- Research
- Open Access
- Published:
Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent
Boundary Value Problems volume 2018, Article number: 96 (2018)
Abstract
In this paper, we study the following critical system with fractional Laplacian:
where \((-\Delta)^{s}\) is the fractional Laplacian, \(0< s<1\), \(\mu_{1},\mu_{2}>0\), \(2^{\ast}=\frac{2N}{N-2s}\) is a fractional critical Sobolev exponent, \(N>2s\), \(1<\alpha\), \(\beta<2\), \(\alpha+\beta=2^{\ast}\), Ω is an open bounded set of \(\mathbb{R}^{N}\) with Lipschitz boundary and \(\lambda_{1},\lambda_{2}>-\lambda_{1,s}(\Omega)\), \(\lambda_{1,s}(\Omega)\) is the first eigenvalue of the non-local operator \((-\Delta)^{s}\) with homogeneous Dirichlet boundary datum. By using the Nehari manifold, we prove the existence of a positive ground state solution of the system for all \(\gamma>0\). Via a perturbation argument and using the topological degree and a pseudo-gradient vector field, we show that this system has a positive higher energy solution. Then the asymptotic behaviors of the positive ground state solutions are analyzed when \(\gamma\rightarrow0\).
1 Introduction
The fractional Laplacian operator and fractional Sobolev space arise in a quite natural way in many different contexts, such as the thin obstacle problem, finance, phase transitions, anomalous diffusion, flame propagation and many others (see [1–4] and the references therein). In recent years, the corresponding non-local equation or systems involving fractional Laplacian with nonlinear terms have attracted the attention of many researchers, both for their interesting theoretical structure and their concrete applications (see [5–11] and the references therein).
There have been a lot of studies that consider a Laplacian equation or a Laplacian system (see [12–16] and the references therein). Compared to the Laplacian problem, the fractional Laplacian problem is non-local and more difficult to handle. For the following fractional Laplacian equation:
Servadei and Valdinoci [17] showed that (1) has mountain pass type solution which is not identically zero. When \(f(x,u)=\lambda u^{q}+u^{2^{\ast }-1}\), Barrios, Colorado, Servadei and Soria [18] obtained the existence and multiplicity solutions for system (1) under different conditions of λ.
For the following fractional Laplacian equation:
Caffarelli and Silvestre [19] studied an extension problem related to the fractional Laplacian in \({\mathbb{R}}^{n}\), which can transform the non-local problem into a local problem in \({\mathbb{R}} _{+}^{n+1}\). This method can be extended to bounded regions and is extensively used in recent articles. For example, when \(f(x,u)=\lambda u^{q}+u^{\frac{n+s}{n-s}}\), Barrios, Colorado, de Pablo and Sánchez [5] proved the existence and multiplicity of solutions for equation (2) under suitable conditions of s and q. When \(f(x,u)=|u|^{2^{\ast }-2}u+f(x)\) Colorado, de Pablo and Sánchez [6] proved the existence and the multiplicity of solutions for equation (2) under appropriate conditions on the size of f.
The following Brézis–Nirenberg problem for the fractional Laplacian:
has been investigated by Servadei and Valdinoci [20, 21] and obtained a non-trivial solutions.
It is also natural to study the coupled system of equations. Li and Yang [22] considered the following subcritical case fractional Laplacian system:
by using the Nehari manifold, fibering maps and the Lusternik–Schnirelmann category, they prove that the problem has at least \(\operatorname{cat}(\Omega) +1\) distinct positive solutions, where \(\operatorname{cat}( \Omega)\) denotes the Lusternik–Schnirelmann category of Ω in itself. When the boundary conditions are replaced by \(u=0\), \(v=0\) on ∂Ω, X. He, Squassina and Zou [23] using variational methods and a Nehari manifold decomposition proved that the system admits at least two positive solutions when the pair of parameters \((\lambda,\mu)\) belong to certain subset of \(\mathbb{R} ^{2}\).
We address the following critical system involving a fractional Laplacian:
where \((-\Delta)^{s}\) is the fractional Laplacian, \(0< s<1\), \(\mu_{1}, \mu_{2}>0\), \(2^{\ast }=\frac{2N}{N-2s}\) is a fractional critical Sobolev exponent, \(N>2s\), \(1<\alpha\), \(\beta <2\), \(\alpha +\beta =2^{ \ast }\), Ω is an open bounded set of \(\mathbb{R}^{N}\) with Lipschitz boundary and \(\lambda_{1},\lambda_{2}>-\lambda_{1,s}(\Omega)\), \(\lambda_{1,s}(\Omega)\) is the first eigenvalue of the non-local operator \((-\Delta)^{s}\) with homogeneous Dirichlet boundary datum.
The fractional Laplacian \((-\Delta)^{s}\) is defined by
with
Guo, Luo and Zou [11], showed that when \(\lambda_{1},\lambda _{2}\in (-\lambda_{1,s}(\Omega),0)\), (3) has a positive ground state solution for all \(\gamma >0\). For more recent advances on this topic, see [24–26] and the references therein.
In [27], we have consider the following critical system:
By using the Nehari manifold, under proper conditions, we establish the existence and nonexistence of a positive least energy solution of the above system.
In this paper, we study system (3) from another aspect to obtain the ground state solutions, higher energy solution and an analysis the asymptotic behaviors of the positive ground state solutions.
Let \({D_{s}(\Omega)}\) be Hilbert space as the completion of \(C^{\infty }_{c}(\Omega)\) equipped with the norm
Let
be the sharp embedding constant of \({D_{s}(\mathbb{R}^{N})}\hookrightarrow L^{2^{\ast }}(\mathbb{R}^{N})\) and \(S_{s}\) is attained (see [28]) in \(\mathbb{R}^{N}\) by \(\widetilde{u}_{\epsilon, y}= \kappa (\varepsilon^{2}+|x-y|)^{-\frac{N-2s}{2}}\), where \(\kappa \neq 0 \in \mathbb{R}\), \(\varepsilon >0 \) and \(y\in \mathbb{R}^{N}\). That is,
The energy functional associated with (3) is given by
where \(\mathcal{D}_{s}(\Omega):=D_{s}(\Omega)\times D_{s}(\Omega)\) is endowed with norm \(\Vert (u,v)\Vert ^{2}_{\mathcal{D}_{s}(\Omega)}=\|u\| ^{2}_{D_{s}(\Omega)}+\|v\|^{2}_{D_{s}(\Omega)}\). Define the Nehari manifold
We say that \((u,v)\) is a non-trivial solution of (3) if \(u\neq 0\), \(v\neq 0\) and \((u,v)\) solves (3). Any non-trivial solution of (3) is in \(\mathbb{M}\). Due to the fact that if we take \(\varphi,\psi \in \mathcal{C}^{\infty }_{0}(\Omega)\) with \(\varphi,\psi \not \equiv 0\) and \(\operatorname{supp}(\varphi)\cap \operatorname{supp}(\psi)=\emptyset \), then there exist \(t_{1},t_{2}>0\) such that \((t_{1}\varphi,t_{2}\psi) \in \mathbb{M}\), so \(\mathbb{M}\neq \emptyset \).
