- Research
- Open access
- Published:
Energy solutions and concentration problem of fractional Schrödinger equation
Boundary Value Problems volume 2018, Article number: 22 (2018)
Abstract
In this paper, we consider a fractional Schrödinger equation with steep potential well and sublinear perturbation. By virtue of variational methods, the existence criteria of infinitely many nontrivial high or small energy solutions are established. In addition, the phenomenon of the concentration of solutions is also explored. We also give some examples to demonstrate the main results.
1 Introduction
In this paper, we are concerned with the following fractional Schrödinger equations:
where \(0 < \alpha< 1\), \(2\alpha< N\), \(\rho> 0\), \(1 \le p < 2\), \(f \in C(R^{N} \times R,R)\), \(h \in L^{\frac{2}{2 - p}}(R^{N})\), \(( - \Delta)^{\alpha } \) is the so-called fractional Laplacian operator of order \(\alpha\in(0,1) \) and it can be either defined point-wise for \(x \in R^{N}\) by
along any rapidly decaying function u of class \(C^{\infty} (R^{N})\), or characterized by
where \(\mathcal{F} \) denotes the usual Fourier transform in \(R^{N}\). The potential V satisfies the conditions:
- (\(V_{1}\)):
-
\(V \in C(R^{N},R)\) and \(V \ge0\) on \(R^{N}\).
- (\(V_{2}\)):
-
There exists a constant \(c > 0\) such that the set \(\{ V < c\} = \{ x \in R^{N} \vert V(x) < c\} \) is nonempty and has finite measure.
- (\(V_{3}\)):
-
\(\Omega = \operatorname{int} V^{ - 1}(0)\) is a nonempty open set and has smooth boundary with \(\overline{\Omega} = V^{ - 1}(0)\).
From (\(V_{1}\))–(\(V_{3}\)), we can see ρV represents a steep potential well whose depth is controlled by ρ. Bartsch and Wang first introduced this problem for the case \(\alpha = 1\) in [1], and since then it has attracted much attention. For more details, please see [2–5].
Over the past decades, the existence and multiplicity of nontrivial solutions for the integer order Schrödinger equation have been extensively investigated. In [6], the authors proved that the fractional Laplacian \(( - \Delta)^{\alpha} \) reduces to the standard Laplacian −Δ, as \(\alpha\to1\). When \(\alpha = 1\), Eq. (1.1) becomes the integer order Schrödinger equation, which shows the results in the present paper are also valid for \(\alpha= 1\).
Fractional calculus has played an important role in the description of hereditary properties of various materials and memory processes. Fractional differential equations provides a powerful tool for the research of many fields such as engineering, science, electrical circuits, diffusion, and applied mathematics; see [7–10] and so on. Recently, more and more attention has been focused on the study of problems involving the fractional Laplacian; see [11] and the references therein.
In the field of fractional quantum mechanics, the fractional Schrödinger equation is a fundamental equation, which was discovered by Laskin [12, 13] as a result of extending the Feynman path integral. Recently, for the different cases of the potential V and the nonlinearity f, some researchers have investigated the fractional Schrödinger equations under the appropriate assumptions:
The variational method has been used in many works to study the fractional Schrödinger equations (1.2). For the basic theory of the variational method in a fractional setting, one can see [14]. Next, we list some work on (1.2) in the following.
In [15], Felmer et al. considered the regularity and existence of solutions under the famous Ambrosetti–Rabinowitz (A–R) condition, i.e., there exists \(\theta> 2\) such that \(0 < \theta F(x,t) < tf(x,t)\). In [16], the ground state solutions were obtained by Secchi under the A–R condition and
- (\(V_{0}\)):
-
\(V \in C(R^{N})\), \(\inf_{x \in R^{N}}V(x) = V_{0} > 0\) and \(\lim_{ \vert x \vert \to\infty} V(x) = \infty\).
In [17], Chang obtained the existence and multiplicity of solutions when the nonlinear term f satisfies the asymptotically linear case and under the condition:
- (\(V_{0}^{\prime} \)):
-
There exists \(r_{0} > 0 \) such that, for all \(M > 0\), \(\vert \{ x \in B_{r_{0}}(y) \vert V \le M\} \vert \to0 \) as \(\vert y \vert \to\infty\).
In [18], by the variant fountain theorems, the author discussed the nontrivial high or small energy solutions; In [19], using nonlinear analysis techniques, the weak solutions are obtained. In [20], when \(V = 1\) and \(f(x,u) = f(u)\), the authors gave the existence of least two nontrivial radial solutions without the A–R condition by variational methods. In [21], the existence criteria of radial solutions are established under different conditions by variational methods. In [22], the authors also studied the existence of infinitely many nontrivial energy solutions by variational methods. In [23], in the asymptotically periodic case, a nontrivial solution is obtained by variational methods. For more related study, the interested reader may consult [24–34] and the references therein. It should also be noted that the concentration phenomena for the fractional Schrödinger equation have been investigated byDávila, del Pino et al. [35, 36], and Fall, Mahmoudi and Valdinoci [37].
But for the generalized fractional Schrödinger equations (1.1) with perturbation and steep potential well, there are very few results. Obviously, the form of (1.1), whose nonlinear term combines asymptotic linearity and superlinear term with sublinear term \(h(x) \vert u \vert ^{p - 2}u\), is more general than that of (1.2). In [38], the existence of at least two nontrivial solutions of (1.1) is showed. In the present paper, by variational methods, we have established existence criteria of infinitely many nontrivial high or small energy solutions without A–R condition. In addition, we explore the concentration of solutions as well. Moreover, some examples are given to demonstrate our results. In fact, it is a challenging research to study the concentration problem of solutions for the fractional Schrödinger equations by variational methods and it is not trivial to construct the fractional Sobolev space, which is used to study the concentration phenomenon. As is well known, the compactness of the embedding fails when ρ is large enough. By using a new function space introduced in [38, 39] and constructing some inequalities, we can obtain the concentration of the solutions of (1.1) under different conditions. Hence our results can be viewed as an extension to the main results in [16–23, 38].
