- Research
- Open access
- Published:
Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives
Boundary Value Problems volume 2018, Article number: 24 (2018)
Abstract
In this article, by using the spectral analysis of the relevant linear operator and Gelfand’s formula, some properties of the first eigenvalue of a fractional differential equation are obtained. Based on these properties and through the fixed point index theory, the singular nonlinear fractional differential equations with Riemann–Stieltjes integral boundary conditions involving fractional derivatives are considered under some appropriate conditions, and the nonlinearity is allowed to be singular in regard to not only time variable but also space variable and it includes fractional derivatives. The existence of positive solutions for boundary conditions involving fractional derivatives is established. Finally, an example is given to demonstrate the validity of our main results.
1 Introduction
Recently, fractional differential equations have drawn more and more attention of the research community due to their numerous applications in various fields of science such as engineering, chemistry, physics, mechanics, etc. [1–4]. Boundary value problems of fractional differential equations have been investigated for many years. Now, there are many papers dealing with the problem for different kinds of boundary value conditions such as multi-point boundary condition (see [5–10]), integral boundary condition (see [11–24]), and many other boundary conditions (see [25–32]).
In this paper, we consider the existence of positive solutions for the following integral boundary value problems of singular nonlinear fractional differential equations:
where \(n-1<\alpha \leq n\), \(i-1<\beta_{i}\leq i\) (\(i=1,2,\ldots, n-1\)), \(\alpha -\beta_{n-1}>\alpha -\beta >1\), \(p \in C((0, 1), \mathbb{R}_{+} )\) and \(p(t)\) is allowed to be singular at \(t=0\) or \(t=1\), in which \(\mathbb{R}_{+}=[0,+\infty )\), \(f :[0, 1]\times (0, +\infty )^{n} \rightarrow \mathbb{R}_{+}\) is continuous and f may be singular at \(x_{0}=x_{1}=\cdots =x_{n-1}=0\), \(l: (0, 1)\rightarrow \mathbb{R}_{+}\) is continuous with \(l\in L^{1}(0, 1)\), \(\int_{0}^{1}l(t)u(t)\,dA(t)\) denotes the Riemann–Stieltjes integral with a signed measure, in which \(A: [0, 1]\rightarrow \mathbb{R}=(- \infty, +\infty )\) is a function of bounded variation.
Zhang et al. [15] studied the existence of positive solutions of the following singular nonlinear fractional differential equation with integral boundary value conditions:
where \(0<\beta \leq 1<\alpha \leq 2\), \(f(t,x,y)\) may be singular at both \(t=0,1\) and \(x=y=0\), \(\int_{0}^{1}x(s)\,dA(s)\) denotes the Riemann–Stieltjes integral with a signed measure, in which \(A: [0, 1]\rightarrow \mathbb{R}\) is a function of bounded variation. Through the spectral analysis and fixed point index theorem, the author obtained the existence of positive solutions.
By means of the fixed point index theory, Hao et al. [16] studied the existence of positive solutions of the following nth order differential equation:
where \(\lambda >0\) is a parameter, \(0\leq \Gamma :=\int_{0}^{1}t^{n-1}\,dA(t)<1\), \(a: (0, 1)\rightarrow \mathbb{R}_{+} \) is continuous and \(a(t)\) may be singular at \(t= 0\) and \(t=1\), \(f: [0, 1]\times (0,+\infty )\rightarrow \mathbb{R} _{+} \) is continuous and \(f(t,x)\) may also have singularity at \(x = 0\). \(\int_{0}^{1}u(s)\,dA(s)\) denotes the Riemann–Stieltjes integral with a signed measure, that is, A has bounded variation.
Li et al. [17] studied the existence of positive solutions of the following singular nonlinear fractional differential equation with integral boundary value conditions:
where \(n-1<\alpha \leq n\), \(p, q \in C((0, 1), \mathbb{R}_{+})\), \(p(t)\) and \(q(t)\) are allowed to be singular at \(t=0\) or \(t=1\), \(f, g:[0, 1]\times (0, +\infty ) \rightarrow \mathbb{R}_{+}\) are continuous and \(f(t, x)\), \(g(t, x)\) may be singular at \(x=0\), \(h: (0, 1)\rightarrow \mathbb{R}_{+}\) is continuous with \(h\in L^{1}(0, 1)\); \(\int_{0}^{1}h(s)u(s)\,dA(s)\) denotes the Riemann–Stieltjes integral with a signed measure, in which \(A: [0, 1]\rightarrow \mathbb{R}\) is a function of bounded variation. Through a well-known fixed point theorem, the author obtained the existence and multiplicity of positive solutions.
Zhang [29] obtained several cases of local existence and multiplicity of positive solutions for the following infinite-point boundary value problem:
where \(\alpha > 2\), \(n-1 < \alpha \leq n \), \(i\in [1,n-2]\) is fixed, \(f: (0, 1)\times (0,+\infty ) \) is continuous and \(f(t,x)\) permits singularities with \(t=0,1\) and \(x=0\).