Our main results are as follows.
Theorem 1.1
-
(i)
Assume \(-\lambda _{1,s}(\Omega)<\min \{\lambda _{1},\lambda _{2}\}<0\) and \(N>4s\). Then system (3) has a positive ground state solution \((u_{\gamma },v_{\gamma })\in \mathcal{D}_{s}(\Omega)\) with \(E_{\gamma }(u_{\gamma },v_{\gamma })=A_{\gamma }\) for all \(\gamma >0\).
-
(ii)
Assume \(-\lambda _{1,s}(\Omega)<\min \{\lambda _{1},\lambda _{2}\}<0\), \(N>4s\) and let \(\gamma_{n}\) be a sequence with \(\gamma_{n}\rightarrow 0\) as \(n\rightarrow +\infty\). Then, passing to a subsequence, \(({u}_{\gamma _{n}},{v}_{\gamma _{n}})\rightarrow (\overline{u},\overline{v})\) strongly in \(D_{s}(\Omega)\times D_{s}(\Omega)\) as \(n\rightarrow +\infty \), and one of the following conclusions holds:
-
(1)
\((\overline{u},0)\) is a positive ground state solution of
$$\textstyle\begin{cases} (-\Delta)^{s}u+\lambda_{1} u=\mu_{1}|u|^{2^{\ast }-2}u & \textit{in } \Omega; \\ u=0 & \textit{on } \mathbb{R}^{N}\setminus \Omega. \end{cases} $$ -
(2)
\((0,\overline{v})\) is a positive ground state solution of
$$\textstyle\begin{cases} (-\Delta)^{s}v+\lambda_{2} v=\mu_{2}|v|^{2^{\ast }-2}v & \textit{in } \Omega, \\ v=0 & \textit{on } \mathbb{R}^{N}\setminus \Omega. \end{cases} $$
If
$$\biggl(\frac{\mu_{1}}{\mu_{2}} \biggr)^{-\frac{N-2s}{2s}}< \frac{m_{\lambda_{2}}}{m _{\lambda_{1}}} \quad { \textit{implies that}}\quad m_{\lambda _{1},\mu_{1}}< m_{\lambda_{2},\mu_{2}}, $$then (1) holds.
If
$$\biggl(\frac{\mu_{1}}{\mu_{2}} \biggr)^{-\frac{N-2s}{2s}}>\frac{m_{\lambda_{2}}}{m _{\lambda_{1}}} \quad { \textit{implies that}}\quad m_{\lambda _{1},\mu_{1}}>m_{\lambda_{2},\mu_{2}}, $$then (2) holds, where \(m_{\lambda_{i}}\) and \(m_{\lambda_{i}, \mu_{i}}\) see Lemma 2.1 and Remark 2.1 in the next section.
-
(1)
Theorem 1.2
Assume \(-\lambda _{1,s}(\Omega)<\min \{\lambda _{1},\lambda _{2}\}<0\) and \(N>4s\), then there exists a \(\gamma_{0}>0\) such that, for \(|\gamma |<\gamma _{0}\), system (3) has a positive higher energy solution \((\widehat{u}_{\gamma },\widehat{v}_{\gamma })\) with \(E_{\gamma }( \widehat{u}_{\gamma },\widehat{v}_{\gamma })>A_{\gamma }\).
Remark 1.1
Although the method in this paper to obtain the ground state solution is different from Z. Guo, S. Luo and W. Zou [11], we get similar result as Theorem 1.2 in [11].
Remark 1.2
In the proof of Theorem 1.1, we should point out that \(1<\alpha, \beta <2\) is an essential condition.
Remark 1.3
In the proof of Theorem 1.1, we need \(N>4s\), due to \(1<\alpha, \beta <2\) and \(2<\alpha +\beta =2^{\ast }<4\). For \(2s< N<4s\), the method in this paper does not work and it should be interesting to get a ground state solution.
Remark 1.4
It is easy to see that, for \(\gamma >0\) sufficiently small, the higher energy solutions in Theorem 1.2 are different from the ground state solutions in Theorem 1.1. That is system (3) has at least two positive solutions for \(\lambda_{1},\lambda_{2}<0\) and \(\gamma >0\) sufficiently small.
In order to prove Theorem 1.1, we use the classical mountain pass theorem, due to each equation in this system is critical exponent, so the embedding for \(\mathcal{D}_{s}(\Omega)\hookrightarrow L^{2^{ \ast }}(\Omega)\) is not compact embedding. Thus, we need estimate \(A_{\gamma }\) such that \(A_{\gamma }\) is strict less than \(\min \{ \mu^{-\frac{N-2s}{2s}}_{1}\frac{s}{N}S^{\frac{N}{2s}}_{s}, \mu^{-\frac{N-2s}{2s}}_{2}\frac{s}{N}S^{\frac{N}{2s}}_{s}\}\) (see Lemma 2.4). The main idea to prove Theorem 1.2 is to regard system (3) as a perturbation of system (24) by \(\frac{\alpha \gamma }{2^{\ast }}|u|^{\alpha -2}u|v|^{\beta }\) and \(\frac{\beta \gamma }{2^{\ast }}|u|^{\alpha }|v|^{\beta -2}v\), then use the topological degree and the pseudo-gradient vector field to show some lemmas that will be used to get another positive solution. The idea is originally from [29].
The paper is organized as follows. In Sect. 2, we introduce some preliminaries that will be used to prove theorems. In Sect. 3, we prove Theorem 1.1 and Theorem 1.2 will be proved in Sect. 4.
2 Some preliminaries
For the following fractional Brézis–Nirenberg problem:
we define
and
where
Lemma 2.1
(See [20])
When \(\mu_{i}=1\) and assume \(-\lambda_{1,s}(\Omega)<\min \{\lambda_{1},\lambda_{2}\}<0\) and \(N>4s\), then (5) has a non-trivial ground state solution such that
Remark 2.1
By Lemma 2.1, it is easy to see, when \(\mu_{i}=1\), if \(u_{\lambda_{i}}\) is a non-trivial ground state solution of (5), then \(u_{\lambda _{i},\mu _{i}}=\mu ^{-\frac{1}{2^{\ast }-2}}_{i}u_{\lambda _{i}}\) is a non-trivial ground state solution of (5) for \(0<\mu_{i} \neq 1\) and the energy of (5) satisfies
In order to prove Theorem 1.1, we give the following lemmas.