We list the following assumptions.
- (\(f_{1}\)):
-
\(h \in L^{\frac{2}{2 - p}}(R^{N})\) and \(h > 0\) on \(R^{N}\).
- (\(H_{1}\)):
-
\(f(t,s)\) is continuous on \(R^{N} \times R\). There exist constants \(a_{0} > 0\) and \(v \in[1,2)\) such that
$$\bigl\vert f(x,u) \bigr\vert \le a_{0}\bigl(1 + \vert u \vert ^{v - 1}\bigr),\quad \forall(x,u) \in R^{N} \times R. $$ - (\(H_{2}\)):
-
\(\lim_{ \vert u \vert \to0}\frac{f(x,u)}{ \vert u \vert } = 0\) uniformly in \(x \in R^{N}\).
- (\(H_{3}\)):
-
\(F(x,u) = \int_{0}^{u} f(x,\tau) \,d\tau\ge0\). There exist two constants \(\sigma\in[1,v)\) and \(b > 0\) such that \(\lim_{ \vert u \vert \to\infty} \frac{F(x,u)}{ \vert u \vert ^{\sigma}} \ge b\) uniformly for \(x \in R^{N}\).
- (\(H_{4}\)):
-
Let \(f \in C(R^{N} \times R,R)\). There exist two constants \(a_{1} > 0\), \(q \in[2,2_{\alpha}^{*})\) such that
$$\bigl\vert f(x,u) \bigr\vert \le a_{1}\bigl(1 + \vert u \vert ^{q - 1}\bigr),\quad \forall(x,u) \in R^{N} \times R, $$where \(2_{\alpha}^{*} = \frac{2N}{N - 2\alpha} \) with \(2\alpha< N\).
- (\(H_{5}\)):
-
\(F(x,u) \ge0\) and \(\lim_{ \vert u \vert \to\infty} \frac{F(x,u)}{ \vert u \vert ^{2}} = \infty\) uniformly in \(x \in R^{N}\).
In the next of this paper, by variational methods, we will give the existence criteria of infinitely many nontrivial high or small energy solutions without A–R condition. Moreover, we will study the concentration phenomenon of (1.1). We will also give some examples to illustrate the main results.
2 Preliminaries
Now, we review some definitions and related lemmas. For \(1 < q \le \infty\), we give the definition the following norms:
Let \(D^{q}(R^{N})\) denote the completion of \(C_{0}^{\infty} (R^{N})\) with respect to the Gagliardo (semi) norm
then the embedding \(D^{q}(R^{N}) \mapsto L^{2_{\alpha}^{*}}(R^{N}) \) is continuous with \(\Vert u \Vert _{2_{\alpha}^{*}} \le\overline{S}^{ - 1} [ u ]_{\alpha}\), \(\forall u \in D^{q}(R^{N})\), where \(\overline{S}^{ - 1} = M(N,\alpha)\frac{\alpha(1 - \alpha)}{N - 2\alpha} \) and \(\frac{1}{M(N,\alpha)} = \int_{R^{N}} \frac{1 - \cos \zeta}{ \vert \zeta \vert ^{2N + \alpha}} \,d\zeta\) depends only on N and α. For details, see [6].
Define the space
with the inner product and the norm
for all \(u,v \in X\). Then X is a Hilbert space with the inner product \(\langle u,v \rangle\) and \(X \subset L^{q}(R^{N})\) for all \(q \in[2,2_{\alpha}^{*}]\) with the embedding being continuous. In order to consider (1.1), for \(\rho> 0\), parallel to (2.1), we introduce another inner product and normal
Let \(X_{\rho} = (X, \Vert u \Vert _{\rho} )\), obviously \(X_{\rho} \) is still a Hilbert space and
By a standard argument, we have the following.
Lemma 2.1
Assume that the condition (\(V_{1}\))–(\(V_{2}\)) hold. Then the embeddings \(X_{\rho} \mapsto L_{\mathrm{loc}}^{q}(R^{N})\) are compact, for any \(q \in[2,2_{\alpha}^{*})\).
Lemma 2.2
([38])
Suppose that (\(V_{1}\))-(\(V_{2}\)) hold. Then, for \(r \in[2,2_{\alpha}^{*}]\),
In particular,
where \(\rho_{1} = \frac{\overline{S}^{2}}{c} \vert \operatorname {meas}\{ V < c\} \vert ^{\frac{2 - 2_{\alpha}^{*}}{2_{\alpha}^{*}}}\), \(d_{r} = \overline{S}^{ - r} \vert \operatorname{meas}\{ V < c\} \vert ^{\frac{2_{\alpha}^{*} - r}{2_{\alpha}^{*}}}\), c is given in (\(V_{2}\)).
Let \(\{ e_{j}\}\) be a complete orthonormal basis of X. We define
Also
for \(\rho_{k} > r_{k} > 0\). Clearly, \(X = Y_{k} \oplus Z_{k}\) with \(\operatorname{dim}Y_{k} < \infty\).
The following variant fountain theorem will be used to prove Theorem 3.1.
