# Two positive solutions for quasilinear elliptic equations with singularity and critical exponents

## Abstract

In this paper, we consider the quasilinear elliptic equation with singularity and critical exponents

$$\textstyle\begin{cases} -\Delta_{p}u-\mu \frac{ \vert u \vert ^{p-2}u}{ \vert x \vert ^{p}}=Q(x) \frac{ \vert u \vert ^{p^{*}(t)-2}u}{ \vert x \vert ^{t}}+\lambda u^{-s}, &\text{in }\Omega , \\ u>0, & \text{in }\Omega , \\ u=0, &\text{on }\partial \Omega , \end{cases}$$

where $$\Delta_{p}= \operatorname {div}(|\nabla u|^{p-2}\nabla u)$$ is a p-Laplace operator with $$1< p< N$$. $$p^{*}(t):=\frac{p(N-t)}{N-p}$$ is a critical Sobolev–Hardy exponent. We deal with the existence of multiple solutions for the above problem by means of variational and perturbation methods.

## 1 Introduction and preliminaries

The main goal of this paper is to consider the following singular boundary value problem:

$$\textstyle\begin{cases} -\Delta_{p}u-\mu \frac{ \vert u \vert ^{p-2}u}{ \vert x \vert ^{p}}=Q(x) \frac{ \vert u \vert ^{p^{*}(t)-2}u}{ \vert x \vert ^{t}}+\lambda u^{-s}, &\text{in }\Omega , \\ u>0, & \text{in } \Omega , \\ u=0, & \text{on } \partial \Omega , \end{cases}$$
(1.1)

where Ω is a bounded domain in $$\mathbb{R}^{N}$$, $$\Delta_{p}= \operatorname {div}( \vert \nabla u \vert ^{p-2}\nabla u)$$ is a p-Laplace operator with $$1< p< N$$. $$\lambda >0$$, $$0< s<1$$, $$0\leq t< p$$, and $$0\leq \mu <\bar{ \mu }:=(\frac{N-p}{p})^{p}$$. $$p^{*}(t):=\frac{p(N-t)}{N-p}$$ is a critical Sobolev–Hardy exponent, $$Q(x)\in C(\overline{\Omega })$$ and $$Q(x)$$ is positive on Ω̅.

In recent years, the elliptic boundary value problems with critical exponents and singular potentials have been extensively studied [2, 6, 7, 1023, 25, 26, 28, 3034]. In , Han considered the following quasilinear elliptic problem with Hardy term and critical exponent:

$$\textstyle\begin{cases} -\Delta_{p}u-\mu \frac{ \vert u \vert ^{p-2}u}{ \vert x \vert ^{p}}=Q(x) \vert u \vert ^{p^{*} -2}u+ \lambda \vert u \vert ^{p-2}u, & \text{in }\Omega , \\ u=0, & \text{on } \partial \Omega , \end{cases}$$
(1.2)

where $$1< p< N$$. The existence of multiple positive solutions for (1.2) was established. Furthermore, Hsu  studied the following quasilinear equation:

$$\textstyle\begin{cases} -\Delta_{p}u-\mu \frac{ \vert u \vert ^{p-2}u}{ \vert x \vert ^{p}}=Q(x) \vert u \vert ^{p^{*} -2}u+ \lambda f(x) \vert u \vert ^{q-2}u, & \text{in }\Omega , \\ u=0, & \text{on } \partial \Omega , \end{cases}$$
(1.3)

where $$1< q< p< N$$. We should point out that the authors of [19, 21] both investigated the effect of $$Q(x)$$. If $$p=2$$, $$\mu =0$$, and $$t=0$$, Liao et al.  proved the existence of two solutions for problem (1.1) by the constrained minimizer and perturbation methods.

Compared with [2, 4, 8, 12, 19, 21, 22, 29], problem (1.1) contains the singular term $$\lambda u^{-s}$$. Thus, the functional corresponding to (1.1) is not differentiable on $$W_{0}^{1,p}(\Omega )$$. We will remove the singularity by the perturbation method. Our idea comes from [24, 27].

### Definition 1.1

A function $$u\in W_{0}^{1,p}(\Omega )$$ is a weak solution of problem (1.1) if, for every $$\varphi \in W_{0}^{1,p} ( \Omega )$$, there holds

$$\int_{\Omega } \biggl( \vert \nabla u \vert ^{p-2} \nabla u \nabla \varphi -\mu \frac{ \vert u \vert ^{p-2}u \varphi }{ \vert x \vert ^{p}} \biggr) \,dx = \int_{\Omega } \biggl( \frac{Q(x)(u^{+})^{p^{*}(t)-1}\varphi }{ \vert x \vert ^{t}} + \lambda \bigl(u^{+} \bigr)^{-s} \varphi \biggr) \,dx.$$

The energy functional corresponding to (1.1) is defined by

$$I_{\lambda ,\mu }(u)=\frac{1}{p} \int_{\Omega } \biggl( \vert \nabla u \vert ^{p}- \mu \frac{ \vert u \vert ^{p}}{ \vert x \vert ^{p}} \biggr) \,dx-\frac{1}{p^{*}(t)} \int_{\Omega }Q(x)\frac{(u^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx -\frac{\lambda }{1-s} \int_{\Omega } \bigl(u^{+} \bigr)^{1-s}\,dx.$$

Throughout this paper, Q satisfies

$$(Q_{1})$$ :

$$Q(0)=Q_{M}=\max_{x\in \overline{\Omega }}Q(x)$$ and there exists $$\beta \geq p(b(\mu )-\frac{N-p}{p})$$ such that

$$Q(x)-Q(0)=o \bigl( \vert x \vert ^{\beta } \bigr), \quad \text{as } x \rightarrow 0,$$

where $$b(\mu )$$ is given in Sect. 1.

In this paper, we use the following notations:

1. (i)

$$\Vert u \Vert ^{p}= \int_{\Omega } ( \vert \nabla u \vert ^{p}-\mu \frac{ \vert u \vert ^{p}}{ \vert x \vert ^{p}} ) \,dx$$ is the norm in $$W_{0}^{1,p}(\Omega )$$, and the norm in $$L^{p}(\Omega )$$ is denoted by $$\vert \cdot \vert _{p}$$;

2. (ii)

$$C,C_{1},C_{2},C_{3},\ldots$$ denote various positive constants;

3. (iii)

$$u^{+}_{n} (x)=\max \{u_{n},0\}$$, $$u^{-}_{n} (x)=\max \{0,-u _{n}\}$$;

4. (iv)

We define

$$\partial B_{r}= \bigl\{ u \in W_{0}^{1,p}(\Omega ): \Vert u \Vert =r \bigr\} , \quad\quad B_{r}= \bigl\{ u \in W_{0}^{1,p}(\Omega ): \Vert u \Vert \leq r \bigr\} .$$

Let S be the best Sobolev–Hardy constant

$$S:=\inf_{u\in W^{1,p}_{0}(\Omega )\backslash \{0\}}\frac{ \int_{\Omega }( \vert \nabla u \vert ^{p}-\mu \frac{ \vert u \vert ^{p}}{ \vert x \vert ^{p}})\,dx}{ ( \int_{\Omega }\frac{ \vert u \vert ^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx ) ^{\frac{p}{p^{*}(t)}}}.$$
(1.4)

Our main result is the following theorem.

### Theorem 1.1

Suppose that $$(Q_{1})$$ is satisfied. Then there exists $$\Lambda >0$$ such that, for every $$\lambda \in (0,\Lambda )$$, problem (1.1) has at least two positive solutions.

The following well-known Brézis–Lieb lemma and maximum principle will play fundamental roles in the proof of our main result.

### Proposition 1.1

()

Suppose that $${u_{n}}$$ is a bounded sequence in $$L^{p}(\Omega )$$ ($$1\leq p<\infty$$), and $$u_{n}(x)\rightarrow u(x)$$ a.e. $$x \in \Omega$$, where $$\Omega \subset \mathbb{R}^{N}$$ is an open set. Then

$$\lim_{n\rightarrow \infty } \biggl( \int_{\Omega } \vert u_{n} \vert ^{p}\,dx- \int_{\Omega } \vert u_{n}-u \vert ^{p}\,dx \biggr) = \int_{\Omega } \vert u \vert ^{p}\,dx.$$

### Proposition 1.2

()

Assume that $$\Omega \subset \mathbb{R} ^{N}$$ is a bounded domain with smooth boundary, $$0\in \Omega$$, $$u\in C^{1} (\Omega \backslash \{0\})$$, $$u\geq 0$$, $$u\not \equiv 0$$, and

$$-\Delta_{p} u\geq 0 \quad \textit{in } \Omega .$$

Then $$u>0$$ in Ω.

