- Research
- Open access
- Published:
Approximate controllability of the coupled degenerate system with two boundary controls
Boundary Value Problems volume 2017, Article number: 185 (2017)
Abstract
In this paper, we investigate the approximate controllability of the coupled system with boundary degeneracy. The control functions act on the degenerate boundary. We prove the Carleman estimate and the unique continuation of the adjoint system. Then we get the approximate controllability by constructing the control functions.
1 Introduction
In this paper, we investigate the approximate controllability of the coupled degenerate system
where \(0< p<1\), \(\lambda_{i}\in L^{\infty}((0,1)\times(0,T))\), \(i=1,2,3,4\), \(u_{0},v_{0}\in L^{2}(0,1)\), \(g_{1},g_{2}\in L^{2}(0,T)\) are the control functions, χ is the characteristic function, \(0< T_{1}< T_{2}< T\).
Recently, the controllability of the following degenerate parabolic equation has been investigated; see references [1–5]:
where \(c\in L^{\infty}((0,1)\times(0,T))\). The degenerate equation (1.6) can be obtained by suitable transformations of the Prandtl equations; see [6]. The equation (1.6) is divided into two cases, the weak degenerate case \(0< p<1\) and the strong degenerate case \(p\ge2\). Different boundary conditions are proposed in two cases. When \(0< p<1\), the boundary condition is
When \(p\ge1\), the boundary condition is
In both cases, the initial value condition is
where \(u_{0}\in L^{2}(0,1)\); see [2].
The authors prove that the problem (1.6), (1.7) or (1.8) and (1.9) is null controllable if \(0< p<2\), and the problem is not null controllable if \(p\ge2\), see the references [1–5]. On the other hand, it is shown that, for every \(p>0\), the problem (1.6), (1.7) or (1.8) and (1.9) is approximate controllability; see [7, 8]. In [9], the author investigated the null controllability of the coupled system with internal control.
Moreover, it is considered whether the degenerate problem is controllable if the control function acts on the degenerate boundary. The following problem is studied; see [10–12]:
where \(0< p<1\). Note that it is not necessary that we propose the boundary condition on the degenerate boundary when \(1\le p<2\); see [13]. Further, there are a lot of work on the controllability; see references [14–17] and so on.
The degenerate parabolic system (1.1)-(1.5) is the mathematical model coming from mathematical biology and physical phenomena; see [18, 19]. In the present paper, we prove the approximate controllability for the system (1.1)-(1.5). That is to say, for any \(\varepsilon>0\) and \(u_{0},v_{0},u_{1},v_{1}\in L^{2}(0,1)\), there exist \(g_{1},g_{2}\in L^{2}(0,T)\), such that the solution \((u,v)\) to the system (1.1)-(1.5) satisfies
First, we prove the Carleman estimate for the adjoint system. Next, the unique continuation can be derived from the Carleman estimate. Then, by constructing the functional, we show the functional has a unique minimum point. Finally, we construct the control functions by the minimum point of the functional and get the approximate controllability.
The paper is organized as follows. In Section 2, we prove the Carleman estimate and the unique continuation for the adjoint system. In Section 3, we prove the approximate controllability of the coupled system (1.1)-(1.5).
2 Unique continuation for the adjoint system
In this section, we prove the unique continuation for the adjoint system by Carleman estimate.
First, we study the well-posedness of the adjoint system
where \(f_{1},f_{2}\in L^{2}((0,1)\times(0,T))\), \(y_{T},z_{T}\in L^{2}(0,1)\).
Define \(H_{p}^{1}(0,1)\), \(H_{p}^{2}(0,1)\) are the closures of \(C_{0}^{\infty}(0,1)\) with respect to the norms; see [1],
respectively. Denote \(\mathbb{B}=L^{\infty}(0,T;L^{2}(0,1))\cap L^{2}(0,T;H_{p}^{1}(0,1))\) and \(\mathbb{D}=L^{2}(0,T;H_{p}^{2}(0,1))\cap H^{1}(0,T;L^{2}(0,1))\) with respect to the norms
respectively.
Definition 2.1
A pair of functions \((y,z)\in\mathbb{B}\times \mathbb{B}\) is called a solution to the system (2.1)-(2.5), if for any \(\varphi,\psi\in\mathbb{B}\) with \(\varphi_{t},\psi_{t}\in L^{2}((0,1)\times(0,T))\) and \(\varphi(x,0)=0\), \(\psi(x,0)=0\), \(x\in(0,1)\), the following integral equalities hold:
By energy estimates, one can prove the well-posedness as the case of the single equations.