Lemma 2.2
Define \(\widehat{A_{\gamma }}:=\inf_{\sigma \in \Gamma } \max_{t\in [0,1]}E_{\gamma }(\sigma (t))\), then there exist a sequence \(\{(u_{n},v_{n})\}\subset \mathcal{D}_{s}(\Omega)\) such that
where
Proof
We first claim that \(E_{\gamma }\) possesses a mountain pass geometry around \((0,0)\);
-
(1)
there exist \(\alpha,\rho >0\), such that \(E_{\gamma }(u,v)>\alpha \) for all \(\Vert (u,v)\Vert _{\mathcal{D}_{s}(\Omega)}=\rho \);
-
(2)
there exist \((u_{0},v_{0})\in \mathcal{D}_{s}(\Omega)\) such that \(\Vert (u_{0},v_{0})\Vert _{\mathcal{D}_{s}(\Omega)}>\rho \) and \(E_{\gamma }(u _{0},v_{0})<0\).
Since \(\lambda_{1},\lambda_{2}>-\lambda_{1,s}(\Omega)\) and the Sobolev embedding theorem \(D_{s}(\Omega)\hookrightarrow L^{2}(\Omega)\), it is easy to see \(\Vert \cdot \Vert _{\lambda_{i}}\), \(i=1,2\), are equivalent to \(\Vert \cdot \Vert _{D_{s}(\Omega)}\), where \(\Vert u\Vert _{\lambda_{i}}= ( \Vert u\Vert ^{2} _{D_{s}(\Omega)}+\int_{\Omega }\lambda_{i}u^{2}\,dx ) ^{ \frac{1}{2}}\). On the one hand, by the Hölder inequality and the Young inequality, we have
Hence
Choose \(\rho >0\) sufficiently small, if \(\Vert (u,v)\Vert ^{2}_{\mathcal{D} _{s}(\Omega)}=\rho \), then
On the other hand, we can choose \(\varphi,\psi \in \mathcal{C}^{ \infty }_{0}(\Omega)\) with \(\varphi,\psi \not \equiv 0\) and \(\operatorname{suup}(\varphi)\cap \operatorname{suup}(\psi)=\emptyset \), then there exists \(t_{0}>0\) such that \(E_{\gamma }(t_{0}\varphi,t_{0}\psi)<0\) and \(\Vert (t_{0}\varphi,t_{0}\psi)\Vert ^{2}_{\mathcal{D}_{s}(\Omega)}>\rho \). Then we can take \((u_{0},v_{0})=(t_{0}\varphi,t_{0}\psi)\).
By the mountain pass theorem, for the constant \(0< \widehat{A_{\gamma }}:=\inf_{\sigma \in \Gamma }\max_{t\in [0,1]}E_{\gamma }(\sigma (t))\), there exists a \((PS)_{\widehat{A_{\gamma }}}\) sequence \(\{(u_{n},v_{n})\}\subset \mathcal{D}_{s}(\Omega)\), that is,
where
□
Lemma 2.3
\(\widehat{A_{\gamma }}=\inf_{\mathcal{D}_{s}(\Omega)\setminus {\{(0,0)\}}} \max_{t>0}E_{\gamma }(tu,tv)=A_{\gamma }\).
Proof
For any \((u,v)\in \mathcal{D}_{s}(\Omega)\) with \((u,v)\neq (0,0)\), there exists a unique \(t_{\gamma,u,v}>0\) such that
where \(t_{\gamma,u,v}>0\) satisfies
which implies that \((t_{\gamma,u,v}u,t_{\gamma,u,v}v)\in \mathbb{M}\). Combining this with \(\max_{t>0}E_{\gamma }(tu,tv)=E_{\gamma }(t _{\gamma,u,v}u, t_{\gamma,u,v}v)\), by the definition of \(A_{\gamma }\) and \(\widehat{A_{\gamma }}\), we can deduce that
□
Lemma 2.4
\(A_{\gamma }<\min \{m_{\lambda_{1},\mu_{1}}, m_{\lambda_{2}, \mu _{2}}\}<\min \{\mu^{-\frac{N-2s}{2s}}_{1}\frac{s}{N}S^{\frac{N}{2s}} _{s}, \mu^{-\frac{N-2s}{2s}}_{2}\frac{s}{N}S^{\frac{N}{2s}}_{s}\}\).
Proof
By Remark 2.1, we obtain \(\min \{m_{\lambda_{1},\mu_{1}}, m _{\lambda_{2},\mu_{2}}\}<\min \{\mu^{-\frac{N-2s}{2s}}_{1}\frac{s}{N}S ^{\frac{N}{2s}}_{s}, \mu^{-\frac{N-2s}{2s}}_{2}\frac{s}{N}S^{ \frac{N}{2s}}_{s}\}\).
Next we prove that \(A_{\gamma }< m_{\lambda_{1},\mu_{1}}\) and \(A_{\gamma }< m_{\lambda_{2},\mu_{2}}\).
Define a function \(H:\mathbb{R}^{2}\rightarrow \mathbb{R}\) by
where
Since \(H(1,0)=0\) and \(H_{t}(1,0)\neq 0\), by the implicit function theorem, there exist \(\delta >0\) and a function \(t(\tau)\in C^{1}(- \delta,\delta)\) such that
which implies that
Since \(1<\beta <2\), by direct calculation, we have
That is,
So
Consequently, we have
Thus
Hence \(A_{\gamma }< m_{\lambda_{1},\mu_{1}}\). Similarly, by the same arguments, we have \(A_{\gamma }< m_{\lambda_{2},\mu_{2}}\).
This completes the proof of Lemma 2.4. □
3 Proof of Theorem 1.1
In this section, we prove the first part of Theorem 1.1 by two steps. We prove the existence of ground state solutions for system (3) in step one, then we claim there exist a positive ground state solutions. Finally, we prove the second part of Theorem 1.1.
Proof
Proof of the first part of Theorem 1.1 .
Step one. Prove the existence of ground state solutions for system (3).
By (8) and Lemma 2.3, there exists \(\{(u_{n},v_{n})\}\subset \mathcal{D}_{s}(\Omega)\) such that
Next, we claim \(\{(u_{n},v_{n})\}\) is bounded in \(\mathcal{D}_{s}( \Omega)\).