By [22, 23], we assume that $$1< p< N$$, $$0\leq t< p$$, and $$0\leq \mu <\overline{ \mu }$$. Then the limiting problem

$$\textstyle\begin{cases} -\Delta_{p}u-\mu \frac{u^{p-1}}{ \vert x \vert ^{p}}= \frac{u^{p^{*}(t)-1}}{ \vert x \vert ^{t}}, \quad \text{in } \mathbb{R}^{N}\backslash \{0\}, \\ u>0,\quad \text{in } \mathbb{R}^{N}\backslash \{0\},\quad\quad u\in D^{1,p}(\mathbb{R}^{N}) \end{cases}$$

$$V_{\epsilon }(x)=\epsilon^{\frac{p-N}{p}}U_{p,\mu }\biggl( \frac{x}{\epsilon }\biggr)=\epsilon^{\frac{p-N}{p}}U_{p,\mu }\biggl( \frac{ \vert x \vert }{\epsilon }\biggr) \quad \forall \epsilon >0$$

that satisfy

$$\int_{\Omega } \biggl( \bigl\vert \nabla V_{\epsilon }(x) \bigr\vert ^{p}-\mu \frac{ \vert V_{ \epsilon }(x) \vert ^{p}}{ \vert x \vert ^{p}} \biggr) \,dx = \int_{\Omega } \biggl( \frac{ \vert V_{\epsilon }(x) \vert ^{p^{*}(t)}}{ \vert x \vert ^{t}} \biggr) \,dx=S ^{\frac{N-t}{p-t}},$$

where the function $$U_{p,\mu }(x)=U_{p,\mu }( \vert x \vert )$$ is the unique radial solution of the above limiting problem with

$$U_{p,\mu }(1)= \biggl( \frac{(N-t)(\overline{\mu }-\mu )}{N-p} \biggr) ^{\frac{1}{p^{*}(t)-p}},$$

and

\begin{aligned}& \lim_{r\rightarrow 0^{+}} r^{a(\mu )}U_{p,\mu }(r)=c_{1} >0, \quad\quad \lim_{r\rightarrow 0^{+}} r^{a(\mu )+1} \bigl\vert U'_{p,\mu }(r) \bigr\vert =c _{1} a(\mu )\geq 0, \\& \lim_{r\rightarrow +\infty } r^{b(\mu )}U_{p,\mu }(r)=c_{2} >0, \quad\quad \lim_{r\rightarrow +\infty } r^{b(\mu )+1} \bigl\vert U'_{p,\mu }(r) \bigr\vert =c _{2} b(\mu )\geq 0, \\& c_{3} \leq U_{p,\mu }(r) \bigl( r^{\frac{a(\mu )}{\nu }}+r^{\frac{b( \mu )}{\nu }} \bigr) ^{\nu }\leq c_{4}, \quad \quad \nu :=\frac{N-p}{p}, \end{aligned}

where $$c_{i}$$ ($$i=1, 2, 3, 4$$) are positive constants depending on N, μ, and p, and $$a(\mu )$$ and $$b(\mu )$$ are the zeros of the function

$$h(t)=(p-1)t^{p} -(N-p)t^{p-1}+\mu ,\quad t\geq 0,$$

satisfying $$0\leq a(\mu )<\nu <b(\mu )\leq \frac{N-p}{p-1}$$.

Take $$\rho >0$$ small enough such that $$B(0,\rho )\subset \Omega$$, and define the function

$$u_{\epsilon }(x)=\eta (x)V_{\epsilon }(x)=\epsilon^{\frac{p-N}{p}} \eta (x)U_{p,\mu } \biggl(\frac{ \vert x \vert }{\epsilon } \biggr),$$

where $$\eta \in C_{0}^{\infty }(\Omega )$$ is a cutoff function

$$\eta (x)= \textstyle\begin{cases} 1, & \vert x \vert \leq \frac{\rho }{2}, \\ 0, & \vert x \vert >\rho . \end{cases}$$

The following estimates hold when $$\epsilon \longrightarrow 0$$:

\begin{aligned}& \Vert u_{\epsilon } \Vert ^{p} =S^{\frac{N-t}{p-t}}+O \bigl( \epsilon^{b(\mu )p+p-N} \bigr), \\& \int_{\Omega }\frac{ \vert u_{\epsilon } \vert ^{p^{*} (t)}}{ \vert x \vert ^{t}}\,dx=S^{ \frac{N-t}{p-t}}+O \bigl( \epsilon^{b(\mu )p^{*} (t)-N+t} \bigr). \end{aligned}

## 2 Existence of the first solution of problem (1.1)

In this section, we will get the first solution which is a local minimizer in $$W_{0}^{1,p} (\Omega )$$ for (1.1).

### Lemma 2.1

There exist $$\lambda_{0}>0$$, $$R, \rho >0$$ such that, for every $$\lambda \in (0,\lambda_{0})$$, we have

$$I_{\lambda ,\mu }(u)| _{u\in \partial B_{R}}\geq \rho ,\quad\quad \inf _{u\in B_{R}}I_{\lambda ,\mu }(u)< 0.$$

### Proof

We can deduce from Hölder’s inequality that

\begin{aligned} I_{\lambda , \mu }(u)&\geq \frac{1}{p} \Vert u \Vert ^{p} -\frac{1}{p^{*} (t)}Q _{M} S^{-\frac{p^{*} (t)}{p}} \Vert u \Vert ^{p^{*} (t)}-\frac{\lambda }{1-s}C _{0} \Vert u \Vert ^{1-s} \\ &= \Vert u \Vert ^{1-s} \biggl( \frac{1}{p} \Vert u \Vert ^{-1+s+p}-\frac{1}{p^{*} (t)}Q_{M} S^{-\frac{p^{*} (t)}{p}} \Vert u \Vert ^{-1+s+p^{*} (t)}-\frac{\lambda }{1-s}C _{0} \biggr) , \end{aligned}

where $$C_{0}$$ is a positive constant. Put $$f(x)=\frac{1}{p}x^{-1+s+p}-\frac{1}{p ^{*} (t)}Q_{M} S^{-\frac{p^{*} (t)}{p}}x^{-1+s+p^{*} (t)}$$, we find that there is a constant $$R= [ \frac{p^{*} (t)S^{\frac{p^{*} (t)}{p}}(-1+s+p)}{pQ _{M} (-1+s+p^{*} (t))} ] ^{\frac{1}{p^{*} (t)-p}}>0$$ such that $$f(R)=\max_{x>0}f(x)>0$$. Letting $$\lambda_{0} =\frac{(1-s)f(R)}{C _{0}}$$, we have that there is a constant $$\rho >0$$ such that $$I_{\lambda ,\mu }(u)| _{u\in \partial B_{R}}\geq \rho$$ for every $$\lambda \in (0, \lambda_{0})$$.

For given R, choosing $$u\in B_{R}$$ with $$u^{+}\neq 0$$, we have

\begin{aligned} \lim_{r\rightarrow 0}\frac{I_{\lambda ,\mu }(ru)}{r^{1-s}}&= \lim _{r\rightarrow 0}\frac{\frac{1}{p}r^{p} \Vert u \Vert ^{p}-\frac{\lambda r ^{1-s}}{1-s} \int_{\Omega }(u^{+})^{1-s} \,dx -\frac{r^{p^{*}(t)}}{p^{*}(t)} \int_{\Omega }Q(x)\frac{(u^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx}{r^{1-s}} \\ &=-\frac{\lambda }{1-s} \int_{\Omega } \bigl(u^{+} \bigr)^{1-s} \,dx< 0, \end{aligned}

since $$p^{*} (t)>p>1>s>0$$ for $$0\leq t< p$$. For all $$u^{+}\neq 0$$ such that $$I_{\lambda ,\mu }(ru)<0$$ as $$r\rightarrow 0$$, that is, $$\Vert u \Vert$$ sufficiently small, we have

$$\Gamma =\inf_{u\in B_{R}}I_{\lambda ,\mu }(u)< 0.$$
(2.1)

The proof of Lemma 2.1 is completed. □

### Theorem 2.2

Problem (1.1) has a positive solution $$u_{1}\in W^{1.p}_{0}(\Omega )$$ with $$I_{\lambda ,\mu }(u_{1})<0$$ for $$\lambda \in (0,\lambda_{0})$$, where $$\lambda_{0}$$ is defined in Lemma 2.1.

### Proof

By Lemma 2.1, we have

\begin{aligned} & \frac{1}{p} \Vert u \Vert ^{p} - \frac{1}{p^{*}(t)} \int_{\Omega }Q(x)\frac{(u^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx\geq \rho , \quad \forall u \in \partial B_{R}, \\ &\frac{1}{p} \Vert u \Vert ^{p}-\frac{1}{p^{*}(t)} \int_{\Omega }Q(x)\frac{(u^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx\geq 0, \quad \forall u \in B_{R}. \end{aligned}
(2.2)

From (2.1) we guarantee that there exists a minimizing sequence $$\{u_{n}\}\subset B_{R}$$ such that $$\lim_{n\rightarrow \infty }I _{\lambda ,\mu }(u_{n})=\Gamma <0$$. Obviously, the minimizing sequence is a closed convex set in $$B_{R}$$. Going if necessary to a sequence still called $$\{u_{n}\}$$, there exists $$u_{1}\in W_{0}^{1,p}(\Omega )$$ such that

$$\textstyle\begin{cases} u_{n}\rightharpoonup u_{1}, & \text{in } W_{0}^{1.p}(\Omega ), \\ u_{n}\longrightarrow u_{1}, & \text{in } L^{p'}(\Omega , \vert x \vert ^{-t}), \\ u_{n}(x)\longrightarrow u_{1}(x), & \text{a.e. in } \Omega , \end{cases}\displaystyle \quad 1\leq p'< p^{*}(t),$$
(2.3)

and

$$\textstyle\begin{cases} \nabla u_{n}(x) \longrightarrow \nabla u_{1} (x), & \text{a.e. in } \Omega , \\ \frac{ \vert u_{n} \vert ^{p-2}u_{n}}{ \vert x \vert ^{p-1}}\rightharpoonup \frac{ \vert u_{1} \vert ^{p-2}u _{1}}{ \vert x \vert ^{p-1}}, & \text{in } L^{\frac{p}{p-1}}(\Omega ), \\ \int_{\Omega }\frac{ \vert u_{n} \vert ^{p^{*} (t)-2}u_{n}}{ \vert x \vert ^{t}}v \,dx \longrightarrow \int_{\Omega }\frac{ \vert u_{1} \vert ^{p^{*} (t)-2}u_{1}}{ \vert x \vert ^{t}}v \,dx, &\forall v\in W_{0}^{1,p}(\Omega ). \end{cases}$$

For $$s\in (0,1)$$, applying Hölder’s inequality, we obtain that

\begin{aligned} \int_{\Omega } \bigl(u^{+}_{n} \bigr)^{1-s}\,dx- \int_{\Omega } \bigl(u^{+}_{1} \bigr)^{1-s}\,dx &\leq \int_{\Omega } \bigl\vert \bigl(u^{+}_{n} \bigr)^{1-s}- \bigl(u^{+}_{1} \bigr)^{1-s} \bigr\vert \,dx \\ &\leq \int_{\Omega } \bigl\vert u_{n}^{+}-u_{1}^{+} \bigr\vert ^{1-s}\,dx \\ &\leq \bigl\vert u^{+}_{n}-u^{+}_{1} \bigr\vert _{p}^{1-s} \vert \Omega \vert ^{\frac{1+s}{p}}, \end{aligned}

thus,

$$\int_{\Omega } \bigl(u^{+}_{n} \bigr)^{1-s}\,dx= \int_{\Omega } \bigl(u^{+}_{1} \bigr)^{1-s}\,dx+o(1).$$
(2.4)