Lemma 2.3
([40])
Let X be a Banach space, suppose that \(\varphi_{\rho,\lambda} (u)\) satisfies:
- (\(A_{1}\)):
-
\(\varphi_{\rho,\lambda} (u)\) maps bounded sets into bounded sets uniformly for \(\lambda\in[1,2]\), and
$$\varphi_{\rho,\lambda} ( - u) = \varphi_{\rho,\lambda} (u)\quad\textit{for } ( \lambda,u) \in[1,2] \times X. $$ - (\(A_{2}\)):
-
\(B(u) \ge0\) for all \(u \in X\), and \(B(u) \to\infty\) as \(\Vert u \Vert \to\infty\) on any finite dimensional subspace of X.
- (\(A_{3}\)):
-
There exist \(\rho_{k} > r_{k} > 0\) such that
$$a_{k}(\lambda): = \inf_{u \in Z_{k}, \Vert u \Vert = \rho_{k}}\varphi_{\rho,\lambda} (u) \ge0 > b_{k}(\lambda): = \max_{u \in Y_{k}, \Vert u \Vert = r_{k}} \varphi_{\rho,\lambda} (u), \quad\forall \lambda\in[1,2] $$and
$$c_{k}(\lambda): = \inf_{u \in Z_{k}, \Vert u \Vert \le \rho_{k}}\varphi_{\rho,\lambda} (u) \to0,\quad\textit{as } k \to\infty \textit{ uniformly for } \lambda \in[1,2]. $$
Then there exist \(\lambda_{n} \to1\), \(u(\lambda_{n}) \in Y_{n}\) such that
In particular, if \(\{ u(\lambda_{n})\}\) has a convergent subsequence for any \(k \in N\), then \(\varphi_{\rho, 1}\) has infinitely many nontrivial critical points \(\{ u_{k}\} \in X\setminus\{ 0\}\) satisfying \(\varphi_{\rho,1}(u_{k}) \to0^{ -} \) as \(k \to\infty\).
Next, we give another variant fountain theorem which will be needed to prove Theorem 3.2.
Lemma 2.4
([40])
Let X be a Banach space, suppose that \(\varphi_{\rho,\lambda} (u)\) defined above satisfies:
- (\(B_{1}\)):
-
\(\varphi_{\rho,\lambda} (u)\) maps bounded sets into bounded sets uniformly for \(\lambda\in[1,2]\), and
$$\varphi_{\rho,\lambda} ( - u) = \varphi_{\rho,\lambda} (u)\quad\textit{for every } (\lambda,u) \in[1,2] \times X. $$ - (\(B_{2}\)):
-
\(B(u) \ge0\) for all \(u \in X\), \(A(u) \to \infty\) or \(B(u) \to\infty\) as \(\Vert u \Vert \to \infty\).
- (\(B_{3}\)):
-
There exist \(\rho_{k} > r_{k} > 0\) such that
$$e_{k}(\lambda) = \inf_{u \in Z_{k}, \Vert u \Vert = r_{k}}\varphi_{\rho,\lambda} (u) > f_{k}(\lambda) = \max_{u \in Y_{k}, \Vert u \Vert = \rho_{k}} \varphi_{\rho,\lambda} (u), \quad\forall \lambda\in[1,2]. $$
Then
where \(\Gamma_{k} = \{ \gamma\in C(B_{k},X_{\lambda} ):\gamma\textit{ is odd}, \gamma \vert _{\partial B_{k}} = \mathit{id}\}\) (\(k \ge2\)). In addition, for almost every \(\lambda\in[1,2]\), there exists a sequence \(\{ u_{n}^{k}(\lambda)\}_{n = 1}^{\infty} \) such that
The following famous Lions vanishing lemma is useful for the proofs of Theorems 3.3–3.4.
Lemma 2.5
([16])
Suppose that \(\{ u_{n}\}\) is bounded in \(D^{q}(R^{N})\) and satisfies
for some \(R > 0\), where \(B(y,R) = \{ x \in R^{n}: \vert x - y \vert \le R\}\). Then \(u_{n} \to0\) strongly in \(L^{q}(R^{N})\), for \(q \in [2,2_{\alpha}^{*})\).
3 Main results
Without loss of generality, we use the same notation \(\{ u_{n}\}\) for a sequence \(\{ u_{n}\}\) and any of its subsequences. We denote
and
for all \(u \in X_{\rho} \) and \(\lambda\in[1,2]\).
It is easy to verify that \(\varphi_{\lambda,\mu} (u):X_{\lambda} \to R\) is a \(C^{1}\)-functional for \(\lambda\in[1,2]\) and
for all \(u,v \in X\). Hence the critical points of \(\varphi_{\rho,1}\) are solutions of (1.1). Next, we will discuss the existence of critical points of \(\varphi_{\rho,1}\).
Lemma 3.1
Assume (\(V_{1}\))–(\(V_{2}\)), (\(f_{1}\)), (\(H_{1}\))–(\(H_{3}\)) hold. Then, for \(\rho> \rho_{0}\), there exist \(\rho_{k} > r_{k} > 0\) such that
and
where \(\rho_{0} = \max\{ 1,\rho_{1}\}\).
Proof
(\(H_{1}\))–(\(H_{3}\)) imply that, for arbitrary \(\delta> 0\) with \(d_{2}\delta< \frac{1}{12}\), there exists a constant \(c_{\delta} \) depending on δ such that
From (2.3), (3.3) and the Hölder inequality, for \(u \in Z_{k}\), \(v,p \in [1,2)\), \(\rho> \rho_{0}\), we have
Let
Since \(X_{\rho} \mapsto L_{\mathrm{loc}}^{\sigma} (R^{N})\) is compact, by Lemma 3.8 of [41], we can deduce that \(\alpha_{k} \to0\), as \(k \to\infty\). Then, for \(\lambda\in[1,2]\), it follows by (3.5) that
We denote
Obviously, \(l_{k} > 0\), \(l_{k} \to0^{ +}\), as \(k \to\infty\) and \(\eta\in [1,2)\).