Let \(z_{n}=\{(u_{n},v_{n})\}\), assuming by contradiction that \(\|z_{n}\|:=\|z_{n}\|_{\mathcal{D}_{s}(\Omega)}\rightarrow +\infty \) as \(n\rightarrow +\infty \). Put
Since \(\{z_{n}\}\) is a \((PS)_{A_{\gamma }}\) sequence for \(E_{\gamma }\) and \(\|z_{n}\|\rightarrow +\infty \) as \(n\rightarrow +\infty \), we have
Combining (10) with (11), we obtain
as \(n\rightarrow +\infty \), we have a contradiction. Consequently, \(\{(u_{n},v_{n})\}\) is bounded in \(\mathcal{D}_{s}( \Omega)\). Thus, by the Sobolev embedding theorem, there exist \((u,v)\in \mathcal{D}_{s}(\Omega)\) such that
Consequently, we have \(E'_{\gamma }(u,v)=0\). Set \(w_{n}=u_{n}-u\) and \(\sigma_{n}=v_{n}-v\). Then, by the Brézis–Lieb lemma [30],
By Lemma 2.1 in [31], we also have
We have
and \(E'_{\gamma }(u_{n},v_{n})\rightarrow 0\) as \(n\rightarrow +\infty \). Combining this with (13), (14) and (15), we obtain
and
Next, we prove that \((u_{n},v_{n})\rightarrow (u,v)\) strongly in \(\mathcal{D}_{s}(\Omega)\). Let
if \(l=0\), then we have proved \((u_{n},v_{n})\rightarrow (u,v)\) strongly in \(\mathcal{D}_{s}(\Omega)\), if \(l>0\) then
Case one \(l_{1}=0\) or \(l_{2}=0\).
If \(l_{2}=0\), then (16) turns to
By the Sobolev embedding \(D_{s}(\Omega)\hookrightarrow L^{2^{\ast }}( \Omega)\), we have \(\|w_{n}\|^{2}_{D_{s}(\Omega)}\geq S_{s} ( \int _{\Omega }|w_{n}|^{2^{\ast }}\,dx ) ^{\frac{2}{2^{\ast }}}\), hence \(\|w_{n}\|^{2}_{D_{s}(\Omega)}\geq \mu^{-\frac{2}{2^{\ast }}}_{1}S _{s} ( \int_{\Omega }\mu_{1}|w_{n}|^{2^{\ast }}\,dx ) ^{\frac{2}{2^{ \ast }}}\) combining this with (19), we can deduce that
Similarly, if \(l_{1}=0\), we have
Since \(E_{\gamma }(u,v)\geq 0\), let \(n\rightarrow +\infty \) in (18), we obtain
This contradicts Lemma 2.4. Thus \(E_{\gamma }(u,v)=A_{\gamma }\) and \(E'_{\gamma }(u,v)=0\). That is \((u,v)\) is a non-trivial solution of system (3).
Case two \(l_{1}\neq 0\), \(l_{2}\neq 0\) and \(l>0\), we prove system (3) has a ground state solution.
For case two, in order to obtain a ground state solution for (3), we borrow some ideas from [11]. First we give the following lemma.
Lemma 3.1
(A result in [11])
Define
Then
Let \(\{(u_{n},u_{n})\}\) be a minimizing sequence for \(S_{s,\lambda _{1},\lambda_{2}}\) normalized by
that is,
Since \(\{u_{n}\}\) and \(\{v_{n}\}\) are bounded in \(D_{s}(\Omega)\), (12) holds and
By (21), we have
By (12) and Lemma 3.1, we have
which implies that \((u,v)\not \equiv (0,0)\). By (15) and (21), we obtain
Combining (13), (14) with (20), we have
Since
and
we have
Combining (23), (22), Lemma 3.1 with \(\widetilde{S}_{s,\lambda_{1},\lambda_{2}}>0\), we have
which implies that
Therefore, \(\widetilde{S}_{s,\lambda_{1},\lambda_{2}}\) is attained by \((u,v)\). Thus, system (3) has a ground state solution.
Combining case one with case two, we prove that system (3) has a ground state solution.
Step two. We claim that there exists a positive ground state solution. Since
we have
Then, for the minimizing sequence \((u_{n},v_{n})\in \mathbb{M}\), we have
this implies that there exists \(t_{n}\in (0,1]\) such that \((t_{n}|u _{n}|,t_{n}|v_{n}|)\in \mathbb{M}\). Hence, we can choose a minimizing sequence \((\overline{u}_{n},\overline{v}_{n})=(t_{n}|u_{n}|,t_{n}|v _{n}|)\) and the weak limit \((\overline{u},\overline{v})\) is nonnegative. By the strong maximum principle for the fractional Laplacian (see Proposition 2.17 in [4]), we have u̅ and v̅ are both positive.
Proof of the second part of Theorem 1.1
Let \(\gamma_{n}\) be a sequence with \(\gamma_{n}\rightarrow 0\) as \(n\rightarrow +\infty\). \(\{(u_{\gamma _{n}},v_{\gamma _{n}})\}\) is bounded in \(D_{s}(\Omega)\times D_{s}(\Omega)\), then there exists a subsequence, still denoted by \(\{(u_{\gamma _{n}},v_{\gamma _{n}})\}\), such that \((u_{\gamma _{n}},v_{\gamma _{n}})\rightharpoonup (\overline{u},\overline{v})\) weakly in \(D_{s}(\Omega)\times D_{s}(\Omega)\). Then \((\overline{u},\overline{v})\) satisfies
Since \(E'_{0}(u_{\gamma_{n}},v_{\gamma_{n}})\rightarrow 0\) and \(\lim_{n\rightarrow +\infty }E_{0}(u_{\gamma_{n}},v_{\gamma _{n}})=\lim_{n\rightarrow +\infty }E_{\gamma_{n}}(u_{\gamma _{n}},v_{\gamma_{n}})\), we have
Next, we claim \(A_{\gamma }\) is strictly decreasing for all \(\gamma >0\).
Let \(\gamma_{2}>\gamma_{1}>0\), then, by (9), we have
Consequently,
Hence, \(A_{\gamma }\) is strictly decreasing for \(\gamma >0\). By Lemma 2.4 and the strictly decreasing for \(A_{\gamma }\), we have
By the same arguments as prove the first part of Theorem 1.1, we have
Combining this with (25), one of the following conclusions holds:
-
(1)
\((\overline{u},0)\) is a positive ground state solution of
$$\textstyle\begin{cases} (-\Delta)^{s}u+\lambda_{1} u=\mu_{1}|u|^{2^{\ast }-2}u & \text{in } \Omega; \\ u=0 & \text{on } \mathbb{R}^{N}\setminus \Omega. \end{cases} $$ -
(2)
\((0,\overline{v})\) is a positive ground state solution of
$$\textstyle\begin{cases} (-\Delta)^{s}v+\lambda_{2} v=\mu_{2}|v|^{2^{\ast }-2}v & \text{in } \Omega, \\ v=0 & \text{on } \mathbb{R}^{N}\setminus \Omega. \end{cases} $$
Since
and
by the definition of \(A_{\gamma }\), we know that (1) holds.