Let $$\omega_{n}=u_{n}-u_{1}$$, by the Brézis–Lieb lemma, one has

\begin{aligned}& \int_{\Omega } \vert \nabla u_{n} \vert ^{p}\,dx= \int_{\Omega } \vert \nabla \omega_{n} \vert ^{p}\,dx+ \int_{\Omega } \vert \nabla u_{1} \vert ^{p}\,dx+o(1), \end{aligned}
(2.5)
\begin{aligned}& \int_{\Omega }Q(x) \frac{(u^{+}_{n})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx= \int_{\Omega }Q(x)\frac{(\omega^{+}_{n})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx+ \int_{\Omega }Q(x) \frac{(u^{+}_{1})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx+o(1). \end{aligned}
(2.6)

Noting that $$\Vert u_{1} \Vert ^{p} = \vert \nabla u_{1} \vert _{p}^{p} -\mu \vert u_{1} /x \vert _{p} ^{p}$$, we have that

$$\lim_{n\rightarrow \infty } \bigl( \Vert u_{n} \Vert ^{p} - \Vert \omega_{n} \Vert ^{p} \bigr)= \Vert u_{1} \Vert ^{p}.$$

If $$u_{1}=0$$, then $$\omega_{n}=u_{n}$$, it follows that $$\omega_{n} \in B_{R}$$. If $$u_{1}\neq 0$$, from (2.2), we derive that

$$\frac{1}{p} \Vert \omega_{n} \Vert ^{p}- \frac{1}{p*(t)} \int_{\Omega }Q(x)\frac{(\omega^{+}_{n})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx\geq 0.$$
(2.7)

By (2.3)–(2.7), we have

\begin{aligned} \Gamma &=I_{\lambda ,\mu }(u_{n})+o(1) \\ &=\frac{1}{p} \Vert u_{n} \Vert ^{p}- \frac{1}{p^{*}(t)} \int_{\Omega }Q(x)\frac{(u_{n}^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx -\frac{ \lambda }{1-s} \int_{\Omega } \bigl(u_{n}^{+} \bigr)^{1-s}\,dx+o(1) \\ &=I_{\lambda ,\mu }(u_{1})+\frac{1}{p} \Vert \omega_{n} \Vert ^{p}-\frac{1}{p ^{*}(t)} \int_{\Omega }Q(x)\frac{(\omega_{n}^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx -\frac{ \lambda }{1-s} \int_{\Omega } \bigl(\omega_{n}^{+} \bigr)^{1-s}\,dx+o(1) \\ &\geq I_{\lambda ,\mu }(u_{1})+o(1). \end{aligned}

Consequently, $$\Gamma \geq I_{\lambda ,\mu }(u_{1})$$ as $$n\rightarrow \infty$$. Since $$B_{R}$$ is convex and closed, so $$u_{1}\in B_{R}$$. We get that $$I_{\lambda ,\mu }(u_{1})=\Gamma <0$$ from (2.1) and $$u_{1}\not \equiv 0$$. It means that $$u_{1}$$ is a local minimizer of $$I_{\lambda ,\mu }$$.

Now, we claim that $$u_{1}$$ is a solution of (1.1) and $$u_{1}>0$$. Letting $$r>0$$ small enough, and for every $$\varphi \in W^{1.p}_{0}(\Omega )$$, $$\varphi \geq 0$$ such that $$(u_{1}+r\varphi )\in B_{R}$$, one has

\begin{aligned} 0&< I_{\lambda ,\mu }(u_{1}+r\varphi )-I_{\lambda ,\mu }(u_{1}) \\ &=\frac{1}{p} \Vert u_{1}+r\varphi \Vert ^{p}- \frac{1}{p^{*}(t)} \int_{\Omega }Q(x)\frac{((u_{1}+r\varphi )^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx -\frac{\lambda }{1-s} \int_{\Omega } \bigl((u_{1}+r\varphi )^{+} \bigr)^{1-s}\,dx \\ &\quad{} -\frac{1}{p} \Vert u_{1} \Vert ^{p}+ \frac{1}{p^{*}(t)} \int_{\Omega }Q(x)\frac{(u_{1}^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx+\frac{ \lambda }{1-s} \int_{\Omega } \bigl(u^{+}_{1} \bigr)^{1-s}\,dx \\ &\leq \frac{1}{p} \Vert u_{1}+r\varphi \Vert ^{p}-\frac{1}{p} \Vert u_{1} \Vert ^{p}. \end{aligned}
(2.8)

Next we prove that $$u_{1}$$ is a solution of (1.1). According to (2.8), we have

\begin{aligned} &\frac{\lambda }{1-s} \int_{\Omega } \bigl[ \bigl((u_{1}+r\varphi )^{+} \bigr)^{1-s}- \bigl(u^{+}_{1} \bigr)^{1-s} \bigr] \,dx \\ &\quad \leq \frac{1}{p} \bigl[ \Vert u_{1}+r\varphi \Vert ^{p}- \Vert u_{1} \Vert ^{p} \bigr] - \frac{1}{p ^{*}(t)} \int_{\Omega }Q(x)\frac{ [ ((u_{1}+r\varphi )^{+})^{p^{*}(t)}-(u _{1}^{+})^{p^{*}(t)} ] }{ \vert x \vert ^{t}}\,dx. \end{aligned}

Dividing by $$r>0$$ and taking limit as $$r\rightarrow 0^{+}$$, we have

\begin{aligned}[b] &\frac{\lambda }{1-s}\liminf_{r\rightarrow 0^{+}} \int_{\Omega } \frac{((u_{1}+r\varphi )^{+})^{1-s}-(u^{+}_{1})^{1-s}}{t}\,dx \\ &\quad \leq \int_{\Omega } \biggl( \vert \nabla u_{1} \vert ^{p-2}\nabla u_{1}\nabla \varphi - \mu \frac{ \vert u_{1} \vert ^{p-2}u_{1}\varphi }{ \vert x \vert ^{p}} \biggr) \,dx \\ &\quad \quad{} - \int_{\Omega }Q(x)\frac{(u^{+}_{1})^{p^{*}(t)-1}\varphi }{ \vert x \vert ^{t}} \,dx. \end{aligned}
(2.9)

However,

$$\frac{\lambda }{1-s} \frac{((u_{1}+r\varphi )^{+})^{1-s}-(u^{+}_{1})^{1-s}}{t}=\lambda \int_{\Omega } \bigl((u_{1}+\xi r \varphi )^{+} \bigr)^{-s}\varphi \,dx,$$

where $$\xi \longrightarrow 0^{+}$$ and $$\lim_{r\rightarrow 0^{+}}((u _{1}+\xi r \varphi )^{+})^{-s}\varphi =(u_{1}^{+})^{-s}\varphi$$ ($$\xi \rightarrow 0^{+}$$) a.e. $$x \in \Omega$$. Since $$((u_{1}+\xi r \varphi )^{+})^{-s}\varphi \geq 0$$. By Fatou’s lemma, we obtain that

$$\lambda \int_{\Omega } \bigl(u_{1}^{+} \bigr)^{-s}\varphi \,dx\leq \frac{\lambda }{1-s}\liminf _{r\rightarrow 0^{+}} \int_{\Omega } \frac{((u_{1}+r\varphi )^{+})^{1-s}-(u^{+}_{1})^{1-s}}{t}\,dx.$$

Hence, from (2.9), we obtain that

\begin{aligned}[b] & \int_{\Omega } \biggl( \vert \nabla u_{1} \vert ^{p-2}\nabla u_{1}\nabla \varphi - \mu \frac{ \vert u_{1} \vert ^{p-2}u_{1} \varphi }{ \vert x \vert ^{p}} \biggr) \,dx-\lambda \int_{\Omega } \bigl(u^{+}_{1} \bigr)^{-s}\varphi \,dx \\ &\quad{} - \int_{\Omega }Q(x)\frac{(u^{+}_{1})^{p^{*}(t)-1}\varphi }{ \vert x \vert ^{t}} \,dx \geq 0\end{aligned}
(2.10)

for $$\varphi \geq 0$$. Since $$I_{\lambda ,\mu }(u_{1})<0$$, combining with Lemma 2.1, we can derive that $$u_{1} \notin \partial B_{R}$$, thus $$\Vert u_{1} \Vert < R$$. There exists $$\delta_{1}\in (0,1)$$ such that $$(1+\theta )u_{1}\in B_{R}$$ ($$\vert \theta \vert \leq \delta_{1}$$). Let $$h(\theta )=I_{\lambda ,\mu }((1+\theta )u_{1})$$. Apparently, $$h(\theta )$$ attains its minimum at $$\theta =0$$. Note that

\begin{aligned} h'(\theta )&=\frac{d}{d\theta } \bigl(I_{\lambda ,\mu }(1+\theta )u_{1} \bigr) \\ &=(1+\theta )^{p-1} \Vert u_{1} \Vert ^{p}-(1+ \theta )^{p^{*}(t)-1} \int_{\Omega }Q(x)\frac{(u^{+}_{1})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx-\lambda (1+ \theta )^{-s} \int_{\Omega } \bigl(u^{+}_{1} \bigr)^{1-s}\,dx. \end{aligned}

Furthermore,

$$h^{\prime}(\theta )| _{\theta =0}= \Vert u_{1} \Vert ^{p}- \int_{\Omega }Q(x)\frac{(u^{+}_{1})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx-\lambda \int_{\Omega } \bigl(u^{+}_{1} \bigr)^{1-s}\,dx=0.$$
(2.11)