Then
Choose \(\rho_{k} = (12l_{k})^{\frac{1}{2 - \eta}} \), then \(\rho_{k} \to0^{ +}\), as \(k \to\infty\), for \(\eta\in[1,2)\).
By a direct calculation, for any \(\lambda\in[1,2]\), we have
Moreover, from (3.6), for any \(u \in Z_{k}\), \(\Vert u \Vert \le \rho_{k}\), \(\lambda\in[1,2]\), one has
which shows
Hence, for \(l_{k} \to0^{ +}\), \(\rho_{k} \to0^{ +}\), as \(k \to\infty \), we have
Now we are in the position to verify \(b_{k}(\lambda): = \max_{u \in Y_{k}, \Vert u \Vert = r_{k}}\varphi_{\rho,\lambda} (u) < 0\), \(\forall \lambda\in[1,2]\). From (2.3), (3.4), for any \(u \in Y_{k}\) with \(\operatorname{dim}Y_{k} < \infty\), \(\lambda\in[1,2]\), we have
By the equivalence of any norm in finite dimensional space \(Y_{k}\), one has
where \(e_{1},e_{2},e_{3} > 0\) are positive constants.
Then, for \(v \in[1,2)\), \(\sigma\in[1,v)\), by choosing suitable \(0 < \Vert u \Vert = r_{k} < \rho_{k}\), we can get
We complete the proof of Lemma 3.1. □
Lemma 3.2
Suppose that (\(V_{1}\))–(\(V_{2}\)), (\(f_{1}\)), (\(H_{1}\))–(\(H_{3}\)) hold. Then, for \(\rho\ge\rho_{0}\), \(\lambda_{n} \in[1,2]\), \(\lambda_{n} \to1\), \(u(\lambda_{n}) \in Y_{n}\) with
\(\{ u(\lambda_{n})\}\) has a convergent subsequence in \(X_{\rho} \) for every \(k \in N\).
Proof
Assume that, for each \(k \in N\), \(\lambda\in [1,2]\), there exist a subsequence \(\lambda_{n} \to1\) and \(u(\lambda_{n}) \in Y_{n} \) such that \(\varphi'_{\rho,\lambda_{n}} \vert _{Y_{n}} (u(\lambda_{n})) = 0\), and \(\varphi_{\rho,\lambda_{n}}(u(\lambda_{n})) \to\omega_{k} \in [c_{k}(2),b_{k}(1)]\), as \(n \to\infty\).
From (2.2), (3.3), (\(H_{3}\)) and the Hölder inequality, for \(\rho \ge \rho_{0}\), \(\lambda_{n} \in[1,2]\), \(\lambda_{n} \to1\) as \(n \to \infty\) and \(v,p \in[1,2)\), one has
which shows that \(\{ u(\lambda_{n})\} \) is bounded in \(X_{\rho} \). Then we can obtain a weakly convergent subsequence of \(\{ u(\lambda_{n})\}\). Assume \(u(\lambda_{n}) \rightharpoonup u\) weakly in \(X_{\rho} \). By Lemma 2.1, we know \(u(\lambda_{n}) \to u \) strongly in \(L^{q}(R^{N})\) for \(q \in[2,2_{\alpha}^{*})\), which implies \(\Vert u(\lambda_{n}) - u \Vert _{q} \to0\), as \(n \to\infty\), for \(q \in [2,2_{\alpha}^{*})\).
Next we prove that \(u_{n} \to u\) in \(X_{\rho} \). By (3.1)–(3.2), we have
Obviously,
From the condition \(h \in L^{\frac{2}{2 - p}}(R^{N})\), \(\lambda_{n} \to1\), \(u(\lambda_{n}) \to u\) in \(L^{q}(R^{N})\), as \(n \to\infty\) and the Hölder inequality, we have
From (\(H_{1}\)) and the Hölder inequality, we can get
It follows from (3.7)–(3.10) that \(\Vert u_{n} - u \Vert _{\rho}^{2} \to0\), which implies \(u_{n} \to u \) in \(X_{\rho} \). □
When the nonlinearity f is asymptotically linear, we have Theorem 3.1.
Theorem 3.1
Suppose that (\(V_{1}\))–(\(V_{2}\)), (\(f_{1}\)), (\(H_{1}\))–(\(H_{3}\)) hold, and \(F(x, - u) = F(x,u)\) for all \((x,u) \in R^{N} \times R\), then, for \(\rho> \rho_{0}\), (1.1) possesses infinitely many small energy solutions \(u_{\rho}^{(k)} \in X_{\rho} \) for any \(k \in N\), that is,
Proof
From (\(f_{1}\)) and (\(H_{3}\)), we have \(B(u) \ge0\) and
on any finite dimensional subspace of X, which shows that (\(A_{2}\)) of Lemma 2.3 holds.