Similarly, if
then (2) occurs. This completes the proof of Theorem 1.1. □
4 Proof of Theorem 1.2
Define
where
for \(i=1,2\). Then we have following lemma.
Lemma 4.1
X is compact in \(\mathcal{D}_{s}(\Omega)\) and there exist constants \(C_{2}>C_{1}>0\) such that
Proof
By Remark 2.1, we know \(S_{i}\) is nonempty and \((u_{\lambda _{1},\mu_{1}},v_{\lambda_{2},\mu_{2}})\in X\). Next, we claim \(S_{i}\) is compact in \(\mathcal{D}_{s}(\Omega)\). Suppose there exists a sequence \(\{u_{n}\}\subset S_{1}\), then \(\{u_{n}\}\) is a bounded \((PS)_{m_{\lambda_{1},\mu _{1}}}\) sequence of \(J_{\lambda_{1},\mu_{1}}\) and
Thus, there exists a subsequence \(u_{\infty }\) such that \(u_{n}\rightharpoonup u_{\infty }\) in \(D_{s}(\Omega)\) and \(J'_{\lambda_{1},\mu_{1}}(u_{ \infty })=0\).
Since \(m_{\lambda_{1},\mu_{1}}\leq \mu^{-\frac{N-2s}{2s}}_{1} \frac{s}{N}S^{\frac{N}{2s}}_{s}\) and \(J_{\lambda_{1},\mu_{1}}\) satisfies the \((PS)_{m_{\lambda_{1},\mu_{1}}}\) condition, by the same arguments as proving step one in Theorem 1.1, we can obtain \(u_{n}\rightarrow u_{\infty }\) strongly in \(\mathcal{D}_{s}(\Omega)\) and \(u_{\infty } \in S_{1}\). This proves that \(S_{1}\) is compact in \(\mathcal{D}_{s}( \Omega)\). Similarly, \(S_{2}\) is compact in \(\mathcal{D}_{s}(\Omega)\).
Since \(X=S_{1}\times S_{2}\) and \(m_{\lambda_{1},\mu _{1}}>0\), \(m_{\lambda_{2},\mu_{2}}>0\), it is easy to see that X is compact and Lemma 4.1 holds. □
By Lemma 2.3 and Remark 2.1, we have
Thus, there exist \(0< t_{0}<1<t_{1}\), \(0< s_{0}<1<s_{1}\) such that
Define
and
Then, there exists a constant \(C_{0}>0\) such that
For convenience we denote \(Q=[0,t_{1}]\times [0,s_{1}]\). For \(\gamma \geq 0\) and \(C_{2}\) as appearing in Lemma 4.1, we define
where
Since \(\widetilde{\sigma }(t,s)\in \widehat{\Gamma }\), Γ̂ is nonempty.
Lemma 4.2
\(\lim_{\gamma \rightarrow 0}\widehat{c_{\gamma }}=\lim_{\gamma \rightarrow 0}d_{\gamma }=\widehat{c_{0}}=m_{\lambda _{1},\mu_{1}}+m_{\lambda_{2},\mu_{2}}\).
Proof
On the one hand, since \(\gamma >0\), we have \(E_{\gamma }( \widetilde{\sigma }(t,s))\leq E_{0}(\widetilde{\sigma }(t,s))\). Consequently
Since \(\widetilde{\sigma }\in \widehat{\Gamma }\), we obtain \(\widehat{c_{\gamma }}\leq d_{\gamma }\), thus
On the other hand, for any \(\sigma (t,s)=(\sigma_{1}(t,s),\sigma_{2}(t,s)) \in \widehat{\Gamma }\), we define \(\Upsilon (\sigma):[t_{0},t_{1}] \times [s_{0},s_{1}]\rightarrow \mathbb{R}^{2} \) by
where \(J_{5},J_{6}:D_{s}(\Omega)\rightarrow \mathbb{R}\) are defined by
and
By the Sobolev embedding theorem \(D_{s}(\Omega)\hookrightarrow L^{2^{ \ast }}(\Omega)\), for any \(u\in D_{s}(\Omega)\), we have
Consequently, we can deduce \(J_{5}\), \(J_{6}\) are continuous and
Since
and
Thus, \(\Upsilon (\widetilde{\sigma })(1,1)=(0,0)\). By direct calculation, we have
By (31), we know that, for any \((t,s)\in \partial ([t_{0},t _{1}]\times [s_{0},s_{1}])\), \(\Upsilon (\widetilde{\sigma })(t,s)= \Upsilon (\sigma)(t,s)\neq (0,0)\). Therefore
Then there exist \((t_{2},s_{2})\in [t_{0},t_{1}]\times [s_{0},s_{1}]\) such that \(\Upsilon (\sigma)(t_{2},s_{2})=(0,0)\), thus
This implies
By (7) and \(\sigma_{i}(t_{2},s_{2})\in \mathbb{M}_{i}\), we have
Therefore \(\widehat{c_{0}}\geq d_{0}\), combining this with (32), we obtain \(\widehat{c_{0}}= d_{0}\).
By the definition of \(\widehat{c}_{\gamma }\) and \(d_{\gamma }\), we have
Next, we prove \(\liminf_{\gamma \rightarrow 0}\widehat{c_{\gamma }}\geq d_{0}\). Assume by contradiction that \(\liminf_{\gamma \rightarrow 0}\widehat{c_{\gamma }}< d_{0}\). Then there exist \(\epsilon >0\), \(\gamma_{n}\rightarrow 0\) and \(\sigma_{n}=(\sigma_{n,1},\sigma_{n,2})\in \widehat{\Gamma }\) such that
By the definition of Γ̂ in (31), there exists \(n_{0}\) large enough such that
Thus, \(\max_{(t,s)\in Q}E_{0}(\sigma_{n}(t,s))\leq \max_{(t,s)\in Q}E_{\gamma_{n}}(\sigma_{n}(t,s))+\epsilon \leq d _{0}-\epsilon\), \(\forall n\geq n_{0}\). Since \(\widehat{c}_{0} \leq d_{0}\), this is a contradiction. Therefore \(\liminf_{\gamma \rightarrow 0}\widehat{c_{\gamma }}\geq d_{0}\). Combining this again with (32), we complete the proof. □
Define
Lemma 4.3
Let \(d>0\) be a fixed number and let \(\{(u_{n},v_{n})\}\subset X^{d}\) be a sequence. Then up to a subsequence, \((u_{n},v_{n})\rightharpoonup (u _{0},v_{0})\in X^{2d}\).