Motivated by the above mentioned papers, the purpose of this article is to investigate the existence of positive solutions for a more general problem. Obviously, our work is different from those in [15–17, 29]. The main new features presented in this paper are as follows. Firstly, the nonlinear term f in our question includes multiple fractional order derivatives of unknown function, and the boundary value conditions also involve the fractional derivative. Secondly, the nonlinear term f in our work can be singular at \(x_{0}=x_{1}=\cdots =x_{n-1}=0\), which implies all of the above work. Lastly, by using the spectral analysis and fixed point index theorem, we get the existence of positive solutions.
The rest of the paper is organized as follows. Firstly, we present some preliminaries and lemmas that are to be used to prove our main results and develop some properties of the Green function. Secondly, we prove the existence of a positive solution of BVP (1.1). Finally, we give an example to prove our main conclusion.
2 Preliminaries and lemmas
In this section, for the convenience of the reader, we present some notations and lemmas that will be used in the proof of our main results.
Definition 2.1
([4])
The Riemann–Liouville fractional integral of order \(\alpha >0\) of a function \(y : (0, \infty ) \rightarrow \mathbb{R}\) is given by
provided that the right-hand side is pointwise defined on \((0, \infty)\).
Definition 2.2
([4])
The Riemann–Liouville fractional derivative of order \(\alpha >0\) of a continuous function \(y : (0, \infty ) \rightarrow \mathbb{R}\) is given by
where \(\alpha >0\) and \(n-1<\alpha \leq n \) (\(n=1,2,3,\ldots\) ), provided that the right-hand side is pointwise defined on \((0, \infty )\).
Lemma 2.1
([2])
Let \(\alpha >0\). If we assume \(u \in C(0, 1) \cap L^{1}(0, 1)\), then the fractional differential equation
has
as the unique solution, where \(N = [\alpha ]+1\).
From the definition of the Riemann–Liouville derivative, we can obtain the statement.
Lemma 2.2
([2])
Assume that \(u \in C(0, 1) \cap L^{1}(0, 1)\) with a fractional derivative of order \(\alpha >0\) that belongs to \(C(0, 1) \cap L^{1}(0, 1)\). Then
for some \(C_{i}\in \mathbb{R}\) (\(i =1, 2, \ldots, N\)), where \(N = [\alpha ]+1\).
In the following, we present the Green function of the fractional differential equation boundary value problem.
Lemma 2.3
Take f be as in (1.1) and let \(v(t)=D_{0^{+}} ^{\beta_{n-1} }u(t)\). Then problem (1.1) is transformed to the following equation:
Furthermore, assume that \(0\leq \delta \neq \frac{\Gamma (\alpha - \beta_{n-1})}{\Gamma (\alpha -\beta )}\), then the solution of problem (2.1) is equivalent to the solution of the following fractional integral equation:
where
in which
Moreover, if \(v(t)\) is a positive solution of (2.1), then \(u(t)=I_{0^{+}}^{\mu_{n-1} }v(t)\) is a positive solution of problem (1.1).
Proof
Let \(v(t)=D_{0^{+}}^{\beta_{n-1} }u(t)\), then from the boundary value conditions of (1.1) we have \(u(t)=I_{0^{+}}^{\beta _{n-1} }v(t)\), and
and from Lemma 2.3 we have \(D_{0^{+}}^{\beta }u(t)=D_{0^{+}}^{ \beta }I_{0^{+}}^{\beta_{n-1} }v(t)=D_{0^{+}}^{\beta -\beta_{n-1} }v(t)\).
Next, we may apply Lemma 2.2 to reduce (2.1) to an equivalent integral equation
for some \(C_{i}\in \mathbb{R}\) (\(i =1, 2\)).