It is easy to check that (\(A_{1}\)) of Lemma 2.3 holds. Lemma 3.1 implies that (\(A_{3}\)) is satisfied. Owing to Lemma 2.3, we know that, for each \(k \in N\), there exist \(\lambda_{n} \to1\), \(u(\lambda_{n}) \in Y_{n}\) such that
By Lemma 3.2, we know \(\{ u(\lambda_{n})\}\) has a convergent subsequence in \(X_{\rho} \). In view of Lemma 2.3, \(\varphi_{\rho, 1}\) has infinitely many nontrivial critical points \(u_{\rho}^{(k)} \in X_{\rho} \setminus\{ 0\}\) satisfying
for \(\rho> \rho_{0}\), every \(k \in N\), which implies (1.1) possesses infinitely many small energy solutions. □
Lemma 3.3
Assume (\(V_{1}\))–(\(V_{2}\)), (\(f_{1}\)), (\(H_{2}\)), (\(H_{4}\))–(\(H_{5}\)) hold. Then, for \(\rho\ge\rho_{0}\), there exist \(\rho_{k} > r_{k} > 0\) such that
Proof
(\(H_{2}\)) and (\(H_{4}\)) imply that, for arbitrary \(\varepsilon> 0\) with \(d_{2}\varepsilon< \frac{1}{12}\), there exists a positive constant \(c_{\varepsilon} \) depending on ε such that
By (\(H_{5}\)), we know that, for any \(\theta> 0\) large enough, there exists a constant \(\varsigma> 0\) such that, for \((x,u) \in R^{N} \times R\) and \(\vert u \vert > \varsigma\),
Combining (3.12) and (\(H_{2}\)), we see that there exists \(S_{0} > 0\) such that
where \(\theta' = \theta- S_{0} - \theta\varsigma\).
Choosing a suitable θ, we can get
From (2.3), (3.11) and the Hölder inequality, for any \(\rho\ge \rho_{0}\), \(u \in Z_{k}\), \(q \in[2,2_{\alpha}^{*})\), we have
where \(\alpha_{k}\) is defined in the proof Lemma 3.1 and \(\alpha_{k} \to 0\), as \(n \to\infty\).
Let
We choose \(r_{k} = (6M')^{\frac{1}{2 - q}}\), then \(r_{k} \to\infty\), as \(k \to\infty\), for \(q \in[2,2_{\alpha}^{*})\), which implies there exists a positive constant \(k_{0} \in N\) such that \(r_{k} = (6M')^{\frac{1}{2 - q}} > 1\), for \(k \ge k_{0}\), \(k \in N\).
Then, for \(\lambda\in[1,2]\), \(k \ge k_{0}\), \(k \in N\), \(u \in Z_{k}\), \(\Vert u \Vert _{\rho} = r_{k} = (6M')^{\frac{1}{2 - q}} > 1\), we have
Next we prove \(f_{k}(\lambda) = \max_{u \in Y_{k}, \Vert u \Vert = \rho_{k}}\varphi_{\rho,\lambda} (u) < 0\), \(\forall\lambda\in[1,2]\).
From (2.3), (3.13)–(3.14) and the equivalence of the norms in the finite dimensional space \(Y_{k}\), for \(\lambda\in[1,2]\) and any \(u \in Y_{k}\) with \(\operatorname{dim}Y_{k} < \infty\), we have
Then, for any \(\Vert u \Vert = \rho_{k} > r_{k} > 0\), one has
□
Theorem 3.2 is about the existence of high energy solutions for (1.1) when the nonlinearity f is superlinear.
Theorem 3.2
Suppose (\(V_{1}\))–(\(V_{2}\)), (\(f_{1}\)), (\(H_{2}\)), (\(H_{4}\))–(\(H_{5}\)) hold, and \(F(x, - u) = F(x,u)\) for all \((x,u) \in R^{N} \times R\), then, for \(\rho> \rho_{0}\), (1.1) possesses infinitely many high energy solutions \(u_{\rho}^{(k')} \in X_{\rho} \) for any \(k' \ge k_{0}\), \(k' \in N\), in the sense that
Proof
From (\(H_{5}\)) and the definitions of \(A(u)\) and \(B(u)\), we know \(B(u) \ge0\) for \(u \in X \) and \(A(u) \to\infty\) as \(\Vert u \Vert \to\infty\), which implies (\(A_{2}\)) of Lemma 2.4 holds.
From (\(f_{1}\)), (3.1) and \(F(x, - u) = F(x,u)\), it is easy to see that \(\varphi_{\rho,\lambda} (u)\) maps a bounded set into bounded sets uniformly for \(\lambda\in[1,2]\), and
which shows (\(A_{1}\)) of Lemma 2.4 is satisfied. Lemma 3.3 implies (\(A_{3}\)) holds. From Lemma 2.4, for almost any \(\lambda\in[1,2]\), there exists a sequence \(\{ u_{n}^{k'}(\lambda)\}_{n = 1}^{\infty} \) for \(k' \ge k_{0}\), \(k' \in N\), such that
From Lemma 2.4, we also have \(g_{k'}(\lambda) = \inf_{\gamma\in \Gamma_{k'}}\max_{u \in B_{k'}}\varphi_{\rho,\lambda} (\gamma(u)) \ge e_{k'}(\lambda)\).