Define $$\Psi \in W_{0}^{1,p}(\Omega )$$ by

$$\Psi = \bigl(u_{1}^{+}+\varepsilon \psi \bigr)^{+}, \quad \text{for every }\psi \in W _{0}^{1,p}( \Omega )\text{ and }\varepsilon >0,$$

where $$(u_{1}^{+}+t\psi )^{+}=\max \{u_{1}^{+}+t\psi ,0\}$$. We deduce from (2.10) and (2.11) that

\begin{aligned} 0&\leq \int_{\Omega } \biggl( \vert \nabla u_{1} \vert ^{p-2}\nabla u_{1}\nabla \Psi - \mu \frac{ \vert u_{1} \vert ^{p-2}u_{1}\Psi }{ \vert x \vert ^{p}} \biggr) \,dx- \int_{\Omega }Q(x)\frac{(u_{1}^{+})^{p^{*}(t)-1}\Psi }{ \vert x \vert ^{t}} \,dx \\ &\quad{} - \lambda \int_{\Omega } \bigl(u^{+}_{1} \bigr)^{-s}\Psi \,dx \\ &= \int_{\{x\mid u_{1}^{+} +\varepsilon \psi >0\}} \biggl[ \vert \nabla u_{1} \vert ^{p-2} \nabla u_{1}\nabla \bigl(u_{1}^{+} +\varepsilon \psi \bigr)-\mu \frac{ \vert u_{1} \vert ^{p-2}u _{1}(u_{1}^{+} +\varepsilon \psi )}{ \vert x \vert ^{p}} \\ &\quad{} -Q(x)\frac{(u^{+}_{1})^{p^{*}(t)-1}(u_{1}^{+} +\varepsilon \psi )}{ \vert x \vert ^{t}} -\lambda \bigl(u_{1}^{+} \bigr)^{-s} \bigl(u_{1}^{+} +\varepsilon \psi \bigr) \biggr] \,dx \\ &= \biggl( \int_{\Omega }- \int_{\{x\mid u_{1}^{+} +\varepsilon \psi \leq 0\}} \biggr) \biggl[ \vert \nabla u _{1} \vert ^{p-2}\nabla u_{1}\nabla \bigl(u_{1}^{+} +\varepsilon \psi \bigr)-\mu \frac{ \vert u _{1} \vert ^{p-2}u_{1}(u_{1}^{+} +\varepsilon \psi )}{ \vert x \vert ^{p}}\,dx \\ &\quad{} -Q(x)\frac{(u_{1}^{+})^{p^{*}(t)-1}(u_{1}^{+} +\varepsilon \psi )}{ \vert x \vert ^{t}} -\lambda \bigl(u^{+}_{1} \bigr)^{-s} \bigl(u_{1}^{+} +\varepsilon \psi \bigr) \biggr] \,dx \\ &\leq \Vert u_{1} \Vert ^{p} - \int_{\Omega }Q(x)\frac{(u_{1}^{+})^{p^{*} (t)}}{ \vert x \vert ^{t}}\,dx-\lambda \int_{\Omega } \bigl(u_{1}^{+} \bigr)^{1-s}\,dx +\varepsilon \int_{\Omega } \biggl[ \vert \nabla u_{1} \vert ^{p-2}\nabla u_{1}\nabla \psi \\ &\quad{} -\mu \frac{ \vert u_{1} \vert ^{p-2}u_{1}\psi }{ \vert x \vert ^{p}}-Q(x)\frac{(u_{1} ^{+})^{p^{*}(t)-1}\psi }{ \vert x \vert ^{t}} -\lambda \bigl(u^{+}_{1} \bigr)^{-s}\psi \biggr] \,dx \\ &\quad{} - \int_{\{x\mid u_{1}^{+} +\varepsilon \psi \leq 0\}} \biggl[ \vert \nabla u_{1} \vert ^{p-2} \nabla u_{1}\nabla \bigl(u_{1}^{+} +\varepsilon \psi \bigr)-\mu \frac{ \vert u_{1} \vert ^{p-2}u _{1}(u_{1}^{+} +\varepsilon \psi )}{ \vert x \vert ^{p}} \biggr] \,dx \\ &\quad{} + \int_{\{x\mid u_{1}^{+} +\varepsilon \psi \leq 0\}} \biggl[ Q(x)\frac{(u _{1}^{+})^{p^{*}(t)-1}(u_{1}^{+} +\varepsilon \psi )}{ \vert x \vert ^{t}} + \lambda \bigl(u^{+}_{1} \bigr)^{-s} \bigl(u_{1}^{+} +\varepsilon \psi \bigr) \biggr] \,dx \\ &\leq \varepsilon \int_{\Omega } \biggl[ \vert \nabla u_{1} \vert ^{p-2}\nabla u_{1}\nabla \psi - \mu \frac{ \vert u_{1} \vert ^{p-2}u_{1} \psi }{ \vert x \vert ^{p}}-Q(x) \frac{(u_{1}^{+})^{p ^{*}(t)-1}\psi }{ \vert x \vert ^{t}} -\lambda \bigl(u^{+}_{1} \bigr)^{-s}\psi \biggr] \,dx \\ &\quad{} -\varepsilon \int_{\{x\mid u_{1}^{+} +\varepsilon \psi \leq 0\}} \biggl[ \vert \nabla u_{1} \vert ^{p-2} \nabla u_{1}\nabla \psi -\mu \frac{ \vert u_{1} \vert ^{p-1}u_{1}\psi }{ \vert x \vert ^{p}} \biggr] \,dx. \end{aligned}
(2.12)

Since the measure of $$\{x\mid u_{1}^{+} +\varepsilon \psi \leq 0\}\rightarrow 0$$ as $$\varepsilon \rightarrow 0$$, we have

$$\lim_{\varepsilon \rightarrow 0} \int_{\{x\mid u_{1}^{+} +\varepsilon \psi \leq 0\}} \biggl[ \vert \nabla u_{1} \vert ^{p-2} \nabla u_{1}\nabla \psi -\mu \frac{ \vert u_{1} \vert ^{p-2}u_{1} \psi }{ \vert x \vert ^{p}} \biggr] \,dx=0.$$

Dividing by ε and letting $$\varepsilon \rightarrow 0^{+}$$ in (2.12), we deduce that

$$\int_{\Omega } \biggl[ \vert \nabla u_{1} \vert ^{p-2}\nabla u_{1}\nabla \psi - \mu \frac{ \vert u_{1} \vert ^{p-2}u_{1} \psi }{ \vert x \vert ^{p}}-Q(x) \frac{(u_{1}^{+})^{p ^{*}(t)-1}}{ \vert x \vert ^{t}}\psi -\lambda \bigl(u_{1}^{+} \bigr)^{-s}\psi \biggr] \,dx \geq 0.$$

Since $$\psi \in W^{1.p}_{0}(\Omega )$$ is arbitrary, replacing ψ with −ψ, we have

\begin{aligned}[b]& \int_{\Omega } \biggl[ \vert \nabla u_{1} \vert ^{p-2}\nabla u_{1}\nabla \psi - \mu \frac{ \vert u_{1} \vert ^{p-2}u_{1} \psi }{ \vert x \vert ^{p}} \\ &\quad{} -Q(x) \frac{(u_{1}^{+})^{p ^{*}(t)-1}\psi }{ \vert x \vert ^{t}}-\lambda \bigl(u_{1}^{+} \bigr)^{-s}\psi \biggr] \,dx=0, \quad \forall \psi \in W^{1.p}_{0}(\Omega ),\end{aligned}
(2.13)

which implies that $$u_{1}$$ is a weak solution of problem (1.1). Putting the test function $$\psi =u_{1} ^{-}$$ in (2.13), we obtain that $$u_{1} \geq 0$$. Noting that $$I_{\lambda ,\mu }(u_{1})=\Gamma <0$$, then $$u_{1}\not \equiv 0$$. In terms of the maximum principle, we have that $$u_{1}>0$$, a.e. $$x\in \Omega$$.

The proof of Theorem 2.2 is completed. □

## 3 Existence of a solution of the perturbation problem

In order to find another solution, we consider the following problem:

$$\textstyle\begin{cases} -\Delta_{p}u-\mu \frac{ \vert u \vert ^{p-2}u}{ \vert x \vert ^{p}}=Q(x) \frac{(u^{+})^{p^{*}(t)-1}}{ \vert x \vert ^{t}}+\lambda (u^{+}+\gamma )^{-s}, & \text{in }\Omega , \\ u=0, & \text{on }\partial \Omega , \end{cases}$$
(3.1)

where $$\gamma >0$$ is small. The solution of (3.1) is equivalent to the critical point of the following $$C^{1}$$-functional on $$W^{1,p}_{0}( \Omega )$$:

$$I_{\gamma }(u)=\frac{1}{p} \Vert u \Vert ^{p}- \frac{1}{p^{*}(t)} \int_{\Omega }Q(x)\frac{(u ^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx -\frac{\lambda }{1-s} \int_{\Omega } \bigl[ \bigl(u ^{+}+\gamma \bigr)^{1-s}-\gamma^{1-s} \bigr]\,dx.$$

For every $$\varphi \in W_{0}^{1,p}(\Omega )$$, the definition of weak solution $$u\in W^{1,p}_{0}(\Omega )$$ gives that

$$\int_{\Omega } \biggl( \vert \nabla u \vert ^{p-2}\nabla u\nabla \varphi -\mu \frac{ \vert u \vert ^{p-2}u \varphi }{ \vert x \vert ^{p}} \biggr) -\lambda \int_{\Omega } \bigl(u^{+}+\gamma \bigr)^{-s} \varphi - \int_{\Omega }Q(x)\frac{(u^{+})^{p^{*}(t)-1}\varphi }{ \vert x \vert ^{t}}=0.$$
(3.2)

### Lemma 3.1

For $$R, \rho >0$$, suppose that $$\lambda <\lambda _{0}$$, then $$I_{\gamma }$$ satisfies the following properties:

1. (i)

$$I_{\gamma }(u)\geq \rho >0$$ for $$u\in \partial B_{R}$$;

2. (ii)

There exists $$u_{2}\in W^{1,p}_{0}(\Omega )$$ such that $$\Vert u_{2} \Vert >R$$ and $$I_{\gamma }(u_{2})<\rho$$,

where R, ρ, and $$\lambda_{0}$$ are given in Lemma 2.1.