Theorem 2.1
There exists a unique solution \((y,z)\in\mathbb{B}\times\mathbb{B}\) to the problem (2.1)-(2.5) satisfying
where \(C_{1}\) is depending only on T, \(T_{1}\), \(\|\lambda_{i}\|_{L^{\infty}((0,1)\times(0,T))}\), \(i=1,2,3,4\). Further, if \((y_{T},z_{T})\in H_{p}^{1}(0,1)\times H_{p}^{1}(0,1)\), then there exists a constant \(C_{2}\) depending only on T, \(T_{1}\), \(\|\lambda_{i}\|_{L^{\infty}((0,1)\times (0,T))}\), \(i=1,2,3,4\), such that
The proof is similar to Proposition 2.1 in [11] and Proposition 2.1 in [12].
Next, we prove the unique continuation. Consider the problem
where \(F\in L^{2}((0,1)\times(0,T))\). Then we have the following two lemmas.
Lemma 2.1
(Theorem 2.3 [10])
Let \(w\in\mathbb{D}\) be the solution to the problem (2.6) and (2.7) and satisfying
Then, for fixed \(q\in(1-p,1-p/2)\), there exist two positive constants C and \(s_{0}\) such that, for all \(s\ge s_{0}\),
where \(l(t)=\frac{1}{t(T-t)}\).
From Lemma 2.1, we can prove the Carleman estimate for the system (2.1)-(2.5).
Theorem 2.2
Let \((y,z)\in\mathbb{D}\times\mathbb{D}\) be the solution to the system (2.1)-(2.4) and suppose that, for a.e. \(t\in(0,T)\),
Then, for fixed \(q\in(1-p,1-p/2)\), there exist positive constants \(C_{1}\) and \(s_{1}\) such that, for all \(s\ge s_{1}\),
Proof
It follows from Lemma 2.1 that there exist C and \(s_{0}\) such that, for all \(s\ge s_{0}\),
Note that \(2p+3q-4<0\) due to \(q\in(1-p,1-p/2)\). Take
Then, for \(s>s_{1}\), we have
The proof is complete. □
Similar to the proof of Theorem 3.1 [10] and Proposition 4.2 [12], one can prove the following unique continuation properties.
Theorem 2.3
Let \((y,z)\in\mathbb{D}\times\mathbb{D}\) be the solution to the system (2.1)-(2.4) and suppose that, for almost every \(t\in(0,T)\),
If \(f_{1}(x,t)=f_{2}(x,t)=0\), then \(y(x,t)=0\), \(z(x,t)=0\), where \((x,t)\in (0,1)\times(0,T)\).
Theorem 2.4
Let \((y,z)\in\mathbb{B}\times\mathbb{B}\) be the solution to the system (2.1)-(2.5) and suppose that, for almost every \(t\in(0,T)\),
If \(f_{1}(x,t)=f_{2}(x,t)=0\), then \(y(x,t)=0\), \(z(x,t)=0\), where \((x,t)\in (0,1)\times(0,T)\).
3 Approximate controllability for the control system
In this section, we prove the approximate controllability for the control system (1.1)-(1.5).
Define the mapping
where \(\mathbb{X}=L^{2}(0,1)\times L^{2}(0,1)\) with the norm
and \(\mathbb{T}=L^{2}(T_{1},T_{2})\times L^{2}(T_{1},T_{2})\) with the norm
For any \((u_{1},v_{1})\in\mathbb{X}\), define the functional
where \((y_{T},z_{T})\in\mathbb{X}\) and \(\langle\cdot,\cdot\rangle _{\mathbb{X}}\) is the inner product in \(\mathbb{X}\).
Proposition 3.1
\(J(\cdot)\) is strictly convex and satisfies
Furthermore, \(J(\cdot)\) achieves its minimum at a unique point \((\hat{y}_{T},\hat{z}_{T})\) in \(\mathbb{X}\) and
The proof is similar to the proof of Proposition 3.1 in [7].
Now, we are ready to prove the approximate controllability of the system (1.1)-(1.5).
Theorem 3.1
The system (1.1)-(1.5) is approximately controllable. That is to say, for any given \(u_{0},v_{0},u_{1},v_{1}\in L^{2}(0,1)\) and \(\varepsilon>0\), there exist \(g_{1},g_{2}\in L^{2}(T_{1},T_{2})\) such that the weak solution \((u,v)\) to the system (1.1)-(1.5) satisfies
Proof
Without loss of generality, we assume
If \(\|(u_{1},v_{1})\|_{\mathbb{X}}\le\varepsilon\), (3.3) holds by taking \(g_{1},g_{2}=0\). Now we suppose \(\|(u_{1},v_{1})\|_{\mathbb{X}}>\varepsilon\).