From (2.4) and \(I_{0^{+}}^{\beta_{n-1}-n+2 }v(0)=0\), we know that \(C_{2}=0\). Then we obtain
From (2.5) we have
So, we have
And from (2.5) we also have
From (2.6), (2.7), and \(D_{0^{+}}^{\beta -\beta_{n-1}}v(1)=\int_{0} ^{1}l(t)v(t)\,dA(t)\), we obtain that
where \(\delta =\int_{0}^{1}t^{\alpha -\beta_{n-1}-1}l(t)\,dA(t)\), thus
Putting \(C_{1}\) into equation (2.5), we obtain that
Let
From the above we obtain that
Lastly, by the computation above, we know that if \(v(t)\) is a positive solution of (2.1), then \(u(t)=I_{0^{+}}^{\mu_{n-1} }v(t)\) is a positive solution of problem (1.1). Thus we complete the proof. □
Lemma 2.4
Let \(0\leq \delta <\frac{\Gamma (\alpha -\beta _{n-1})}{\Gamma (\alpha -\beta )}\) and \(g_{A}(s)\geq 0\), \(s\in [0, 1]\), the Green function \(G(t, s)\) defined by (2.2) satisfies
-
(1)
\(G:[0, 1]\times [0, 1]\rightarrow \mathbb{R_{+}}\) is continuous,
-
(2)
For any \(t, s \in [0, 1]\), we have \(t^{\alpha -\beta_{n-1}-1} \phi (s) \leq G(t, s)\leq \phi (s)\), where
$$ \phi (s)=K(1,s)+\frac{g_{A}(s)}{\frac{\Gamma (\alpha -\beta_{n-1})}{ \Gamma (\alpha -\beta )}-\delta },\quad s\in [0,1]. $$
Proof
(1) holds obviously, so we only prove (2) holds. By (2.3), when \(0\leq s\leq t\leq 1\),
and
In the same way, when \(0\leq t\leq s\leq 1\),
and
It follows from the above that
Furthermore, by the definition of \(\phi (s)\), the conclusion of (2) is proved. □
Let \(E=C[0, 1]\), \(\Vert v \Vert =\sup_{0\leq t\leq 1}\vert v(t)\vert \). Then \((E, \Vert \cdot \Vert )\) is a Banach space. Let
where \(\beta_{0}=0\). And for any \(r>0\), define \(\Omega_{r}=\{v\in K :\Vert v \Vert < r \}\), \(\partial \Omega_{r}=\{v\in K : \Vert v \Vert =r \}\), \(\overline{ \Omega }_{r}=\{v\in K: \Vert v \Vert \leq r \}\), \(\Omega^{(i)}_{r}=\{v\in K^{(i)}: \Vert v \Vert < r \}\). It is easy to see that K and \(K^{(i)}\) (\(i=0,1,\ldots,n-2\)) are cones in E and \(\overline{\Omega }_{R}\setminus \Omega_{r}\subset K \) for any \(0< r< R\). Throughout the paper we need the following conditions:
- \((\mathrm{H}_{1})\) :
-
\(A: [0, 1]\rightarrow \mathbb{R}\) is a function of bounded variation and \(g_{A}(s)\geq 0\) for all \(s\in [0, 1]\);
- \((\mathrm{H}_{2})\) :
-
\(l\in C(0, 1)\cap L^{1}(0, 1)\) and
$$ 0\leq \delta = \int_{0}^{1}t^{\alpha -\beta_{n-1}-1}l(t)\,dA(t)< \frac{ \Gamma (\alpha -\beta_{n-1})}{\Gamma (\alpha -\beta )}; $$ - \((\mathrm{H}_{3})\) :
-
\(p:(0, 1)\rightarrow \mathbb{R_{+}}\) is continuous, and \(\int_{0}^{1}\phi (s)p(s)\,ds < +\infty \);
- \((\mathrm{H}_{4})\) :
-
\(f :[0, 1]\times (0, \infty )^{n}\rightarrow \mathbb{R_{+}}\) is continuous, and for any \(0< r< R<+\infty \),
$$ \lim_{m\rightarrow \infty } \sup_{ {{x_{i}\in \overline{\Omega }_{R_{i}}\setminus \Omega ^{(i)}_{r_{i}} (i=0,1,\ldots, n-2)}\atop x_{n-1}\in \overline{\Omega }_{R}\setminus \Omega _{r} }} \int_{H(m)}\phi (s)p(s)f\bigl(s, x_{0}(s),x_{1}(s),\ldots, x_{n-1}(s)\bigr)\,ds=0, $$where \(R_{i}=\frac{R}{\Gamma (\beta_{n-1}-\beta_{i}+1)}\), \(r_{i}=\frac{ \Gamma (\alpha -\beta_{n-1})}{\Gamma (\alpha -\beta_{i})r} \) (\(i=0,1,\ldots, n-2\)), and \(H(m)=[0, \frac{1}{m}]\cup [\frac{m-1}{m}, 1]\), \(\phi (s)\) is defined in Lemma 2.4.
In what follows, let us define a nonlinear operator \(L:\overline{\Omega }_{R} \setminus \Omega_{r}\rightarrow E\) and a linear operator \(T:E\rightarrow E\) by
and
respectively. And for any \(\tau :0<\tau <\delta \), we define \(T_{\tau }:E\rightarrow E\) by
Lemma 2.5
Suppose that \((\mathrm{H}_{1})\)–\((\mathrm{H}_{4})\) hold. Then \(L:\overline{\Omega }_{R} \setminus \Omega_{r}\rightarrow K\) is a completely continuous operator, and the fixed point of L in \(\overline{\Omega }_{R} \setminus \Omega_{r}\) is the positive solutions to BVP (2.1).
Proof
It follows from \((\mathrm{H}_{4})\) that there exists a natural number \(m_{1}\geq 2\) such that
It is easy to see that for each \(v\in \overline{\Omega }_{R} \setminus \Omega_{r}\) there exists \(r_{1}\in [r,R]\) such that \(\Vert v \Vert =r_{1}\). For \(v\in \Omega \), we have
and for any \(i=0,1,\ldots,n-2\), we have
and
And for all \(t\in [\frac{1}{m}, \frac{m-1}{m}]\), we have \(\frac{1}{m ^{\alpha -\beta_{n-1}-1}}r\leq v(t)\leq R\), and
Let
where \(I=[ \frac{1}{m_{1}}, \frac{m_{1}-1}{m_{1}}] \), \(J_{i}=[ \frac{\Gamma (\alpha -\beta_{n-1})r}{\Gamma (\alpha - \beta_{i})m_{1}^{\alpha -\beta_{i}-1}}, \frac{1}{\Gamma (\beta_{n-1}- \beta_{i}+1)}R ]\) (\(i=0,1,2,\ldots,n-2\)), \(J_{n-1}= [ \frac{1}{m_{1}^{\alpha -\beta_{n-1}-1}}r, R ] \). So, by Lemma 2.4(2), \((\mathrm{H}_{3})\), and \((\mathrm{H}_{4})\), we have
This implies that the operator L defined by (2.8) is well defined.