### Proof

(i) By the subadditivity of $$t^{1-s}$$, we have

$$\bigl(u^{+}+\gamma \bigr)^{1-s}- \gamma^{1-s}\leq \bigl(u^{+} \bigr)^{1-s}, \quad \forall u\in W^{1,p}_{0}(\Omega ),$$
(3.3)

$$I_{\gamma }(u)\geq I_{\lambda ,\mu }(u), \quad \forall u\in W ^{1,p}_{0}(\Omega ).$$

Hence, if $$\lambda <\lambda_{0}$$ for $$\rho , \lambda_{0}>0$$, we can obtain the conclusion from Lemma 2.1.

(ii) $$\forall u^{+} \in W^{1.p}_{0}(\Omega )$$, $$u^{+}\neq 0$$ and $$r>0$$, which yields

\begin{aligned} I_{\gamma }(ru)&=\frac{r^{p}}{p} \Vert u \Vert ^{p}-r^{p^{*}(t)} \int_{\Omega }Q(x)\frac{(u^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx -\frac{\lambda }{1-s} \int_{\Omega } \bigl[ \bigl(ru^{+}+\gamma \bigr)^{1-s}-\gamma^{1-s} \bigr]\,dx \\ &\leq \frac{r^{p}}{p} \Vert u \Vert ^{p}-r^{p^{*}(t)} \int_{\Omega }Q(x)\frac{(u^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx \\ &\rightarrow -\infty \quad (r\rightarrow +\infty ). \end{aligned}

Therefore, there exists $$u_{2}$$ such that $$\Vert u_{2} \Vert >R$$ and $$I_{\gamma }(u_{2})<\rho$$.

This completes the proof of Lemma 3.1. □

### Lemma 3.2

Assume that $$0<\gamma <1$$. Then $$I_{\gamma }$$ satisfies the $$(PS)_{c}$$ condition with $$c<\frac{(p-t)}{p(N-t)}\frac{S ^{\frac{N-t}{p-t}}}{Q^{\frac{N-p}{p-t}}_{M}}-D\lambda^{ \frac{p}{p+s-1}}$$, where

$$D=\frac{p+s-1}{p} \biggl\{ \biggl( \frac{1}{1-s}+\frac{N-p}{p(N-t)} \biggr) C _{2} \biggl[ \frac{p}{(N-t)(1-s)} \biggr] ^{\frac{s-1}{p}} \biggr\} ^{ \frac{p}{p+s-1}}.$$

### Proof

Choose $$\{\tau_{n}\}\subset W^{1,p}_{0}(\Omega )$$ satisfying

$$I_{\gamma }(\tau_{n})\rightarrow c ,\quad \text{and}\quad I_{\gamma } ^{\prime}(\tau_{n})\rightarrow 0 \quad (n \rightarrow \infty ).$$
(3.4)

We assert that $$\{\tau_{n}\}$$ is bounded in $$W_{0}^{1,p}(\Omega )$$. Otherwise, we assume that $$\lim_{n\rightarrow \infty } \Vert \tau_{n} \Vert \rightarrow \infty$$. By (3.4), we have

\begin{aligned} c&=I_{\gamma }(\tau_{n})-\frac{1}{p^{*}(t)} \bigl\langle I'_{\gamma }(\tau _{n}),\tau_{n} \bigr\rangle +o(1) \\ &= \frac{1}{p} \Vert \tau_{n} \Vert ^{p}- \frac{1}{p^{*}(t)} \int_{\Omega }Q(x)\frac{(\tau_{n}^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx -\frac{ \lambda }{1-s} \int_{\Omega } \bigl[ \bigl(\tau_{n}^{+} + \gamma \bigr)^{1-s}-\gamma^{1-s} \bigr]\,dx \\ &\quad{} -\frac{1}{p^{*}(t)} \Vert \tau_{n} \Vert ^{p}+ \frac{1}{p^{*}(t)} \int_{\Omega }Q(x)\frac{(\tau_{n}^{+})^{p^{*}(t)-1}\tau_{n}}{ \vert x \vert ^{t}}\,dx +\frac{\lambda }{p^{*}(t)} \int_{\Omega } \bigl(\tau_{n}^{+}+\gamma \bigr)^{-s}\tau_{n}\,dx+o(1) \\ &= \biggl(\frac{1}{p}-\frac{1}{p^{*}(t)} \biggr) \Vert \tau_{n} \Vert ^{p}- \frac{\lambda }{1-s} \int_{\Omega } \bigl[ \bigl(\tau_{n}^{+}+ \gamma \bigr)^{1-s}-\gamma^{-s} \bigr]\,dx \\ &\quad{} +\frac{ \lambda }{p^{*}(t)} \int_{\Omega } \bigl(\tau_{n}^{+}+\gamma \bigr)^{-s}\tau_{n}\,dx+o(1) \\ &\geq \frac{p-t}{p(N-t)} \Vert \tau_{n} \Vert ^{p}- \lambda \biggl(\frac{1}{1-s}+\frac{1}{p ^{*}(t)} \biggr) \int_{\Omega } \vert \tau_{n} \vert ^{1-s} \,dx +o(1) \\ &\geq \frac{p-t}{p(N-t)} \Vert \tau_{n} \Vert ^{p}- \lambda \biggl(\frac{1}{1-s}+\frac{1}{p ^{*}(t)} \biggr)C_{1} \Vert \tau_{n} \Vert ^{1-s}+o(1). \end{aligned}

The last inequality is absurd thanks to $$0<1-s<1$$. That is, $$\{\tau_{n}\}$$ is bounded in $$W_{0}^{1,p}(\Omega )$$. Hence, up to a sequence, there exists a subsequence, still called $$\{\tau_{n}\}$$. We assume that there exists $$\{\tau_{1}\}\in W_{0}^{1,p}(\Omega )$$ such that

$$\textstyle\begin{cases} \tau_{n}\rightharpoonup \tau_{1}, & \text{in } W_{0}^{1,p}(\Omega ) , \\ \tau_{n}\longrightarrow \tau_{1}, & \text{in } L^{p}(\Omega , \vert x \vert ^{-t}), \\ \tau_{n}(x)\longrightarrow \tau_{1}(x), & \text{a.e. in } \Omega , \\ \vert \tau_{n}(x) \vert \leq h(x), & \text{a.e. in } \Omega \text{ for all } n \text{ with } h(x)\in L^{1} (\Omega ). \end{cases}\displaystyle \quad1\leq p< p^{*}(t) ,$$

Since

$$\bigl\vert (\tau_{n} -\tau_{1}) \bigl( \tau_{n} ^{+} +\gamma \bigr)^{-s} \bigr\vert \leq \gamma^{-s} \bigl(h+ \vert \tau_{1} \vert \bigr),$$

it follows from the dominated convergence theorem that

$$\lim_{n\rightarrow \infty } \int_{\Omega }(\tau_{n} -\tau_{1}) \bigl( \tau_{n} ^{+} +\gamma \bigr)^{-s}\,dx =0.$$

Furthermore, by $$\vert \tau_{1} \vert (\tau_{n}^{+} +\gamma )^{-s}\leq \vert \tau_{1} \vert \gamma^{-s}$$, and applying the dominated convergence theorem again, we have

$$\lim_{n\rightarrow \infty } \int_{\Omega } \bigl(\tau_{n}^{+} +\gamma \bigr)^{-s}\tau_{1} \,dx= \int_{\Omega } \bigl(\tau_{1}^{+} +\gamma \bigr)^{-s}\tau_{1} \,dx.$$

Thus, we deduce that

$$\lim_{n\rightarrow \infty } \int_{\Omega } \bigl(\tau_{n}^{+} +\gamma \bigr)^{-s}\tau_{n} \,dx= \int_{\Omega } \bigl(\tau_{1}^{+} +\gamma \bigr)^{-s}\tau_{1} \,dx.$$

Now we prove that $$\tau_{n}\rightarrow \tau_{1}$$ strongly in $$W_{0}^{1,p}(\Omega )$$. Set $$\omega_{n}=\tau_{n}-\tau_{1}$$. Since $$I^{\prime}_{\lambda ,\mu }(\tau_{n})\rightarrow 0$$ in $$(W_{0}^{1,p}( \Omega ))^{*}$$, we have

$$\Vert \tau_{n} \Vert ^{p}- \int_{\Omega }Q(x)\frac{(\tau^{+}_{n})^{p^{*}(t)-1}\tau_{n}}{ \vert x \vert ^{t}}\,dx- \lambda \int_{\Omega } \bigl(\tau^{+}_{n}+\gamma \bigr)^{-s}\tau_{n}\,dx=o(1).$$

According to the Brézis–Lieb lemma, together with (3.4), we have

\begin{aligned}& \Vert \omega_{n} \Vert ^{p}+ \Vert \tau_{1} \Vert ^{p}- \int_{\Omega }Q(x) \frac{(\omega^{+}_{n})^{p^{*}(t)-1}\omega_{n}}{ \vert x \vert ^{t}}\,dx - \int_{\Omega }Q(x)\frac{(\tau^{+}_{1})^{p^{*}(t)-1}\tau_{1}}{ \vert x \vert ^{t}}\,dx \\ &\quad{} -\lambda \int_{\Omega } \bigl(\tau^{+}_{1}+\gamma \bigr)^{-s}\tau_{1}\,dx=o(1),\end{aligned}

and

$$\lim_{n\rightarrow \infty } \bigl\langle I^{\prime}_{\gamma }( \tau_{n}),\tau_{1} \bigr\rangle = \Vert \tau_{1} \Vert ^{p}- \int_{\Omega }Q(x)\frac{(\tau^{+}_{1})^{p^{*}(t)-1}\tau_{1}}{ \vert x \vert ^{t}}\,dx -\lambda \int_{\Omega } \bigl(\tau^{+}_{1}+\gamma \bigr)^{-s}\tau_{1}\,dx=0.$$