Proof
By Lemma 4.1 and the definition of \(X^{d}\), there exists a sequence \(\{(\overline{u}_{n},\overline{v}_{n})\}\subset X\) such that
By Lemma 4.1, we also know that there exist \((\overline{u}, \overline{v})\in X\) such that \((\overline{u}_{n},\overline{v}_{n}) \rightarrow (\overline{u},\overline{v})\) strongly in \(\mathcal{D}_{s}( \Omega)\). Consequently, when n is sufficiently large, we have
Thus, \(\{(u_{n},v_{n})\}\) is bounded and up to a subsequence, \((u_{n},v_{n})\rightharpoonup (u_{0},v_{0})\) in \(\mathcal{D}_{s}( \Omega)\). Since \(B_{2d}(\overline{u},\overline{v})\) is weakly closed in \(\mathcal{D}_{s}(\Omega)\), we get \((u_{0},v_{0})\in B_{2d}( \overline{u},\overline{v})\subset X^{2d}\). □
Lemma 4.4
Let \(d_{1}:=\frac{1}{2}(\frac{Nm_{\lambda_{1},\mu_{1}}}{s})^{ \frac{1}{2}}\) and \(d\in (0,d_{1})\). Suppose that there exist sequences \(\{\gamma _{j}\}\), with \(\gamma _{j}>0\) and \(\gamma _{j}\rightarrow 0\), and \(\{(u_{j},v_{j})\}\subset X^{d}\) satisfying
Then \((u_{j},v_{j})\) converges strongly to an element \((u,v)\in X\).
Proof
By the choice of \(d_{1}\) and Lemma 4.3 \((u_{j},v_{j})\rightharpoonup (u,v)\in X^{2d}\), we can deduce that \(u\not \equiv 0\) and \(v\not \equiv 0\). Since \(\{(u_{j},v_{j})\}\) is bounded and \(\lim_{j\rightarrow +\infty }E'_{\gamma_{j}}(u_{j},v_{j})=0\), for all \((\varphi,\psi)\in \mathcal{D}_{s}(\Omega)\),
where
Hence, \(E'_{0}(u,v)=0\). Since \((u_{j},v_{j})\in X^{d}\) for all j, we have
We have
So \(\{(u_{j},v_{j})\}\) is a \((PS)_{m}\) sequence of \(E_{0}\) with \(m:=\lim_{j\rightarrow +\infty }E_{0}(u_{j},v_{j})\). Thus, we have
Then, by Lemma 4.2, we have \(m\geq E_{0}(u,v)\geq \widehat{c} _{0}\). Combining this with (35), we get \(m=E_{0}(u,v)= \widehat{c}_{0}\). This implies \((u_{j},v_{j})\rightarrow (u,v)\) strongly in \(\mathcal{D}_{s}(\Omega)\) and \((u,v)\in X\). □
Lemma 4.5
Let \(d_{1}\) be as in Lemma 4.4. For a small \(\delta \in (0, {d_{1}})\), there exist constants \(0< \sigma <1\) and \(\gamma_{1} >0\) such that \(\|E'_{\gamma }(u,v)\|\geq \sigma \) for any \((u,v)\in E^{d_{\gamma }}_{\gamma }\cap (X^{\delta }\setminus X^{\frac{ \delta }{2}})\) and \(\gamma \in (0,\gamma_{1})\).
Proof
Assume by contradiction. Suppose there exist a number \(\delta_{0} \in (0,d_{1})\), a positive sequence \(\{\gamma_{j}\}\) with \(\lim_{j\rightarrow +\infty }\gamma_{j}=0\) and a sequence \(\{(u_{j},v_{j})\}\in E^{d_{\gamma_{j}}}_{\gamma_{j}}\cap (X^{\delta _{0}}\setminus X^{\frac{\delta_{0}}{2}})\) such that \(\lim_{j\rightarrow +\infty }E'_{\gamma_{j}}(u_{j},v_{j})=0\). Then, by Lemma 4.2, we have
and
Then, by Lemma 4.4, we know there exist \((u,v)\in X\) such that \((u_{j},v_{j})\rightarrow (u,v)\) strongly in \(\mathcal{D}_{s}(\Omega)\). Hence, \(\operatorname{dist}((u_{j},v_{j}),X)\rightarrow 0\) as \(j\rightarrow + \infty \). This contradicts \((u_{j},v_{j})\notin X^{ \frac{\delta_{0}}{2}}\). □
In the next part of this paper, we let \(0<\sigma <1\), \(\gamma_{1}>0\) and \(\delta \in (0,\frac{d_{1}}{2})\) such that the conclusions in Lemma 4.5 hold.
Lemma 4.6
There exist \(\gamma _{2}\in (0,\gamma _{1})\) and \(\varsigma >0\) such that, for any \(\gamma \in (0,\gamma _{2})\),
Proof
Suppose by contradiction that there exist \(\gamma_{n}\rightarrow 0\), \(\varsigma_{n}\rightarrow 0\) and \((t_{n},s_{n})\in Q\) such that
We assume \((t_{n},s_{n})\rightarrow (\overline{t},\overline{s})\in Q\). Since
we take the limit on both sides of (38), we have
By Lemma 4.2, we have
Combining this with (27) and (32), we can deduce that \((\overline{t},\overline{s})=(1,1)\). Hence,
However, \({\widetilde{\sigma }(1,1)}=(u_{\lambda_{1}, \mu_{1}},v_{\lambda_{2},\mu_{2}})\in X\), which contradicts (37). □
Next, we set
where δ, σ are given in Lemma 4.5, ς is from Lemma 4.6. By Lemma 4.2, we know that there exists \(\gamma_{0}\in (0,\gamma_{2}]\) such that
Lemma 4.7
For fixed \(\gamma \in (0,\gamma_{0})\), there exist \({\{(u_{n},v_{n})\}^{\infty }_{n=1}}\subset X^{\delta } \cap E^{d_{\gamma }}_{\gamma }\) such that
Proof
Assume by contradiction, for fixed \(\gamma \in (0,\gamma_{0})\), that there exists \(0< l(\gamma)<1\) such that
Then there exists a pseudo-gradient vector field \(T_{\gamma }\) in \(\mathcal{D}_{s}(\Omega)\) which is defined on a neighborhood \(Z_{\gamma }\) of \(X^{\delta }\cap E^{d_{\gamma }}_{\gamma }\) such that, for any \((u,v)\in Z_{\gamma }\),
Let \(\eta_{\gamma }\) be a Lipschitz continuous function on \(\mathcal{D}_{s}(\Omega)\) such that
Let \(\xi_{\gamma }\) be a Lipschitz continuous function on \(\mathbb{R}\) such that
Let
Then there exists a global solution \(\psi_{\gamma }:\mathcal{D}_{s}( \Omega)\times [0,+\infty)\rightarrow \mathcal{D}_{s}(\Omega)\) for the initial value problem
Then we can deduce that \(\psi_{\gamma }\) has the following properties:
-
(1)
\(\psi_{\gamma }(u,v,\theta)=(u,v)\) if \(\theta =0\) or \((u,v) \in \mathcal{D}_{s}(\Omega)\setminus Z_{\gamma }\) or \(\vert E_{\gamma }(u,v)-\widehat{c}_{\gamma } \vert \geq \varsigma\).