Next, we show that \(L:\overline{\Omega }_{R}\setminus \Omega_{r} \rightarrow K\). For any \(v\in \overline{\Omega }_{R}\setminus \Omega _{r}\), \(t\in [0, 1]\), we have
Hence,
On the other hand, by Lemma 2.4, we have
thus \(Lv\in K\). Therefore \(L:\overline{\Omega }_{R}\setminus \Omega _{r}\rightarrow K\).
Finally, we prove that \(L:\overline{\Omega }_{R}\setminus \Omega_{r} \rightarrow K\) is a completely continuous map. Suppose \(D\subset \overline{ \Omega }_{R}\setminus \Omega_{r}\) is an arbitrary bounded set. Firstly, from the above proof, we know that \(L(D)\) is uniformly bounded. Secondly, we show that \(L(D)\) is equicontinuous. In fact, for any \(\varepsilon >0\), there exists a natural number \(m_{2}\geq 3\) such that
Since \(G(t, s)\) is uniformly continuous on \([0, 1]\times [0, 1]\), for the above \(\varepsilon >0\), there exists \(\delta >0\) such that, for any \(t_{1}, t_{2}\in [0, 1]\), \(\vert t_{1}-t_{2} \vert <\delta \), \(s\in [\frac{1}{m _{2}}, \frac{m_{2}-1}{m_{2}}]\),
where
in which
Consequently, for any \(v\in D\), \(t_{1}, t_{2}\in [0, 1]\), \(\vert t_{1}-t_{2} \vert < \delta \), we have
where
This shows that \(L(D)\) is equicontinuous. By the Arzela–Ascoli theorem, \(L:\overline{\Omega }_{R}\setminus \Omega_{r}\rightarrow K\) is compact. Thirdly, we prove that \(L:\overline{\Omega }_{R}\setminus \Omega_{r} \rightarrow K\) is continuous. Assume \(v_{0}, v_{n}\in \overline{ \Omega }_{R}\setminus \Omega_{r} \) and \(\Vert v_{n}-v_{0} \Vert \rightarrow 0\) (\(n\rightarrow \infty \)). Then \(r\leq \Vert v_{n} \Vert \leq R\) and \(r\leq \Vert v_{0} \Vert \leq R\). From \((\mathrm{H}_{4})\) there exists a natural number \(m_{3}>m_{2}\) such that
Since \(f(t, x_{0},\ldots, x_{n-1}) \) is uniformly continuous in
we have
uniformly on \(s\in [\frac{1}{m_{3}}, \frac{m_{3}-1}{m_{3}}]\). Then the Lebesgue dominated convergence theorem yields that
Thus, for the above \(\varepsilon >0\), there exists a natural number N such that for \(n>N\) we have
It follows from (2.13), (2.14) that when \(n>N\)
This implies that \(L:\overline{\Omega }_{R}\setminus \Omega_{r}\rightarrow K\) is continuous. Thus \(L:\overline{\Omega }_{R}\setminus \Omega_{r} \rightarrow K\) is completely continuous. It is clear that if v is a fixed point of L in \(\overline{\Omega }_{R}\setminus \Omega_{r}\), then v satisfies (2.1) and is a positive solution of BVP (2.1). □
Lemma 2.6
Assume that \(({\mathrm{H}_{1}})\)–\(({\mathrm{H}_{3}})\) hold, then for the linear bounded operator T the spectral radius \(r(T)\neq0\) and T has a positive eigenfunction \(\varphi_{1}\) corresponding to its first eigenvalue \(\lambda_{1}=(r(T))^{-1}\), that is, \(\varphi_{1}=\lambda_{1} T \varphi_{1}\). In the same way, \(T_{\tau }\) has a positive eigenfunction corresponding to its first eigenvalue \(\lambda_{\tau }=(r(T_{\tau }))^{-1}\).
Proof
The proof is similar to Lemma 2.5 of [12], so we omit it. □
To prove the main results, we need the following well-known fixed point index theorem.
Lemma 2.7
([33])
Let K be a cone in a real Banach space E. Suppose that \(L:\overline{\Omega }_{r}\rightarrow K\) is a completely continuous operator. If there exists \(u_{0}\in K\backslash \{\theta \}\) such that \(u-Lu\neq\mu u_{0}\) for any \(u\in \partial {\Omega }_{r}\) and \(\mu \geq 0\), then \(i(L,{\Omega }_{r},K)=0\).