Thus

\begin{aligned}& \lim_{n\rightarrow \infty } \Vert \omega_{n} \Vert ^{p}=\lim_{n\rightarrow \infty } \int_{\Omega }Q(x)\frac{(\omega^{+}_{n})^{p^{*}(t)-1}\omega _{n}}{ \vert x \vert ^{t}}\,dx=l, \\& \int_{\Omega }\frac{ \vert \omega_{n} \vert ^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx \geq \int_{\Omega }\frac{Q(x)}{Q_{M}} \frac{ \vert \omega_{n} \vert ^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx \geq \int_{\Omega }\frac{Q(x)}{Q_{M}}\frac{(\omega^{+}_{n})^{p^{*}(t)-1} \omega_{n}}{ \vert x \vert ^{t}}\,dx. \end{aligned}

Sobolev’s inequality implies that

$$\Vert \omega_{n} \Vert ^{p}\geq S \biggl( \int_{\Omega }\frac{ \vert \omega_{n} \vert ^{p^{*} (t)}}{ \vert x \vert ^{t}}\,dx \biggr) ^{\frac{p}{p^{*} (t)}}.$$

Consequently, $$l\geq S(\frac{l}{Q_{M}})^{\frac{p}{p^{*}(t)}}$$. We guarantee that $$l=0$$. Otherwise, we suppose that

$$l\geq \frac{S^{\frac{N-t}{p-t}}}{Q^{\frac{N-p}{p-t}}_{M}}.$$

It follows that

\begin{aligned} c&= I_{\gamma }(\tau_{n})-\frac{1}{p^{*}(t)} \bigl\langle I^{\prime}_{\gamma }( \tau_{n}),\tau_{n} \bigr\rangle +o(1) \\ &=\frac{(p-t)}{p(N-t)} \Vert \tau_{n} \Vert ^{p}- \frac{\lambda }{1-s} \int_{\Omega } \bigl[ \bigl(\tau_{n}^{+}+ \gamma \bigr)^{1-s}-\gamma^{-s} \bigr]\,dx +\frac{ \lambda }{p^{*}(t)} \int_{\Omega } \bigl(\tau_{n}^{+}+\gamma \bigr)^{-s}\tau_{n}\,dx+o(1) \\ &\geq \frac{(p-t)}{p(N-t)}\frac{S^{\frac{N-t}{p-t}}}{Q^{ \frac{N-p}{p-t}}_{M}}+\frac{p-t}{p(N-t)} \Vert \tau_{1} \Vert ^{p} -\lambda \biggl( \frac{1}{1-s}+ \frac{1}{p^{*} (t)} \biggr) \int_{\Omega } \vert \tau_{n} \vert ^{1-s} \,dx+o(1) \\ &\geq \frac{(p-t)}{p(N-t)}\frac{S^{\frac{N-t}{p-t}}}{Q^{ \frac{N-p}{p-t}}_{M}}+\frac{p-t}{p(N-t)} \Vert \tau_{1} \Vert ^{p} -\lambda \biggl( \frac{1}{1-s}+ \frac{1}{p^{*} (t)} \biggr) C_{2} \Vert \tau_{1} \Vert ^{1-s}+o(1) \\ &\geq \frac{(p-t)}{p(N-t)}\frac{S^{\frac{N-t}{p-t}}}{Q^{ \frac{N-p}{p-t}}_{M}}-D\lambda^{\frac{p}{p+s-1}}, \end{aligned}

which contradicts the condition of Lemma 3.2. Hence $$l=0$$. Therefore $$\tau_{n}\rightarrow \tau_{1}$$.

This proof of Lemma 3.2 is finished. □

### Lemma 3.3

For $$0< s<1$$ and $$\lambda >0$$ small enough, there exists $$u_{2}\in W_{0}^{1,p}(\Omega )$$ such that

$$\sup_{t\geq 0}I_{\lambda ,\mu }(t u_{2}) \leq \frac{(p-t)}{p(N-t)}\frac{S^{\frac{N-t}{p-t}}}{Q^{\frac{N-p}{p-t}} _{M}}-D \lambda^{\frac{p}{p-1+s}},$$
(3.5)

where D is defined in Lemma 3.2.

### Proof

For every $$r\geq 0$$, we have

$$I_{\gamma }(ru_{\epsilon })=\frac{r^{p}}{p} \Vert u_{\epsilon } \Vert ^{p}-\frac{r ^{p^{*}(t)}}{p^{*}(t)} \int_{\Omega } Q(x)\frac{(u_{\epsilon }^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx -\frac{ \lambda }{1-s} \int_{\Omega } \bigl[ \bigl(ru_{\epsilon }^{+}+\gamma \bigr)^{1-s}-\gamma^{1-s} \bigr]\,dx,$$

which implies that there exists a positive constant $$\epsilon_{0}$$ such that

$$\lim_{r\rightarrow 0}I_{\gamma }(ru_{\epsilon })=0,\quad \forall \epsilon \in (0,\epsilon_{0}),$$

and

$$\lim_{r\rightarrow +\infty }I_{\gamma }(ru_{\epsilon })=-\infty , \quad \forall \epsilon \in (0,\epsilon_{0}),$$

where $$u_{\epsilon }$$ is defined in Sect. 1. Let

\begin{aligned}& A_{\epsilon }(r)=\frac{r^{p}}{p} \Vert u_{\epsilon } \Vert ^{p}-\frac{r^{p^{*}(t)}}{p ^{*}(t)} \int_{\Omega }Q(x)\frac{(u_{\epsilon }^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx; \\& B_{\epsilon }(r)=-\frac{1}{1-s} \int_{\Omega } \bigl[ \bigl(ru_{\epsilon }^{+}+\gamma \bigr)^{1-s}-\gamma^{1-s} \bigr]\,dx, \end{aligned}

because of $$\lim_{r\rightarrow \infty }A_{\epsilon }(r)=-\infty$$, $$A_{\epsilon }(0)=0$$, and $$\lim_{r\rightarrow 0^{+}}A_{\epsilon }(r)>0$$, so $$A_{\epsilon }(r)$$ attains its maximum at some positive number. In fact, we let

$$A^{\prime}_{\epsilon }(r)=r^{p-1} \Vert u_{\epsilon } \Vert ^{p}-r^{p^{*}(t)-1} \int_{\Omega }Q(x) \frac{(u^{+}_{\epsilon })^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx=0,$$

therefore

$$r= \biggl( \frac{ \Vert u_{\epsilon } \Vert ^{p}}{ \int_{\Omega } Q(x)\frac{(u_{\epsilon }^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx} \biggr) ^{\frac{1}{p^{*}(t)-p}}:=T_{\epsilon }.$$

Noting that $$A'_{\epsilon }(r)>0$$ for every $$0< r< T_{\epsilon }$$ and $$A'_{\epsilon }(r)<0$$ for every $$r>T_{\epsilon }$$, our claim is proved. Thus, the properties of $$I_{\gamma }(ru_{\epsilon })$$ at $$r=0$$ and $$r=+\infty$$ tell us that $$\sup_{r\geq 0}I_{\gamma }(ru_{ \epsilon })$$ is attained for some $$r_{\epsilon }>0$$.

From condition $$(Q_{1})$$, we have

$$\biggl\vert \int_{\Omega }Q(x)\frac{u_{\epsilon }^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx- \int_{\Omega }Q_{M}\frac{u_{\epsilon }^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx \biggr\vert \leq \int_{\Omega } \bigl\vert Q(x)-Q(0) \bigr\vert \frac{u_{\epsilon }^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx =O \bigl(\epsilon^{\beta } \bigr).$$

It follows that

$$\int_{\Omega }Q(x)\frac{u_{\epsilon }^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx=Q(0)S ^{\frac{N-t}{p-t}}+O \bigl(\epsilon^{b(\mu )p^{*} (t)-N+t} \bigr)+O \bigl(\epsilon^{ \beta } \bigr).$$
(3.6)

By (3.6), we deduce that

\begin{aligned} A_{\epsilon }(T_{\epsilon })&=\frac{1}{p} \biggl[ \frac{ \Vert u_{\epsilon } \Vert ^{p}}{ \int_{\Omega }Q(x)\frac{u_{\epsilon }^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx} \biggr] ^{\frac{p}{p^{*}(t)-p}} \Vert u_{\epsilon } \Vert ^{p} \\ &\quad{} -\frac{1}{p^{*}(t)} \biggl[ \frac{ \Vert u_{\epsilon } \Vert ^{p}}{ \int_{\Omega }Q(x)\frac{u_{\epsilon }^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx} \biggr] ^{\frac{p^{*}(t)}{p^{*}(t)-p}} \int_{\Omega }Q(x)\frac{u_{\epsilon }^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx \\ &=\frac{p-t}{p(N-t)} \biggl[ \frac{ \Vert u_{\epsilon } \Vert ^{p}}{ \int_{\Omega }Q(x)\frac{u_{\epsilon }^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx} \biggr] ^{\frac{p}{p^{*}(t)-p}} \Vert u_{\epsilon } \Vert ^{p} \\ &\leq \frac{p-t}{p(N-t)}\frac{S^{\frac{N-t}{p-t}}}{(Q(0))^{ \frac{N-p}{p-t}}}+O \bigl(\epsilon^{b(\mu )p+p-N} \bigr)+O \bigl(\epsilon^{\beta } \bigr). \end{aligned}
(3.7)

Next, we will estimate $$B_{\epsilon }$$. Here, we use the following inequality from [24, 27]:

$$x^{1-s}-(x+y)^{1-s}\leq -(1-s)y^{\frac{1-s}{4}}x^{\frac{3(1-s)}{4}}, \quad 0< x< y.$$
(3.8)