Let \(\beta_{k'} = \frac{1}{6}(6M')^{\frac{2}{2 - q}} > 0\), then \(\beta_{k'} \to\infty\), as \(k' \to\infty\). For \(k' \ge k_{0}\), \(k' \in N\), it follows, see (3.15), that \(g_{k'}(\lambda) \ge e_{k'}(\lambda) \ge\beta_{k'}\). Then
where \(\beta_{k}^{\prime} = \max_{u \in B_{k}}\varphi_{\rho,\lambda} (\gamma(u))\), \(\Gamma_{k'} = \{ \gamma\in C(B_{k'},X_{\rho} ):\gamma \text{ is odd}, \gamma \vert _{\partial B_{k'}} = \mathit{id}\}\) (\(k' \ge 2\)) with
Choose \(\lambda_{m} \to1\) as \(m \to\infty\), for \(\lambda_{m} \in[1,2]\). Owing to (3.17), we can get the boundedness of \(\{ u_{n}^{k'}(\lambda_{m})\}\), which implies \(\{ u_{n}^{k'}(\lambda_{m})\}\) has a weakly convergent subsequence. Similar to the proof of Lemma 3.2, we can prove that \(\{ u_{n}^{k'}(\lambda_{m})\}\) has a strong convergent subsequence in \(X_{\rho} \) as \(n \to\infty\). Assume \(\lim_{n \to\infty} u_{n}^{k'}(\lambda_{m}) = u^{k'}(\lambda_{m})\) for \(m \in N\), then it follows, see (3.17)–(3.18), that, for \(k' \ge k_{0}\), \(k' \in N\),
Next we show \(\{ u^{k'}(\lambda_{m})\}\) is bounded in \(X_{\rho} \). We argue by contradiction. In fact, if it is not the case, then
Let \(\varpi_{m} = \frac{u^{k'}(\lambda_{m})}{ \Vert u^{k'}(\lambda_{m}) \Vert _{\rho}} \), which shows \(\Vert \varpi_{m} \Vert _{\rho} = 1\). Then \(\varpi_{m}\) has a weakly convergent subsequence in \(X_{\rho} \). By Lemma 2.1, we can see that \(\varpi_{m}\) has a strong convergent subsequence in \(L^{q}(R^{N})\), for \(q \in[2,2_{\alpha}^{*}]\). Without loss of generality, we suppose \(\varpi_{m} \to\varpi_{0}\) strongly a.e. in \(L^{q}(R^{N})\), which also implies \(\varpi_{m}(x) \to\varpi_{0}(x)\) for a.e. \(x \in R^{N}\).
For \(p \in[1,2)\), from (\(f_{1}\)), (3.20) and the Hölder inequality, we have
Let \(\mathrm{A} = \{ x \in R^{n}:\varpi_{0}(x) \ne0\}\). It’s easy to see that A is nonempty. For \(x \in\mathrm{A}\), \(\lambda_{m} \in [1,2]\), combining (3.1), (\(H_{5}\)), (3.19)–(3.21) and Fatou’s lemma, we can get
This is a contradiction. Hence \(\{ u^{k'}(\lambda_{m})\}\) is bounded in \(X_{\rho} \), which shows \(\{ u^{k'}(\lambda_{m})\}\) has a weakly convergent subsequence. By a similar proof to that of Lemma 3.2, we know that \(\{ u^{k'}(\lambda_{m})\}\) has a strongly convergent subsequence in \(X_{\rho} \). Suppose
Then, for \(k' \ge k_{0}\), \(k' \in N\), from (3.19) and \(\beta_{k'} \to \infty\), as \(k' \to\infty\), we have
which shows \(u_{\rho}^{k'}\) is a nontrivial critical point of \(\varphi_{\rho,1}\). Consequently, for \(k' \ge k_{0}\), \(k' \in N\) is arbitrary, we obtain infinitely many nontrivial critical points \(u_{\rho}^{(k')}\) of \(\varphi_{\rho,1}\), which are also the nontrivial solutions of (1.1) with high energy, that is,
Next, we will explore the concentration phenomenon of (1.1).
We denote
where \(Q = R^{2N}\setminus(\Omega^{c} \times\Omega^{c})\), \(\Omega^{c} = R^{N}\setminus\Omega\), Ω is defined in (\(V_{3}\)). The function space \(X_{0}\) was first defined by Servadei and Valdinoci in [39]. Obviously, \(C_{0}^{\infty} (\Omega) \subset X_{0}\) and \(X_{0}\) is a Hilbert space with the scalar product and normal
□
Theorem 3.3
Assume that (\(V_{1}\))–(\(V_{3}\)), (\(f_{1}\)), (\(H_{1}\))–(\(H_{3}\)) hold, and \(F(x, - u) = F(x,u)\) for \((x,u) \in R^{N} \times R\). Let \(u_{\rho}^{(k)}\) (\(k \in N\)) be solutions obtained by Theorem 3.1, then \(u_{\rho}^{(k)} \to u_{0}^{(k)}\) strongly in \(L^{q}(R^{N})\) as \(\rho\to \infty\), for every \(k \in N\), \(q \in[2,2_{\alpha}^{*})\), where \(u_{0}^{(k)} \in X_{0}\), for every \(k \in N\), are the nontrivial solutions of the following fractional Schrödinger equation:
Proof
Let \(u_{\rho_{n}}^{(k)}\) (\(k \in N\)) be the nontrivial solutions obtained by Theorem 3.1, then \(u_{\rho_{n}}^{(k)}\) are the nontrivial critical points of the functional
and \(\{ u_{\rho_{n}}^{(k)}\}_{k = 1}^{\infty} \in X\setminus\{ 0\}\) satisfying \(\varphi_{\rho,1}(u_{\rho_{n}}^{(k)}) \to0^{ -} \) as \(k \to \infty\). From the proof of Lemma 3.2, we know the \(u_{\rho_{n}}^{(k)}\) are bounded in \(X_{\rho_{n}}\) for any \(k \in N\). Then \(\{ u_{\rho _{n}}^{(k)}\}\) has a weakly convergent subsequence in \(X_{\rho} \) as \(\rho_{n} \to \infty\). Assume \(u_{\rho_{n}}^{(k)} \rightharpoonup u_{0}^{(k)}\), as \(\rho_{n} \to\infty\). From Lemma 2.1, we know that \(u_{\rho_{n}}^{(k)} \to u_{0}^{(k)}\) strongly in \(L_{\mathrm{loc}}^{q}(R^{N})\) for \(q \in [2,2_{\alpha}^{*}]\), as \(\rho_{n} \to\infty\). By Lemma 2.5, we can verify that, as \(\rho_{n} \to\infty\), \(u_{\rho_{n}}^{(k)} \to u_{0}^{(k)}\) strongly in \(L^{q}(R^{N})\) for \(q \in[2,2_{\alpha}^{*}]\). And by a standard argument, we can prove \(u_{\rho_{n}}^{(k)} \to u_{0}^{(k)}\) in \(X_{\rho_{n}}\), as \(\rho_{n} \to\infty\).