-
(2)
\(\Vert \frac{d}{d\theta }\psi_{\gamma }(u,v,\theta) \Vert \leq 2\).
-
(3)
\(\frac{d}{d\theta }E_{\gamma } (\psi_{\gamma }(u,v,\theta) )= \langle E'_{\gamma } (\psi_{\gamma }(u,v, \theta) ),e_{\gamma } ( \psi_{\gamma }(u,v,\theta) ) \rangle \leq 0\).
In order to prove Lemma 4.7, we use the above properties, Lemma 4.5 and Lemma 4.6, then divide two step to prove it.
Step one. We show that, for any \((t,s)\in Q\), there exists \(\theta_{t,s}\in [0,+\infty)\) such that \(\psi_{\gamma }( \widetilde{\sigma }(t,s), \theta_{t,s})\in E^{\widehat{c}_{\gamma }- \varsigma_{0}}_{\gamma }\), where \(\varsigma_{0}\) is seen in (39).
Suppose by contradiction that there exists \((t,s)\in Q\) such that
Since \(\varsigma_{0}<\varsigma \), by Lemma 4.6, we have \(\widetilde{\sigma }(t,s)\in X^{\frac{\delta }{2}}\). By (40), we get
By the property (3), we have
This implies \(\xi_{\gamma }(E_{\gamma }(\psi_{\gamma }( \widetilde{\sigma }(t,s), \theta)))\equiv 1\). If \(\psi_{\gamma }( \widetilde{\sigma }(t,s), \theta)\in X^{\delta }\) for all \(\theta \geq 0\), then
Consequently,
which is a contradiction. Thus, there exists \(\theta_{t,s}>0\) such that \(\psi_{\gamma }(\widetilde{\sigma }(t,s), \theta_{t,s})\notin X^{ \delta }\).
Since \(\widetilde{\sigma }(t,s)\in X^{\frac{\delta }{2}}\), there exist \(0<\theta^{1}_{t,s}<\theta^{2}_{t,s}\leq \theta_{t,s}\) such that
and
Then, by Lemma 4.5, we have \(\|E'_{\gamma }(\psi_{\gamma }( \widetilde{\sigma }(t,s), \theta))\|\geq \sigma \) for all \(\theta \in (\theta^{1}_{t,s},\theta^{2}_{t,s})\). Then, by the property (2), we have
thus, \(|\theta^{2}_{t,s}-\theta^{1}_{t,s}|\geq \frac{\delta }{4} \). Consequently,
which is a contradiction.
By step one we can define \(T(t,s):=\inf \{\theta \geq 0: E_{\gamma }( \psi_{\gamma }(\widetilde{\sigma }(t,s), \theta))\leq \widehat{c} _{\gamma }-\varsigma_{0}\}\) and let \(\sigma (t,s):=\psi_{\gamma }( \widetilde{\sigma }(t,s), T(t,s))\). Then \(E_{\gamma }(\sigma (t,s)) \leq \widehat{c}_{\gamma }-\varsigma_{0}\) for all \((t,s)\in Q\).
Step two. We claim \(\sigma (t,s)\in \widehat{\Gamma }\).
By (27)–(28) and (39), (40), for any \((t,s)\in Q\setminus (t_{0},t_{1})\times (s_{0},s_{1})\), we have
which implies that \(T(t,s)=0\) and so \(\sigma (t,s)= \widetilde{\sigma }(t,s)\).
By the definition of Γ̂ in (31), we need to prove that \({\|\sigma (t,s)\|_{\mathcal{D}_{s}(\Omega)}}\leq 2C _{2}+C_{0}\) for all \((t,s)\in Q\) and \(T(t,s)\) is continuous with respect to \((t,s)\).
For any \((t,s)\in Q\), if \(E_{\gamma }(\widetilde{\sigma }(t,s))\leq \widehat{c}_{\gamma }-\varsigma_{0}\), we have \(T(t,s)=0\) and so \(\sigma (t,s)= {\widetilde{\sigma }(t,s)}\). By (30), we have \(\|\sigma (t,s)\|_{\mathcal{D}_{s}(\Omega)}\leq C_{0}< 2C_{2}+C_{0}\).
If \(E_{\gamma }(\widetilde{\sigma }(t,s))>\widehat{c}_{\gamma }- \varsigma_{0}\), then, by Lemma 4.6, we have \(\widetilde{\sigma }(t,s)\in X^{\frac{\delta }{2}}\) and
This implies \(\xi_{\gamma }(E_{\gamma }(\psi_{\gamma }( \widetilde{\sigma }(t,s), \theta)))\equiv 1\) for \(\theta \in [0,T(t,s))\). If \(\psi_{\gamma }(\widetilde{\sigma }(t,s), T(t,s))\notin X^{\delta }\), then there exist \(0<\theta^{1}_{t,s}< \theta^{2}_{t,s}<T(t,s)\) as above. Then we can prove that
which contradicts the definition of \(T(t,s)\). Therefore,
Then there exist \((u,v)\in X\) such that \(\|\sigma (t,s)-(u,v)\|_{ \mathcal{D}_{s}(\Omega)}\leq \delta \leq {\frac{C_{0}}{2}}\). By Lemma 4.1, we have
In order to prove the continuity of \(T(t,s)\), we fix any \(( \widetilde{t},\widetilde{s})\in Q \). First, we assume that \(E_{\gamma }(\sigma (\widetilde{t},\widetilde{s}))<\widehat{c}_{\gamma }- \varsigma_{0}\). Then, by the definition of \(T(t,s)\), we have \(T(\widetilde{t},\widetilde{s})=0\), that is,
By the continuity of σ̃, there exists \(\tau >0\) such that, for any \((t,s)\in (\widetilde{t}-\tau,\widetilde{t}+\tau) \times (\widetilde{s}-\tau,\widetilde{s}+\tau)\cap Q \), we have \(E_{\gamma }(\widetilde{\sigma }(t,s))<\widehat{c}_{ \gamma }-\varsigma _{0}\), that is, \(T(t,s)=0\) and T is continuous at \((\widetilde{t},\widetilde{s})\). Now, we assume that \(E_{\gamma }( \sigma (\widetilde{t},\widetilde{s}))=\widehat{c}_{\gamma }-\varsigma _{0}\). Then from the previous proof we have
and so
Then, for any \(\omega >0\), we have
By the continuity of \(\psi_{\gamma }\), there exists \(\tau >0\) such that, for any \((t,s)\in (\widetilde{t}-\tau,\widetilde{t}+\tau)\times ( \widetilde{s}-\tau,\widetilde{s}+\tau)\cap Q \), we have \(E_{\gamma }(\psi_{\gamma }(\widetilde{\sigma }(t,s)),T(\widetilde{t}, \widetilde{s})+\omega))<\widehat{c}_{\gamma }-\varsigma_{0}\), so \(T(t,s)\leq T(\widetilde{t},\widetilde{s})+\omega \). It follows that
If \(T(\widetilde{t},\widetilde{s})=0\), we have
If \(T(\widetilde{t},\widetilde{s})>0\), then, for any \(0<\omega <T( \widetilde{t},\widetilde{s})\), by the same arguments, we have
By the continuity of \(\psi_{\gamma }\) again, we have
So T is continuous at \((\widetilde{t},\widetilde{s})\). This completes the proof of step two.