Observe from (3.8) that

\begin{aligned} B_{\epsilon }(r_{\epsilon })&\leq \frac{1}{1-s} \int_{\{x\mid \vert x \vert \leq \epsilon^{\frac{1-s}{2p}}\}} \bigl[\gamma^{1-s}-(r_{ \epsilon }u_{\epsilon }+ \gamma )^{1-s} \bigr]\,dx \\ &\leq -C_{3} \int_{\{x\mid \vert x \vert \leq \epsilon^{\frac{1-s}{2p}}\}}(r_{\epsilon }u_{\epsilon })^{\frac{1-s}{4}} \,dx \\ &\leq -C_{3} \int_{\{x\mid \vert x \vert \leq \epsilon^{\frac{1-s}{2p}}\}\cap \{\eta (x)=1\}} \biggl[ r_{\epsilon }\epsilon^{-\frac{N-p}{p}}U_{p,\mu } \biggl(\frac{ \vert x \vert }{ \epsilon } \biggr) \biggr] ^{\frac{1-s}{4}}\,dx \\ &\leq -C_{4} \int_{0}^{\epsilon^{\frac{1-s-2p}{2p}}} \bigl[ \epsilon^{-\frac{N-p}{p}}U _{p,\mu }(y) \bigr] ^{\frac{1-s}{4}}y^{N-1}\epsilon^{N} \,dy \\ &\leq -C_{5}\epsilon^{-\frac{(N-p)(1-s)}{4p}+N} \int_{0}^{\epsilon^{\frac{1-s-2p}{2p}}}y^{-b(\mu )p+N-1}\,dy \\ &\leq -C_{5} \textstyle\begin{cases} \epsilon^{-\frac{(N-p)(1-s)}{4p}+N}, & b(\mu )>\frac{N}{p}, \\ \epsilon^{-\frac{(N-p)(1-s)}{4p}+N} \vert \ln \epsilon \vert , & b(\mu )=\frac{N}{p}, \\ \epsilon^{-\frac{(N-p)(1-s)}{4p}+N+\frac{(1-s-2p)(-b(\mu )p+N)}{2p}}, & b(\mu )< \frac{N}{p}. \end{cases}\displaystyle \end{aligned}
(3.9)

From (3.7) and (3.9), we find that there exists a positive constant $$\widetilde{\lambda }_{0}$$ such that, for every $$\lambda \in (0, \widetilde{\lambda }_{0})$$, one has

\begin{aligned} I_{\gamma }(r_{\epsilon }u_{\epsilon })&=A_{\epsilon }(r_{\epsilon })+ \lambda B_{\epsilon }(r_{\epsilon }) \\ &\leq \frac{p-t}{p(N-p)}\frac{S^{\frac{N-t}{p-t}}}{Q^{\frac{N-p}{p-t}} _{M}} +O \bigl(\epsilon^{b(\mu )p-N+p} \bigr)+O \bigl(\epsilon^{\beta } \bigr) \\ &\quad{} -C_{5} \textstyle\begin{cases} \epsilon^{-\frac{(N-p)(1-s)}{4p}+N}, & b(\mu )>\frac{N}{p}, \\ \epsilon^{-\frac{(N-p)(1-s)}{4p}+N} \vert \ln \epsilon \vert , & b(\mu )=\frac{N}{p}, \\ \epsilon^{-\frac{(N-p)(1-s)}{4p}+N+\frac{(1-s-2p)(-b(\mu )p+N)}{2p}}, & b(\mu )< \frac{N}{p}, \end{cases}\displaystyle \\ &< \frac{p-t}{p(N-p)}\frac{S^{\frac{N-t}{p-t}}}{Q^{\frac{N-p}{p-t}} _{M}}-D\lambda^{\frac{p}{p+s-1}}. \end{aligned}

This completes the proof of Lemma 3.3. □

### Theorem 3.4

For $$0<\gamma <1$$, there is $$\lambda^{*}>0$$ such that $$\lambda \in (0,\lambda^{*})$$, problem (3.1) admits a positive solution $$\tau_{\gamma }\in W_{0}^{1,p}(\Omega )$$ satisfying $$I_{\gamma }(\tau_{\gamma })>\rho$$, where ρ is given in Lemma 2.1.

### Proof

Let $$\lambda^{*}=\min \{\lambda_{0}, \widetilde{\lambda }_{0}\}$$, then Lemmas 3.13.3 hold for $$0<\lambda <\lambda^{*}$$. Based on Lemma 3.1, we know that $$I_{\gamma }$$ satisfies the geometry of the mountain pass lemma . Therefore, there is a sequence $$\{\tau_{n}\}\subset W_{0}^{1,p}(\Omega )$$ such that

$$I_{\gamma }(\tau_{n})\rightarrow c_{\gamma }>\rho >0, \quad\quad I_{\gamma }^{\prime}( \tau_{n})\rightarrow 0,$$
(3.10)

where

\begin{aligned}& c_{\gamma }=\inf_{\phi \in \Phi }\max_{ r\in [0,1]}I_{\gamma } \bigl(\phi (r) \bigr), \\& \Phi = \bigl\{ \phi \in C \bigl([0,1], W_{0}^{1,p}(\Omega ) \bigr):\phi (0)=0, \phi (1)=u_{2} \bigr\} . \end{aligned}

So, according to Lemmas 3.1 and 3.3, one has

\begin{aligned}[b] 0&< \rho < c_{\gamma }\leq \max _{r\in [0,1]}I_{\gamma }(ru_{2}) \leq \sup _{r\geq 0}I_{\gamma }(ru_{2}) \\ &< \frac{p-t}{p(N-p)}\frac{S^{\frac{N-t}{p-t}}}{Q^{\frac{N-p}{p-t}} _{M}}-D\lambda^{\frac{p}{p+s-1}}. \end{aligned}
(3.11)

From Lemma 3.2, note that $$\{\tau_{n}\}$$ has a convergent subsequence, still denoted by $$\{\tau_{n}\}$$ ($$\{\tau_{n}\}\subset W_{0}^{1,p}( \Omega )$$). Assume that $$\lim_{n\rightarrow \infty }\tau_{n}= \tau_{\gamma }$$ in $$W_{0}^{1,p}(\Omega )$$. Hence, combining (3.10) and (3.11), we have

$$I_{\gamma }(\tau_{\gamma })=\lim_{n\rightarrow \infty }I_{\gamma }( \tau_{n})=c_{\gamma }>\rho >0,$$

which implies that $$\tau_{\gamma }\not \equiv 0$$. By the continuity of $$I_{\gamma }^{\prime}$$, we know that $$\tau_{\gamma }$$ is a solution of (3.1). Furthermore, $$\tau_{\gamma }\geq 0$$. Hence, applying the strong maximum principle, we obtain that $$\tau_{\gamma }$$ is a positive solution of (3.1). □

## 4 Existence of the second solution of problem (1.1)

### Theorem 4.1

For $$\lambda \in (0, \lambda^{*})$$, problem (1.1) possesses a positive solution $$\tau_{1}$$ satisfying $$I_{\lambda ,\mu }(\tau_{1})>0$$, where $$\lambda^{*}$$ is given in Theorem 3.4.

### Proof

Let $$\{\tau_{\gamma }\}$$ be a family of positive solutions of (1.1), we will show that $$\{\tau_{\gamma }\}$$ has a uniform lower bound. Indeed, we denote

\begin{aligned}& d(r)=r^{p^{*}(t)-1}+\frac{\lambda }{(r+p-1)^{s}}; \\& \text{case~(i)}\quad 0< r< 1, \quad d(r)\geq \frac{\lambda }{(1+p-1)^{s}}=\frac{ \lambda }{p^{s}}; \\& \text{case~(ii)} \quad r\geq 1, \quad d(r)\geq 1. \end{aligned}

Therefore, for every $$\gamma \in (0,1)$$, $$r\geq 0$$, we get

$$r^{p^{*}(t)-1}+\frac{\lambda }{(r+\gamma )^{s}}\geq r^{p^{*}(t)-1}+\frac{ \lambda }{(r+p-1)^{s}} \geq \min \biggl\{ 1,\frac{\lambda }{p^{s}} \biggr\} .$$

Recall that e is a weak solution of the following problem:

$$\textstyle\begin{cases} -\Delta_{p} u-\mu \frac{ \vert u \vert ^{p-2}u}{ \vert x \vert ^{p}}=1, & \text{in } \Omega , \\ u=0, &\text{on } \partial \Omega , \end{cases}$$

so $$e(x)>0$$ in Ω. According to the comparison principle, we have

$$\tau_{\gamma }\geq \min \{1,Q_{m}\}\min \biggl\{ 1, \frac{\lambda }{p^{s}} \biggr\} e>0,$$
(4.1)

where $$Q_{m} =\min_{x\in Q}Q(x)>0$$. Since $$\{\tau_{\gamma }\}$$ are solutions of problem (3.1), one has

$$\Vert \tau_{\gamma } \Vert ^{p}- \int_{\Omega }Q(x)\frac{\tau^{p^{*}(t)}_{\gamma }}{ \vert x \vert ^{t}}\,dx-\lambda \int_{\Omega }(\tau_{\gamma }+\gamma )^{-s} \tau_{\gamma }\,dx=0.$$
(4.2)

Combining with (3.3), (4.2), and Theorem 3.4, we have

\begin{aligned}& \frac{p-t}{p(N-p)} \frac{S^{\frac{N-t}{p-t}}}{Q^{\frac{N-p}{p-t}}_{M}}-D \lambda^{\frac{p}{p+s-1}} \\& \quad >I_{\gamma }(\tau_{\gamma })-\frac{1}{p^{*}(t)} \bigl\langle I^{\prime}_{\gamma }(\tau_{\gamma }),\tau_{\gamma } \bigr\rangle \\& \quad =\frac{p-t}{p(N-t)} \Vert \tau_{\gamma } \Vert ^{p}+ \frac{\lambda }{p^{*}(t)} \int_{\Omega }(\tau_{\gamma }+\gamma )^{-s} \tau_{\gamma }\,dx-\frac{\lambda }{1-s} \int_{\Omega } \bigl[(\tau_{\gamma }+\gamma )^{1-s} - \gamma^{1-s} \bigr]\,dx \\& \quad \geq \frac{p-t}{p(N-t)} \Vert \tau_{\gamma } \Vert ^{p}-\frac{\lambda }{1-s} \int_{\Omega } \bigl[(\tau_{\gamma }+\gamma )^{1-s}- \gamma ^{1-s} \bigr]\,dx \\& \quad =\frac{p-t}{p(N-t)} \Vert \tau_{\gamma } \Vert ^{p}- \frac{\lambda C_{6}}{1-s} \Vert \tau_{\gamma } \Vert ^{1-s}, \end{aligned}

since $$s\in (0,1)$$, so $$\{\tau_{\gamma }\}$$ is bounded in $$W_{0}^{1,p}( \Omega )$$. Going if necessary to a subsequence, also called $$\{\tau_{\gamma }\}$$, there exists $$\tau_{1}\in W_{0}^{1,p}(\Omega )$$ such that

$$\textstyle\begin{cases} \tau_{\gamma }\rightharpoonup \tau_{1}, & \text{in } W_{0}^{1.p}(\Omega ), \\ \tau_{\gamma }\longrightarrow \tau_{1}, & \text{in } L^{p'}(\Omega , \vert x \vert ^{-t}), \\ \tau_{\gamma }(x)\longrightarrow \tau_{1}(x), & \text{a.e. in } \Omega . \end{cases}\displaystyle \quad1\leq p'< p^{*}(t),$$
(4.3)