Lemma 2.8
([33])
Let K be a cone in a real Banach space E. Suppose that \(L :\overline{\Omega }_{r}\rightarrow K\) is a completely continuous operator. If \(Lu\neq\mu u\) for any \(u\in \partial {\Omega }_{r}\) and \(\mu \geq 1\), then \(i(L,{\Omega }_{r},K)=1\).
3 Existence of positive solutions
Theorem 3.1
Assume that (\(\mathrm{H}_{1}\))–(\(\mathrm{H}_{4}\)) hold, and
Then BVP (1.1) has at least one positive solution, where \(\lambda_{1}\) is the first eigenvalue of the operator T defined by (2.9).
Proof
From (3.2) we can choose \(\varepsilon_{0}>0\), there exists \(r>0\) such that, for any \(t\in [0,1]\) and \(0\leq x_{i}\leq \frac{r}{ \Gamma (\beta_{n-1}-\beta_{i}+1)}\) (\(i=0,1,\ldots,n-2\)), \(0\leq x _{n-1}\leq r\), we have
For any \(v\in \partial \Omega_{r}\), since
thus from (3.3), we have
Let \(\varphi_{1}\) be the positive eigenfunction corresponding to the first eigenvalue \(\lambda_{1}\), thus \(\varphi_{1}=\lambda_{1}T\varphi _{1}\). We may suppose that L has no fixed points on \(\partial \Omega _{r}\) (otherwise, the proof is finished). Now we show that
If not, there exist \(v_{1}\in \partial \Omega_{r}\) and \(\mu_{1}\geq 0\) such that \(v_{1}-Lv_{1}=\mu_{1} \varphi_{1}\), then \(\mu_{1}> 0\) and \(v_{1}=Lv_{1}+\mu_{1} \varphi_{1}\geq \mu_{1} \varphi_{1}\). Let \(\widetilde{\mu }=\sup \{\mu | v_{1}\geq \mu \varphi_{1}\}\), then \(\widetilde{\mu }\geq \mu_{1}\), \(v_{1}\geq \widetilde{\mu } \varphi _{1}\) and \(Lv_{1}\geq \lambda_{1}Tv_{1} \geq \lambda_{1}\widetilde{\mu } T\varphi_{1}=\widetilde{\mu } \varphi_{1}\). Thus,
which contradicts the definition of μ̃. So (3.4) is true, and by Lemma 2.7 we have
On the other hand, from (3.1) we can choose \(\varepsilon_{1}>0\), \(0<\sigma <1\) such that, for any \(R>r>0\), \(t\in [0,1]\), \(x_{i}\geq 0\) (\(i=0,1,\ldots,n-2\)), and \(x_{n-1}\geq R\), we have
Let \(\overline{T} v =\sigma \lambda_{1} Tv\), then \(\overline{T}:E \rightarrow E\) is a bounded linear operator and \(\overline{T}(\Omega )\subset K\). Since \(\lambda_{1}\) is the first eigenvalue of T and \(0< \sigma <1\),
Let \(\varepsilon_{2}=\frac{1}{2}(1-r(\overline{T}))\), then by \(r(\overline{T})=\lim_{n\rightarrow \infty } \Vert \overline{T}^{n} \Vert ^{ \frac{1}{n}}\), we know that there exists a natural number \(N\geq 1\) such that \(n\geq N\) implies that \(\Vert \overline{T}^{n} \Vert \leq [r(\overline{T})+ \varepsilon_{2}]^{n}\). For any \(v\in E\), define
where \(\overline{T}^{0}=I\) is the identity operator. It is easy to verify that \(\Vert v \Vert _{\ast }\) is a new norm in E. Let
by (2.11) we know that \(M < + \infty \). Select \(R_{1}>\max \{R, 2M _{\ast }\varepsilon^{-1}_{2}\}\), where \(M_{\ast }=\Vert M \Vert _{\ast }\).
In the following we prove that
If otherwise, there exist \(v_{1}\in \partial \Omega_{R_{1}}\) and \(\mu_{1} \geq 1\) such that \(Lv_{1}=\mu_{1}v_{1}\). Let \(\widetilde{v}(t)=\min \{v_{1}(t), R \}\), \(t\in [0,1]\) and \(D(v_{1})=\{t\in [0,1]: v_{1}(t)>R \}\). Notice that \(\widetilde{v}\in C([0,1],\mathbb{R}_{+})\), \(t^{\alpha -\beta_{n-1}-1}R_{1}\leq v_{1}(t)\leq \Vert v_{1} \Vert =R_{1}\), and \(R_{1}>R\), thus there exists some \(t_{0}\in (0,1]\) satisfying \(v_{1}(t_{0})=R\). So, by the definition of ṽ, we have \(\widetilde{v}(t) \leq R\), \(\widetilde{v}(t_{0})=\min \{v_{1}(t_{0}),R \}\), \(\widetilde{v}(t)\geq t^{\alpha -\beta_{n-1}-1}R\). Hence \(\Vert \widetilde{v} \Vert =R\), so \(\widetilde{v}\in \partial \Omega_{R}\). From (3.6) and the definition of M, we have
Since \(\overline{T}(\Omega )\subset K\), we have \(0\leq (\overline{T})^{j}(Lv _{1})(t)\leq (\overline{T})^{j}(\overline{T}v_{1}+M)(t)\) \((j=0,1,2, \ldots, N-1)\), then
Hence
Thus
that is, \(\mu_{1}<1\), which contradicts \(\mu_{1}\geq 1\). This implies that (3.8) holds. It follows from Lemma 2.8 that
Therefore, L has at least one fixed point \(v^{\ast }\in \Omega_{R} \backslash \overline{\Omega }_{r}\), and \(v^{\ast }\) is a positive solution of BVP (2.1). Therefore problem (1.1) also has at least one positive solution. □
Lemma 3.1
Suppose that \((\mathrm{H}_{1})\)–\((\mathrm{H}_{3})\) hold, then there exists an eigenvalue \(\widetilde{\lambda }_{1}\) of T such that \(\lim_{\tau \rightarrow 0}\lambda_{\tau }=\widetilde{\lambda }_{1}\).
