,\psi)\) to be the solution of the coupled system (2.1)-(2.5) with \((y_{T},z_{T})=(\theta _{0},\psi_{0})\). Since \((\hat{y}_{T},\hat{z}_{T})\) is the unique point of minimum of \(J(\cdot )\), one gets
$$ \begin{aligned}[b]&\bigl\langle \bigl(x^{p}\hat{y}_{x}(0,t),x^{p} \hat{z}_{x}(0,t)\bigr),\bigl(x^{p}\theta_{x}(0,t),x^{p} \psi _{x}(0,t)\bigr)\bigr\rangle _{\mathbb{T}} +\varepsilon \frac{\langle(\hat{y}_{T},\hat{z}_{T}),(\theta_{0},\psi_{0})\rangle_{\mathbb{X}}}{\|(\hat{y}_{T},\hat{z}_{T})\|_{\mathbb{X}}} \\ &\quad-\bigl\langle (u_{1},v_{1}),(\theta_{0}, \psi_{0})\bigr\rangle _{\mathbb{X}}=0.\end{aligned} $$
(3.5)
It follows from the definition of the weak solution \((u,v)\) to the system (1.1)-(1.4) and (3.4) that
$$\begin{aligned}& \int_{0}^{T} \int_{0}^{1}\bigl(u_{t}\theta \,dx\,dt+x^{p}u_{x}\theta_{x} + \lambda_{1}u \theta+\lambda_{2}v\theta\bigr) \,dx\,dt =0, \end{aligned}$$
(3.6)
$$\begin{aligned}& \int_{0}^{T} \int_{0}^{1}\bigl(v_{t}\psi \,dx\,dt+x^{p}v_{x}\psi_{x} + \lambda_{3}u \psi+\lambda_{4}v\psi\bigr) \,dx\,dt =0. \end{aligned}$$
(3.7)
Additionally, the definition of the weak solution \((\theta,\psi)\) to the system (2.1)-(2.5) with \((y_{T},z_{T})=(\theta_{0},\psi _{0})\) gives
$$\begin{aligned}& \begin{aligned}[b] &\int_{0}^{T} \int_{0}^{1}\bigl(\theta u_{t}+x^{p} \theta_{x}u_{x}+\lambda_{1}\theta u+ \lambda_{3}\psi u\bigr) \,dx\,dt\\ &\quad = \int_{0}^{1}\theta_{0}(x)u(x,T)\,dx- \int_{T_{1}}^{T_{2}}x^{p}\theta _{x}(0,t)g_{1}\,dt,\end{aligned} \end{aligned}$$
(3.8)
$$\begin{aligned}& \begin{aligned}[b]&\int_{0}^{T} \int_{0}^{1}\bigl(\psi v_{t}+x^{p} \psi_{x}v_{x}+\lambda_{2}\theta v+ \lambda_{4}\psi v\bigr) \,dx\,dt\\&\quad = \int_{0}^{1}\psi_{0}(x)v(x,T)\,dx- \int_{T_{1}}^{T_{2}}x^{p}\psi _{x}(0,t)g_{2}\,dt.\end{aligned} \end{aligned}$$
(3.9)
From (3.6)-(3.9), one can get
$$ \begin{aligned}[b]& \int_{T_{1}}^{T_{2}}\bigl(x^{p} \theta_{x}(0,t)x^{p}\hat{y}_{x}(0,t)+x^{p} \psi _{x}(0,t)x^{p}\hat{z}_{x}(0,t)\bigr)\,dt \\ &\quad= \int_{0}^{1}\theta_{0}(x)u(x,T)\,dx+ \int_{0}^{1}\psi_{0}(x)v(x,T)\,dx\end{aligned} $$
(3.10)
by taking
$$\begin{gathered} g_{1}(t)= \left\{ \textstyle\begin{array}{l@{\quad}l} x^{p}\hat{y}_{x}(0,t),& t\in[T_{1},T_{2}], \\ 0,& t\in[0,T_{1})\cup(T_{2},T], \end{array}\displaystyle \right . \\ g_{2}(t)= \left\{ \textstyle\begin{array}{l@{\quad}l} x^{p}\hat{z}_{x}(0,t),& t\in[T_{1},T_{2}], \\ 0,& t\in[0,T_{1})\cup(T_{2},T]. \end{array}\displaystyle \right .\end{gathered} $$
Combining (3.10) with (3.5) yields
$$\begin{aligned} \bigl\langle \bigl(u_{1}-u(x,T),v_{1}-v(x,T)\bigr),( \theta_{0},\psi_{0})\bigr\rangle _{\mathbb{X}} =\varepsilon \frac{\langle(\hat{y}_{T},\hat{z}_{T}),(\theta_{0},\psi_{0})\rangle_{\mathbb{X}}}{\|(\hat{y}_{T},\hat{z}_{T})\|_{\mathbb{X}}}, \end{aligned}$$
which implies (3.3) due to the arbitrariness of \((\theta_{0},\psi_{0})\in\mathbb{X}\). □

Declarations

Acknowledgements

This work was supported by the Natural Science Foundation for Young Scientists of Jilin Province (20170520048JH), the Scientific and Technological Project of Jilin Province’s Education Department in Thirteenth Five-Year (JJKH20170534KJ) and the National Natural Science Foundation of China (11401049).