In this case, Proposition 3.1 yields \((\hat{y}_{T},\hat{z}_{T})\neq(0,0)\). For any \((\theta_{0},\psi_{0})\in{\mathbb{X}}\), denote \((\theta,\psi)\) to be the solution of the coupled system (2.1)-(2.5) with \((y_{T},z_{T})=(\theta _{0},\psi_{0})\). Since \((\hat{y}_{T},\hat{z}_{T})\) is the unique point of minimum of \(J(\cdot )\), one gets
It follows from the definition of the weak solution \((u,v)\) to the system (1.1)-(1.4) and (3.4) that
Additionally, the definition of the weak solution \((\theta,\psi)\) to the system (2.1)-(2.5) with \((y_{T},z_{T})=(\theta_{0},\psi _{0})\) gives
by taking
Combining (3.10) with (3.5) yields
which implies (3.3) due to the arbitrariness of \((\theta_{0},\psi_{0})\in\mathbb{X}\). □
References
Alabau-Boussouira, F, Cannarsa, P, Fragnelli, G: Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6(2), 161-204 (2006)
Cannarsa, P, Martinez, P, Vancostenoble, J: Persistent regional null controllability for a class of degenerate parabolic equations. Commun. Pure Appl. Anal. 3(4), 607-635 (2004)
Cannarsa, P, Martinez, P, Vancostenoble, J: Null controllability of degenerate heat equations. Adv. Differ. Equ. 10(2), 153-190 (2005)
Cannarsa, P, Martinez, P, Vancostenoble, J: Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47(1), 1-19 (2008)
Martinez, P, Vancostenoble, J: Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equ. 6(2), 325-362 (2006)
Martinez, P, Raymond, JP, Vancostenoble, J: Regional null controllability for a linearized Crocco type equation. SIAM J. Control Optim. 42(2), 709-728 (2003)
Wang, C: Approximate controllability of a class of degenerate systems. Appl. Math. Comput. 203(1), 447-456 (2008)
Wang, C: Approximate controllability of a class of semilinear systems with boundary degeneracy. J. Evol. Equ. 10(1), 163-193 (2010)
Cannarsa, P, Teresa, L: Controllability of 1-D coupled degenerate parabolic equations. Electron. J. Differ. Equ. 2009, Article ID 73 (2009)
Cannarsa, P, Tort, J, Yamamoto, M: Unique continuation and approximate controllability for a degenerate parabolic equation. Appl. Anal. 91(8), 1409-1425 (2012)
Du, R: Approximate controllability of a class of semilinear degenerate systems with boundary control. J. Differ. Equ. 256, 3141-3165 (2014)
Du, R, Xu, F: On the boundary controllability of a semilinear degenerate system with the convection term. Appl. Math. Comput. 303, 113-127 (2017)
Yin, J, Wang, C: Evolutionary weighted p-Laplacian with boundary degeneracy. J. Differ. Equ. 237(2), 421-445 (2007)
Boutaayamou, I, Salhi, J: Null controllability for linear parabolic cascade systems with interior degeneracy. Electron. J. Differ. Equ. 2016, Article ID 305 (2016)
Hajjaj, A, Maniar, L, Salhi, J: Carleman estimates and null controllability of degenerate/singular parabolic systems. Electron. J. Differ. Equ. 2016, Article ID 292 (2016)
Kumar, S, Sukavanam, N: Controllability of semilinear systems with fixed delay in control. Opusc. Math. 35(1), 71-83 (2015)
Morales, F: Notes on the nonlinear dependence of a multiscale coupled system with respect to the interface. Opusc. Math. 35(4), 517-546 (2015)
Kalashinov, AS: Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations. Russ. Math. Surv. 42, 169-222 (1987)
Nagai, T, Senba, T, Susuki, T: Chemotactic collapse in parabolic system of mathematical biology. Hiroshima Math. J. 30, 463-497 (2000)
Acknowledgements
This work was supported by the Natural Science Foundation for Young Scientists of Jilin Province (20170520048JH), the Scientific and Technological Project of Jilin Province’s Education Department in Thirteenth Five-Year (JJKH20170534KJ) and the National Natural Science Foundation of China (11401049).
Author information
Authors and Affiliations
Contributions
Author read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares to have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Du, R. Approximate controllability of the coupled degenerate system with two boundary controls. Bound Value Probl 2017, 185 (2017). https://doi.org/10.1186/s13661-017-0916-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-017-0916-4