Proof
Take \(\tau_{1}\geq \tau_{2}\geq \cdots\geq \tau_{n}\geq \cdots\) and \(\tau_{n}\rightarrow 0\) \((n\rightarrow +\infty )\), \(\tau_{n}\in (0,\delta )\). For any \(m>n\) and \(\varphi \in E\), we have
where \(T_{\tau_{n}}^{k}=T_{\tau_{n}}(T_{\tau_{n}}^{k-1})\) (\(k=2,3,\ldots \)). Consequently, \(\Vert T_{\tau_{n}}^{k} \Vert \leq \Vert T_{\tau_{m}}^{k}\Vert \leq \Vert T^{k} \Vert \) (\(k=1,2,\ldots \)), by Gelfand’s formula, we know that \(\lambda_{\tau_{n}}\geq \lambda_{\tau_{m}}\geq \lambda_{1}\), where \(\lambda_{1}\) is the first eigenvalue of T. Since \(\lambda_{\tau_{n}}\) is monotonous with lower boundedness \(\lambda_{1}\), let \(\lim_{n\rightarrow \infty } \lambda_{\tau_{n}}=\widetilde{\lambda }_{1}\).
In the following we shall show that \(\widetilde{\lambda }_{1}\) is an eigenvalue of T. Let \(\varphi_{\tau_{n}}\) be the positive eigenfunction corresponding to \(\varphi_{\tau_{n}}\), i.e.,
with \(\Vert \varphi_{\tau_{n}} \Vert =1\) (\(n=1,2,\ldots\)). From
we know that \({T_{\tau_{n}}\varphi_{\tau_{n}}}\subset E\) is uniformly bounded.
On the other hand, for any n and \(t_{1},t_{2}\in [0,1]\), we have
So, as \(G(t,s)\) is uniformly continuous on \([0,1]\times [0,1]\), we obtain that \(T_{\tau_{n}}\varphi_{\tau_{n}}(t)\) is equicontinuous for \(t\in [0,1]\). By the Arzela–Ascoli theorem and \(\lim_{n\rightarrow \infty }\lambda_{\tau_{n}}=\widetilde{\lambda }_{1}\), we get that \(\varphi_{\tau_{n}}\rightarrow \varphi_{0}\) as \(n\rightarrow \infty \). This leads to \(\Vert \varphi_{0} \Vert =1\), and then by (3.10) we have
that is, \(\varphi_{0}=\widetilde{\lambda }_{1}T\varphi_{0}\). This completes the proof. □
Theorem 3.2
Assume that (\(\mathrm{H}_{1}\))–(\(\mathrm{H}_{4}\)) hold, and
Then BVP (1.1) has at least one positive solution, where \(\lambda_{1}\) is the first eigenvalue of T defined by (2.9), and \(\widetilde{\lambda }_{1}\) is the eigenvalue of T.
Proof
Firstly, from (3.11) we know that there exist \(r>0\), \(\tau_{0}>0\) such that, for any \(t\in [0,1]\), and \(0\leq x_{i}\leq \frac{r}{ \Gamma (\beta_{n-1}-\beta_{i}+1)}\) (\(i=0,1,\ldots,n-2\)), \(0\leq x_{n-1}\leq r\), we have
For any \(v\in \partial \Omega_{r}\), since
thus from (3.13) we obtain that
that is,
Without loss of generality, we may suppose that T has no fixed point in \(\partial \Omega_{r} \) (otherwise the conclusion is proved). In what follows, we will show that
As a contradiction, if there exist \(v_{1}\in \partial \Omega_{r}, \mu _{1}\geq 1\) such that \(Lv_{1}=\mu_{1}v_{1}\), obviously, \(\mu_{1}>1\) and \(\mu_{1}v_{1}=Lv_{1}\leq \lambda_{1}Tv_{1}\). By induction we have \(\mu_{1}^{n}v_{1}\leq \lambda_{1}^{n}T^{n} v_{1}\) (\(n=1,2,\ldots \)), so we have \(\Vert T^{n} \Vert \geq \frac{\Vert T^{n} v_{1} \Vert }{\Vert v_{1} \Vert } \geq \frac{\mu_{1}^{n}}{\lambda_{1}^{n}}\). By Gelfand’s formula, we have
which contradicts \(r(T)=\frac{1}{\lambda_{1}}\). So \(Tv\neq \mu v\), \(v\in \partial \Omega_{r}\), \(\mu \geq 1\). From Lemma 2.8 we have
From (3.12) and \(\lim_{\tau \rightarrow 0}\lambda_{\tau }= \widetilde{\lambda }_{1}\), we know there exists sufficiently small \(\tau \in (0,1)\). Taking
there exist \(\tau_{0}>0\), \(R>r>0\) such that, for any \(x_{i}\geq 0 \) (\(i=0,1,\ldots,n-1\)) and \(x_{0}+x_{1}+\cdots +x_{n-1}>l_{\tau }R\), \(t\in [0,1]\), we have
where \(\lambda_{\tau }\) is the first eigenvalue of \(T_{\tau }\).