Combining the boundedness of \(u_{\rho_{n}}^{(k)}\), the definition of \(\Vert \cdot \Vert _{\rho_{n}}\) and Fatou’s lemma, for every \(k \in N\), one can obtain
Then we know that \(u_{0}^{(k)} = 0\) a.e. in the set \(D = \{ x \in R^{N}:V(x) \ne0\}\). It follows (3.22) that \(u_{0}^{(k)} \in X_{0}\), for any \(k \in N\). Hence, we have \(\int_{R^{N}} V(x)u_{\rho _{n}}^{(k)}(x)v(x)\,dx = 0\), for any \(v \in X_{0}\). Together with (3.2), \(\langle\varphi '_{\rho_{n},1}(u_{\rho_{n}}^{(k)}),v \rangle= 0\), for any \(k \in N\), \(v \in X_{0}\), we have
By taking the limit, we can get
which implies the \(u_{0}^{(k)} \in X_{0}\) are nontrivial weak solutions of (3.23), for every \(k \in N\). □
Theorem 3.4
Assume that (\(V_{1}\))–(\(V_{3}\)), (\(f_{1}\)), (\(H_{2}\)), (\(H_{4}\))–(\(H_{5}\)) hold, and \(F(x, - u) = F(x,u)\) for \((x,u) \in R^{N} \times R\). Let \(u_{\rho}^{(k')}\) (\(k' \ge k_{0}\), \(k' \in N\)) be solutions obtained by Theorem 3.2, then \(u_{\rho}^{(k')} \to u_{0}^{(k')}\) strongly in \(L^{q}(R^{N})\) as \(\rho\to\infty\), for all \(k' \ge k_{0}\), \(k' \in N\), \(q \in[2,2_{\alpha}^{*})\), where \(u_{0}^{(k')} \in X_{0}\) are the nontrivial solutions of (3.23).
Proof
Similarly to the proof of Theorem 3.3, we can prove Theorem 3.4. In fact, we only should make some corresponding modifications for the high energy solutions \(u_{\rho}^{(k')}\). □
4 Examples
Now, we give several examples as applications of our main results.
Example 4.1
From (4.1), we can see that
and
Let
Then we can easily show (\(V_{1}\))–(\(V_{2}\)) are satisfied.
Obviously, \(h(x) > 0\) and \(h^{2}(x) = \frac{\ln(1.1 + \cos^{2}x)}{e^{\sqrt{e^{1 - \sin x}}} (1 + x^{2})} \le\frac{1}{1 + x^{2}}\), which shows \(h(x) \in L^{2}(R)\). Hence (\(f_{1}\)) holds.
From (4.1), we have
with \(a_{0} = 3\), \(v = \frac{3}{2}\), which shows that (\(H_{1}\)) is satisfied.
Also we can get
which implies that (\(H_{2}\)) holds.
We also find \(F(x,u) = \int_{0}^{u} f(x,\tau) \,d\tau\ge0\). For \(\sigma \in[1,v = \frac{3}{2})\), it follows by the L’Hospital rule that
Then (\(H_{3}\)) also holds.
We can also easily verify that \(F(x, - u) = F(x,u)\). Then all the conditions of Theorem 3.1 hold. Consequently, (4.1) has infinitely many small energy solutions \(u_{\rho}^{(k)} \in X_{\rho} \), for \(\rho> \rho_{0}\) and any \(k \in N\).
We can also see that \(\Omega = \operatorname{{{int}}} V^{ - 1}(0)\) is a nonempty open set and the boundary is smooth, which shows (\(V_{3}\)) holds. Hence, by Theorem 3.3, we know that we have the following equation:
It possesses infinitely many nontrivial solutions \(u_{0}^{(k)} \in X_{0}\) satisfying \(u_{\rho}^{(k)} \to u_{0}^{(k)}\) strongly in \(L^{q}(R^{N})\) as \(\rho\to\infty\), for \(q \in[2,2_{\alpha}^{*}) = [2,4)\) and every \(k \in N\).
Example 4.2
Obviously, from (4.2), we have
and
Then \(0 < h(x) = \frac{\ln(1.3 + \vert \sin x^{2} \vert )}{e^{ \vert x \vert }\sqrt{(1 + x^{2})}} \in L^{2}(R)\), which implies (\(f_{1}\)) is satisfied.
From (4.2), we know \(2\alpha = 1 < N = 2\), \(F(x,u) = \frac{(\sin^{2}x)u^{8/3}}{3} \ge0\), and
with \(q = \frac{8}{3} \in[2,2_{\alpha}^{*} = 4)\), \(a_{1} = 1\), which shows that (\(H_{4}\))–(\(H_{5}\)) of Theorem 3.2 hold.
Let \(V(x)\) be the same function as in (4.1), then the conditions (\(V_{1}\))–(\(V_{3}\)) are all satisfied.