Authors’ contributions

Author read and approved the final manuscript.

Competing interests

The author declares to have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Basic Science, Changchun University of Technology, Changchun, P.R. China

References

  1. Alabau-Boussouira, F, Cannarsa, P, Fragnelli, G: Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6(2), 161-204 (2006) MathSciNetView ArticleMATHGoogle Scholar
  2. Cannarsa, P, Martinez, P, Vancostenoble, J: Persistent regional null controllability for a class of degenerate parabolic equations. Commun. Pure Appl. Anal. 3(4), 607-635 (2004) MathSciNetView ArticleMATHGoogle Scholar
  3. Cannarsa, P, Martinez, P, Vancostenoble, J: Null controllability of degenerate heat equations. Adv. Differ. Equ. 10(2), 153-190 (2005) MathSciNetMATHGoogle Scholar
  4. Cannarsa, P, Martinez, P, Vancostenoble, J: Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47(1), 1-19 (2008) MathSciNetView ArticleMATHGoogle Scholar
  5. Martinez, P, Vancostenoble, J: Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equ. 6(2), 325-362 (2006) MathSciNetView ArticleMATHGoogle Scholar
  6. Martinez, P, Raymond, JP, Vancostenoble, J: Regional null controllability for a linearized Crocco type equation. SIAM J. Control Optim. 42(2), 709-728 (2003) MathSciNetView ArticleMATHGoogle Scholar
  7. Wang, C: Approximate controllability of a class of degenerate systems. Appl. Math. Comput. 203(1), 447-456 (2008) MathSciNetMATHGoogle Scholar
  8. Wang, C: Approximate controllability of a class of semilinear systems with boundary degeneracy. J. Evol. Equ. 10(1), 163-193 (2010) MathSciNetView ArticleMATHGoogle Scholar
  9. Cannarsa, P, Teresa, L: Controllability of 1-D coupled degenerate parabolic equations. Electron. J. Differ. Equ. 2009, Article ID 73 (2009) MathSciNetMATHGoogle Scholar
  10. Cannarsa, P, Tort, J, Yamamoto, M: Unique continuation and approximate controllability for a degenerate parabolic equation. Appl. Anal. 91(8), 1409-1425 (2012) MathSciNetView ArticleMATHGoogle Scholar
  11. Du, R: Approximate controllability of a class of semilinear degenerate systems with boundary control. J. Differ. Equ. 256, 3141-3165 (2014) MathSciNetView ArticleMATHGoogle Scholar
  12. Du, R, Xu, F: On the boundary controllability of a semilinear degenerate system with the convection term. Appl. Math. Comput. 303, 113-127 (2017) MathSciNetGoogle Scholar
  13. Yin, J, Wang, C: Evolutionary weighted p-Laplacian with boundary degeneracy. J. Differ. Equ. 237(2), 421-445 (2007) MathSciNetView ArticleMATHGoogle Scholar
  14. Boutaayamou, I, Salhi, J: Null controllability for linear parabolic cascade systems with interior degeneracy. Electron. J. Differ. Equ. 2016, Article ID 305 (2016) MathSciNetView ArticleMATHGoogle Scholar
  15. Hajjaj, A, Maniar, L, Salhi, J: Carleman estimates and null controllability of degenerate/singular parabolic systems. Electron. J. Differ. Equ. 2016, Article ID 292 (2016) MathSciNetView ArticleMATHGoogle Scholar
  16. Kumar, S, Sukavanam, N: Controllability of semilinear systems with fixed delay in control. Opusc. Math. 35(1), 71-83 (2015) MathSciNetView ArticleMATHGoogle Scholar
  17. Morales, F: Notes on the nonlinear dependence of a multiscale coupled system with respect to the interface. Opusc. Math. 35(4), 517-546 (2015) MathSciNetView ArticleMATHGoogle Scholar
  18. Kalashinov, AS: Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations. Russ. Math. Surv. 42, 169-222 (1987) View ArticleGoogle Scholar
  19. Nagai, T, Senba, T, Susuki, T: Chemotactic collapse in parabolic system of mathematical biology. Hiroshima Math. J. 30, 463-497 (2000) MathSciNetMATHGoogle Scholar

Copyright

© The Author(s) 2017