Let \(\varphi_{\tau }\) be the positive eigenfunction of \(T_{\tau }\) corresponding to \(\lambda_{\tau }\), i.e., \(\varphi_{\tau }=\lambda_{\tau }T_{\tau }\varphi_{\tau }\). For any \(v \in \partial \Omega_{R}\), \(s \in [\tau,1-\tau ]\), taking \(\beta_{0}=0\), then
So, from (3.17) and (3.18) we have
We may suppose that L has no fixed points on \(\partial \Omega_{R}\) (otherwise, the proof is ended). Following the procedure used in the first part of Theorem 3.1, it follows that
From Lemma 2.7, we know
So, from (3.16) and (3.19) we have
Therefore, L has at least one fixed point on \(\overline{\Omega } _{R}\backslash \Omega_{r}\), which is a positive solution of BVP (2.1). Consequently, it is a positive solution of BVP (1.1). The proof is completed. □
4 An example
Example 4.1
We consider the singular fractional differential equation as follows:
where \(p(t)=(1-t)^{-\frac{1}{8}}\), \(l(t)=t^{-\frac{1}{20}}\), \(f(t,x_{0},x_{1},x_{2},x_{3})=[x_{0}+x_{1}+x_{2}+x_{3}]^{-\frac{1}{3}}+\ln x_{3}\), and
It is obvious that \(p(t)\) is singular at \(t=1\), and f is singular at \(x_{0}=x_{1}=x_{2}=x_{3}=0\). Let \(u(t)=I_{0^{+}}^{\frac{9}{4}}v(t)\), then problem (4.1) can be transformed to the following equation:
Then
and
Obviously, \(0\leq g_{A}(s)\leq (1-s)^{\frac{1}{8}}\), \(\delta =\int _{0}^{1}t^{\frac{1}{4}}l(t)\,dA(t)=\int_{0}^{1}t^{\frac{1}{5}}\,dA(t)= ( \frac{1}{4} ) ^{\frac{1}{5}}\times \frac{1}{200}=0.00125\), that is, \(\frac{\Gamma(\frac{5}{4})}{\Gamma(\frac{9}{8})}-\delta>0\), and
Now we will check that all the conditions of Theorem 3.1 are satisfied, define a cone
\(K^{(0)}=\{v\in C[0,1]:v(t)\geq t^{\frac{5}{2}}\Vert v \Vert , t\in [0,1]\}\), \(K^{(1)}=\{v\in C[0,1]:v(t)\geq t^{\frac{39}{16}}\Vert v \Vert , t\in [0,1] \}\), \(K^{(2)}=\{v\in C[0,1]:v(t)\geq t^{\frac{11}{8}}\Vert v \Vert , t\in [0,1]\}\).
For any \(0< r< R<+\infty \) and \(v\in \overline{\Omega }_{R}\backslash \Omega_{r}\), we have \(v(t)\geq t^{\alpha -\beta_{n-1}-1}\Vert v \Vert =t^{ \frac{1}{4}}\Vert v \Vert \), \(t\in [0, 1] \), then
where \(\beta_{0}=0\), \(\beta_{1}=\frac{1}{16}\), \(\beta_{2}=\frac{9}{8}\). Since \(\vert \ln x \vert \) is decreasing on \((0, 1)\) and is increasing on \((1, +\infty )\), we have
and
The absolute continuity of the integral yields that
So,
and from (4.4) we obtain that
On the other hand, by a simple calculation, we have
Therefore, the assumptions of Theorem 3.1 are satisfied. Thus the above problem possesses at least one positive solution in K.
5 Conclusions
In this paper, we study a type of singular nonlinear fractional differential equation with integral boundary conditions involving derivatives. The biggest difference from other papers is that our nonlinear term and boundary value conditions contain several fractional derivatives, and f is singular at \(x_{0}=x_{1}=\cdots =x_{n-1}=0\). So our work is valued.