Now, we have proved that \(\sigma (t,s)\in \widehat{\Gamma }\) and \(\max_{(t,s)\in Q}E_{\gamma }(\sigma (t,s))\leq \widehat{c}_{\gamma }-\varsigma_{0}\), which contradicts the definition of \(\widehat{c} _{\gamma }\). This completes the proof. □
Proof of Theorem 1.2
Let us fix \(d_{1}:=\frac{1}{2}(\frac{Nm_{\lambda_{1},\mu_{1}}}{s})^{ \frac{1}{2}}\). By Lemma 4.7, there exists some \(\gamma_{0}>0\) such that, for any fixed \(\gamma \in (0,\gamma_{0})\), a Palais–Smale sequence \(\{(u^{\gamma }_{n},v^{\gamma }_{n})\}\) with \((u^{\gamma } _{n},v^{\gamma }_{n})\in X^{\delta }\) exists. Since X is compact, we can deduce that \(\{(u^{\gamma }_{n},v^{\gamma }_{n})\}\) is bounded in \(\mathcal{D}_{s}(\Omega)\). By Lemma 4.3, there exist \((u_{\gamma },v_{\gamma })\in X^{d}\) such that \((u^{\gamma }_{n},v ^{\gamma }_{n})\rightharpoonup (u_{\gamma },v_{\gamma })\) weakly in \(\mathcal{D}_{s}(\Omega)\). Therefore, \(E'_{\gamma }(u_{\gamma },v _{\gamma })=0\). By the choice of d, we have \(u_{\gamma }\neq 0\) and \(v_{\gamma }\neq 0\). Hence, \((u_{\gamma },v_{\gamma })\) is the desired solution to (3). □
References
Alberti, G., Bouchitté, G., Seppecher, P.: Phase transition with the line-tension effect. Arch. Ration. Mech. Anal. 144(1), 1–46 (1998)
Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2011)
Abdallah, B.N., Mellet, A., Puel, M.: Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach. Arch. Ration. Mech. Anal. 199(2), 493–525 (2011)
Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)
Barrios, B., Colorado, E., Pablo, A.D., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252(11), 6133–6162 (2012)
Colorado, E., Pablo, A.D., Sánchez, U.: Perturbations of a critical fractional equation. Pac. J. Math. 271(1), 65–85 (2014)
Joáo, M.d.O., Ferraz, D.: Concentration-compactness principle for nonlocal scalar field equations with critical growth. J. Math. Anal. Appl. 449(2), 1189–1228 (2016)
Caffarelli, L.A., Roquejoffre, J.M., Sire, Y.: Variational problems with free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12(5), 1151–1179 (2010)
Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31(1), 23–53 (2014)
Shang, X., Zhang, J., Yang, Y.: Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Commun. Pure Appl. Anal. 13(2), 567–584 (2014)
Guo, Z., Luo, S., Zou, W.: On critical systems involving fractional Laplacian. J. Math. Anal. Appl. 446(1), 681–706 (2016)
Alves, C.O., de Morais Filho, D.C., Souto, M.A.S.: On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Anal., Theory Methods Appl. 42(5), 771–787 (2000)
Chen, Z., Zou, W.: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. Partial Differ. Equ. 48(3–4), 695–711 (2013)
Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205(2), 515–551 (2012)
Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case. Calc. Var. Partial Differ. Equ. 52(1–2), 423–467 (2015)
Cheng, X., Ma, S.: Existence of three nontrivial solutions for elliptic systems with critical exponents and weights. Nonlinear Anal., Theory Methods Appl. 69(10), 3537–3548 (2008)
Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012)
Barrios, B., Colorado, E., Servadei, R., Soria, F.: A critical fractional equation with concave-convex power nonlinearities. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 32(4), 875–900 (2015)
Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)
Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)
Servadei, R., Valdinoci, E.: A Brezis–Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 12(6), 2445–2464 (2017)
Li, Q., Yang, Z.: Multiple positive solutions for a fractional Laplacian system with critical nonlinearities. Bull. Malays. Math. Soc. 2, 1–27 (2016)
He, X., Squassina, M., Zou, W.: The Nehari manifold for fractional systems involving critical nonlinearities. Commun. Pure Appl. Anal. 15(4), 1285–1308 (2015)
Desouza, M., Araújo, Y.L.: Semilinear elliptic equations for the fractional Laplacian involving critical exponential growth. Math. Methods Appl. Sci. 40(5), 1757–1772 (2017)
Guo, Y.: Nonexistence and symmetry of solutions to some fractional Laplacian equations in the upper half space. Acta Math. Sci. 37(3), 836–851 (2017)
Hua, Y., Yu, X.: On the ground state solution for a critical fractional Laplacian equation. Nonlinear Anal., Theory Methods Appl. 87(87), 116–125 (2013)
Zhen, M., He, J., Xu, H.: Critical system involving fractional Laplacian. Commun. Pure Appl. Math. (2018)
Cotsiolis, A., Tavoularis, N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295(1), 225–236 (2004). https://doi.org/10.1016/j.jmaa.2004.03.034
Chen, Z., Zou, W.: On linearly coupled Schrödinger systems. Proc. Am. Math. Soc. 142(1), 323–333 (2014)
Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)
Pigong, H.: The effect of the domain topology on the number of positive solutions of an elliptic system involving critical Sobolev exponents. Houst. J. Math. 32(4), 1241–1257 (2006)
Acknowledgements
The authors are grateful to reviewers for their constructive comments and suggestions, which have greatly improved this paper.
Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
Funding
This work is supported by the NSFC grant 11571125.
Author information
Authors and Affiliations
Contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Consent for publication
We have read and approved the final version of the manuscript.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Zhen, M., He, J., Xu, H. et al. Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent. Bound Value Probl 2018, 96 (2018). https://doi.org/10.1186/s13661-018-1016-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-018-1016-9
MSC
- 35J50
- 35B33
- 35R11
Keywords
- Fractional Laplacian
- Critical exponent
- Ground state solution
- Higher energy solution