It is also easy to check \(F(x, - u) = F(x,u)\). In view of Theorem 3.2, for \(\rho> \rho_{0}\), \(k' \ge k_{0}\), \(k' \in N\), (4.2) has infinitely many high energy solutions \(u_{\rho}^{(k')} \in X_{\rho} \).
Owing to Theorem 3.4, we know that we have the following fractional Schrödinger equation:
It has infinitely many nontrivial solutions \(u_{0}^{(k')} \in X_{0}\), satisfying \(u_{\rho}^{(k')} \to u_{0}^{(k')}\), strongly in \(L^{q}(R^{N})\) as \(\rho\to\infty\), for \(q \in[2,2_{\alpha}^{*}) = [2,4)\) and \(k' \ge k_{0}\), \(k' \in N\).
References
Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for superlinear elliptic problems on \(R^{N}\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)
Alves, C., Filho, D., Souto, M.: Multiplicity of positive solutions for a class of problems with critical growth in \(R^{N}\). Proc. Edinb. Math. Soc. 52, 1–21 (2009)
Jiang, Y., Zhou, H.: Schrödinger–Poisson system with steep potential well. J. Differ. Equ. 251, 582–608 (2011)
Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep potential well. J. Differ. Equ. 255, 1–23 (2013)
Sun, J., Wu, T.: Multiplicity and concentration of homoclinic solutions for some second order Hamiltonian systems. Nonlinear Anal. 114, 105–115 (2015)
Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publisher, Cambridge (2009)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2011)
Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Cham; Unione Matematica Italiana, Bologna (2016)
Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)
Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, Article ID 056108 (2002)
Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105–2137 (2013)
Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. 142A, 1237–1262 (2012)
Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \(R^{N}\). J. Math. Phys. 54, Article ID 031501 (2013)
Chang, X.: Ground state solutions of asymptotically linear fractional Schrödinger equation. J. Math. Phys. 54, Article ID 061504 (2013)
Teng, K.: Multiple solutions for a class of fractional Schrödinger equations in \(R^{N}\). Nonlinear Anal., Real World Appl. 21, 76–86 (2015)
Xu, J., Wei, Z., Dong, W.: Existence of weak solutions for a fractional Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 22, 1215–1222 (2015)
Gou, T., Sun, H.: Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti–Rabinowitz condition. Appl. Math. Comput. 257, 409–416 (2015)
Zhang, W., Tang, X., Zhang, J.: Infinitely many radial and non-radial solutions for a fractional Schrödinger equation. Comput. Math. Appl. 71(7), 737–747 (2016)
Ge, B.: Multiple solutions of nonlinear Schrödinger equation with the fractional Laplacian. Nonlinear Anal., Real World Appl. 30, 236–247 (2016)
Wang, D., Guo, M., Guan, W.: Existence of solutions for fractional Schrödinger equation with asymptotically periodic terms. J. Nonlinear Sci. Appl. 10, 625–636 (2017)
Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \(R^{N}\). J. Differ. Equ. 255, 2340–2362 (2013)
Zhang, J., Tang, X., Zhang, W.: Infinitely many solutions of quasilinear Schrödinger equation with signchanging potential. J. Math. Anal. Appl. 420, 1762–1775 (2014)
Wu, D.: Existence and stability of standing waves for nonlinear fractional Schrödinger equations with Hartree type nonlinearity. J. Math. Anal. Appl. 411, 530–542 (2014)
Zheng, X., Wang, J.: Symmetry results for systems involving fractional Laplacian. Indian J. Pure Appl. Math. 45, 39–51 (2014)
Giacomoni, J., Mukherjee, T., Sreenadh, K.: Konijeti positive solutions of fractional elliptic equation with critical and singular nonlinearity. Adv. Nonlinear Anal. 6, 327–354 (2017)
Lyons, J., Neugebauer, J.: Positive solutions of a singular fractional boundary value problem with a fractional boundary condition. Opusc. Math. 373, 421–434 (2017)
Molica Bisci, G., Radulescu, V.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial Differ. Equ. 54, 2985–3008 (2015)
Molica Bisci, G., Radulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge (2016)
Pucci, P., Xiang, M., Zhang, B.: Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal. 5, 27–55 (2016)
Zhang, X., Zhang, B., Xiang, M.: Ground states for fractional Schrödinger equations involving a critical nonlinearity. Adv. Nonlinear Anal. 5, 293–314 (2016)
Zhang, X., Zhang, B., Repovš, D.: Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials. Nonlinear Anal. 142, 48–68 (2016)
Dávila, J., Del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256, 858–892 (2014)
Dávila, J., Del Pino, M., Dipierro, S., Valdinoci, E.: Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum. Anal. PDE 8, 1165–1235 (2015)
Fall, M.M., Mahmoudi, F., Valdinoci, E.: Ground states and concentration phenomena for the fractional Schrödinger equation. Nonlinearity 28, 1937–1961 (2015)
Yang, L., Liu, Z.: Multiplicity and concentration of solutions for fractional Schrödinger equation with sublinear perturbation and steep potential well. Comput. Math. Appl. 72, 1629–1640 (2016)
Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)
Zou, W.: Variant fountain theorems and their applications. Manuscr. Math. 104, 343–358 (2001)
Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
Acknowledgements
This work is supported by National Natural Science Foundation of China (No. 11301153, 61673008), China Postdoctoral Science Foundation (No. 2017M612392).
Author information
Authors and Affiliations
Contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Li, P., Yuan, Y. Energy solutions and concentration problem of fractional Schrödinger equation. Bound Value Probl 2018, 22 (2018). https://doi.org/10.1186/s13661-018-0940-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-018-0940-z