References
Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1999)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389, 403–411 (2012)
Lazarevic, M.P., Spasic, A.M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math. Comput. Model. 49, 475–481 (2009)
Salen, H.A.H.: On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies. Comput. Math. Appl. 224, 565–572 (2009)
Wang, Y., Liu, L.: Positive solutions for fractional m-point boundary value problem in Banach spaces. Acta Math. Sci. 32, 246–256 (2012)
Henderson, J., Luca, R.: Existence and multiplicity for positive solutions of a system of higher-order multi-point boundary value problems. Nonlinear Differ. Equ. Appl. 20, 1035–1054 (2013)
Henderson, J., Luca, R.: Systems of Riemann–Liouville fractional equations with multi-point boundary conditions. Appl. Math. Comput. 309, 303–323 (2017)
Henderson, J., Luca, R.: Existence of nonnegative solutions for a fractional integro-differential equation. Results Math. 72, 747–763 (2017)
Henderson, J., Luca, R.: Existence of positive solutions for a singular fractional boundary value problem. Nonlinear Anal., Model. Control 22, 99–114 (2016)
Cabada, A., Hamdi, Z.: Nonlinear fractional differential equations with integral boundary value conditions. Appl. Math. Comput. 228, 251–257 (2014)
Zhang, X., Wang, L., Sun, Q.: Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter. Appl. Math. Comput. 226, 708–718 (2014)
Wang, Y., Liu, L., Wu, Y.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74, 3599–3605 (2011)
Cui, Y., Zou, Y.: Existence of solutions for second-order integral boundary value problems. Nonlinear Anal., Model. Control 21, 828–838 (2016)
Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: The spectral analysis for a singular fractional differential equation with a signed measure. Appl. Math. Comput. 257, 252–263 (2015)
Hao, X., Liu, L., Wu, Y., Sun, Q.: Positive solutions for nonlinear nth-order singular eigenvalue problem with nonlocal conditions. Nonlinear Anal. 73, 1653–1662 (2010)
Li, H., Liu, L., Wu, Y.: Positive solutions for singular nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2015, 232 (2015)
Liu, L., Zhang, X., Liu, L., Wu, Y.: Iterative positive solutions for singular nonlinear fractional differential equation with integral boundary conditions. Adv. Differ. Equ. 2016, 154 (2016). https://doi.org/10.1186/s13662-016-0876-5
Guo, L., Liu, L., Wu, Y.: Uniqueness of iterative positive solutions for the singular fractional differential equations with integral boundary conditions. Bound. Value Probl. 2016, 147 (2016). https://doi.org/10.1186/s13661-016-0652-1
Wang, Y., Liu, L., Wu, Y.: Positive solutions for a class of higher-order singular semipositone fractional differential system with coupled integral boundary conditions and parameters. Adv. Differ. Equ. 2014, 268 (2014). https://doi.org/10.1186/1687-1847-2014-268
Zhang, X., Liu, L., Wu, Y.: Existence and uniqueness of iterative positive solutions for singular Hammerstein integral equations. J. Nonlinear Sci. Appl. 10, 3364–3380 (2017)
Liu, L., Li, H., Liu, C., Wu, Y.: Existence and uniqueness of positive solutions for singular fractional differential systems with coupled integral boundary value problems. J. Nonlinear Sci. Appl. 10, 243–262 (2017)
Zhang, X., Zhong, Q.: Uniqueness of solution for higher-order fractional differential equations with conjugate type integral conditions. Fract. Calc. Appl. Anal. 20, 1471–1484 (2017)
Wang, Y., Liu, L., Zhang, X., Wu, Y.: Positive solutions of a fractional semipositone differential system arising from the study of HIV infection models. Appl. Math. Comput. 258, 312–324 (2015)
Guo, L., Liu, L., Wu, Y.: Existence of positive solutions for singular higher-order fractional differential equations with infinite-points boundary conditions. Bound. Value Probl. 2016, 114 (2015). https://doi.org/10.1186/s13661-016-0621-8
Liu, L., Zhang, X., Jiang, J., Wu, Y.: The unique solution of a class of sum mixed monotone operator equations and its application to fractional boundary value problems. J. Nonlinear Sci. Appl. 9(5), 2943–2958 (2016)
Liu, L., Sun, F., Zhang, X., Wu, Y.: Bifurcation analysis for a singular differential system with two parameters via to degree theory. Nonlinear Anal., Model. Control 22(1), 31–50 (2017)
Wang, Y., Liu, L., Wu, Y.: Positive solutions for singular semipositone boundary value problems on infinite intervals. Appl. Math. Comput. 227, 256–273 (2014)
Zhang, X.: Positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. Appl. Math. Lett. 39, 22–27 (2015)
Goodrich, C.S.: Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23, 1050–1055 (2010)
Webb, J.R.L.: Nonlocal conjugate type boundary value problems of higher order. Nonlinear Anal. 71, 1933–1940 (2009)
Cui, Y.: Uniqueness of solution for boundary value problem for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)
Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)
Acknowledgements
The authors would like to thank the referees for their useful suggestions which have significantly improved the paper.
Funding
The authors are supported financially by the National Natural Science Foundation of China (11371221, 11571296).
Author information
Authors and Affiliations
Contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Liu, X., Liu, L. & Wu, Y. Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives. Bound Value Probl 2018, 24 (2018). https://doi.org/10.1186/s13661-018-0943-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-018-0943-9