Now, we show that $$\tau_{\gamma }\rightarrow \tau_{1}$$ in $$W_{0}^{1.p}( \Omega )$$ as $$\gamma \rightarrow 0$$. Set $$w_{\gamma }=\tau_{\gamma }- \tau_{1}$$, then $$\Vert w_{\gamma } \Vert \rightarrow 0$$ as $$\gamma \rightarrow 0$$; otherwise, there exists a subsequence (still denoted by $$w_{\gamma }$$) such that $$\lim_{\gamma \rightarrow 0} \Vert w_{\gamma } \Vert =l>0$$. Since $$0\leq \frac{ \tau_{\gamma }}{(\tau_{\gamma }+\gamma )^{s}}\leq \tau_{\gamma }^{1-s}$$, applying Hölder’s inequality and (4.3), we have

\begin{aligned} \int_{\Omega }\tau_{\gamma }(\tau_{\gamma }+\gamma )^{-s}\,dx&\leq \int_{\Omega }\tau_{\gamma }^{1-s}\,dx \leq \int_{\Omega } \vert w_{\gamma } \vert ^{1-s} \,dx+ \int_{\Omega } \vert \tau_{1} \vert ^{1-s} \,dx \\ &= \vert w_{\gamma } \vert _{p}^{1-s} \vert \Omega \vert ^{\frac{1+s}{p}}+ \int_{\Omega } \vert \tau_{1} \vert ^{1-s} \,dx \\ &\leq \int_{\Omega } \vert \tau_{1} \vert ^{1-s} \,dx+o(1). \end{aligned}

Similarly,

$$\int_{\Omega } \vert \tau_{1} \vert ^{1-s} \,dx\leq \int_{\Omega }\tau_{\gamma }( \tau_{\gamma }+\gamma )^{-s}\,dx+o(1).$$

Therefore

$$\lim_{\gamma \rightarrow 0} \int_{\Omega }\tau_{\gamma }(\tau_{\gamma }+\gamma )^{-s}\,dx= \int_{\Omega }\tau_{1}^{1-s}\,dx.$$

It follows from $$\langle I_{\gamma }^{\prime}(\tau_{\gamma }),\tau_{\gamma }\rangle =0$$ and the Brézis–Lieb lemma that

$$\Vert w_{\gamma } \Vert ^{p}+ \Vert \tau_{1} \Vert ^{p}- \int_{\Omega }Q(x)\frac{w_{\gamma }^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx - \int_{\Omega }Q(x)\frac{\tau_{1}^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx-\lambda \int_{\Omega }\tau_{1}^{1-s}\,dx =o(1).$$
(4.4)

Note that $$\tau_{\gamma }\rightharpoonup \tau_{1}$$ as $$\gamma \rightarrow 0^{+}$$. Choose the test function $$\varphi =\phi \in W_{0}^{1,p}( \Omega )\cap C_{0}(\Omega )$$ in (3.2). Letting $$\gamma \rightarrow 0^{+}$$ and using (4.1), we deduce that $$\tau_{1} \geq \min \{1,Q_{m}\}\min \{1,\frac{\lambda }{p^{s}}\}e>0$$, and

$$\int_{\Omega } \biggl( \vert \nabla \tau_{1} \vert ^{p-2}\nabla \tau_{1}\nabla \phi -\mu \frac{ \vert \tau_{1} \vert ^{p-2}\tau_{1} \phi }{ \vert x \vert ^{p}} \biggr) \,dx= \int_{\Omega }Q(x)\frac{\tau_{1}^{p^{*}(t)-1}}{ \vert x \vert ^{t}} \phi \,dx+\lambda \int_{\Omega }\tau_{1}^{-s}\phi \,dx.$$
(4.5)

We show that (4.5) holds for every $$\phi \in W_{0}^{1,p}(\Omega )$$. In fact, since $$W_{0}^{1,p}(\Omega )\cap C_{0}(\Omega )$$ is dense in $$W_{0}^{1,p}(\Omega )$$, then for every $$\phi \in W_{0}^{1,p}(\Omega )$$, there exists a sequence $$\{\phi_{n}\}\subset W_{0}^{1,p}(\Omega ) \cap C_{0}(\Omega )$$ such that $$\lim_{n\rightarrow \infty }\phi_{n}= \phi$$. For $$m, n \in \mathbb{N^{+}}$$ large enough, replacing ϕ with $$\phi_{n}-\phi_{m}$$ in (4.5) yields

\begin{aligned}[b] & \int_{\Omega } \biggl( \vert \nabla \tau_{1} \vert ^{p-2} \nabla \tau_{1}\nabla (\phi_{n}- \phi_{m})-\mu \frac{ \vert \tau_{1} \vert ^{p-2}\tau_{1} \vert \phi_{n}-\phi_{m} \vert }{ \vert x \vert ^{p}}\, \biggr)\,dx \\ &\quad = \int_{\Omega }Q(x)\frac{\tau_{1}^{p^{*}(t)}}{ \vert x \vert ^{t}} \vert \phi_{n}- \phi _{m} \vert \,dx+\lambda \int_{\Omega }\tau^{-s}_{1} \vert \phi_{n}-\phi_{m} \vert \,dx. \end{aligned}
(4.6)

On the one hand, using $$\phi_{n}\rightarrow \phi$$ and (4.6), we have that $$\{\frac{\phi_{n}}{\tau_{1}}\}$$ is a Cauchy sequence in $$L^{p}(\Omega )$$, hence there exists $$\nu \in L^{p}(\Omega )$$ such that $$\lim_{n\rightarrow \infty }\frac{\phi_{n}}{\tau^{s}_{0}}=\nu$$, which implies that $$\lim_{n\rightarrow \infty } \frac{\phi_{n}}{\tau^{s}_{0}}=\nu$$ in measure. By Riesz’s theorem, without loss of generality, choose a subsequence of $$\{\frac{\phi_{n}}{ \tau^{s}_{0}}\}$$, still denoted by $$\{\frac{\phi_{n}}{\tau^{s}_{0}}\}$$, such that

$$\lim_{n\rightarrow \infty }\frac{\phi_{n}}{\tau^{s}_{0}}=\nu (x), \quad \text{a.e. } x\in \Omega .$$
(4.7)

On the other hand, from (4.7), we have that $$\nu =\frac{\phi }{\tau ^{s}_{0}}$$, which leads to

$$\lim_{n\rightarrow \infty } \int_{\Omega }\frac{\phi_{n}(x)}{\tau^{s}_{0}}\,dx= \int_{\Omega }\frac{\phi (x)}{\tau^{s}_{0}}\,dx.$$

Therefore, we deduce that (4.5) holds for $$\phi \in W_{0}^{1,p}( \Omega )$$. Setting $$\phi =\tau_{1}$$ in (4.5), we have

$$\Vert \tau_{1} \Vert ^{p}- \int_{\Omega }Q(x)\frac{\tau_{1}^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx-\lambda \int_{\Omega }\tau_{1}^{1-s}\,dx=0.$$
(4.8)

Together with (4.4), we obtain that

$$\Vert w_{\gamma } \Vert ^{p}- \int_{\Omega }Q(x)\frac{w_{\gamma }^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx=o(1).$$
(4.9)

Hence

$$\lim_{\gamma \rightarrow 0^{+}} \Vert w_{\gamma } \Vert ^{p}= \lim_{\gamma \rightarrow 0^{+}} \int_{\Omega }Q(x)\frac{w_{\gamma }^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx=l>0.$$

Since

$$\int_{\Omega }\frac{ \vert w_{\gamma } \vert ^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx\geq \int_{\Omega }\frac{Q(x)}{Q_{M}} \frac{ \vert w_{\gamma } \vert ^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx \geq \int_{\Omega }\frac{Q(x)}{Q_{M}} \frac{(w_{\gamma }^{+})^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx.$$

Then $$l\geq \frac{S^{\frac{N-t}{p-t}}}{Q_{M}^{\frac{N-p}{p-t}}}$$. By (4.8), we have

\begin{aligned} I_{\lambda ,\mu }(\tau_{1})&=\frac{1}{p} \Vert \tau_{1} \Vert ^{p}-\frac{1}{p ^{*} (t)} \int_{\Omega }Q(x)\frac{\tau_{1}^{p^{*}(t)}}{ \vert x \vert ^{t}}\,dx-\frac{\lambda }{1-s} \int_{\Omega }\tau_{1}^{1-s}\,dx \\ &=\frac{p-t}{p(N-t)} \Vert \tau_{1} \Vert ^{p}-\lambda \biggl(\frac{1}{1-s}-\frac{1}{p ^{*}(t)} \biggr) \int_{\Omega }\tau_{1}^{1-s}\,dx \\ &\geq \frac{p-t}{p(N-t)} \Vert \tau_{1} \Vert ^{p}- \lambda \biggl(\frac{1}{1-s}+\frac{1}{p ^{*} (t)} \biggr)C_{2} \Vert \tau_{1} \Vert ^{1-s} \\ &>-D\lambda^{\frac{p}{p+s-1}}. \end{aligned}
(4.10)

At the same time, it follows from (4.4) and (4.9) that

\begin{aligned} I_{\lambda ,\mu }(\tau_{1})&=I_{\gamma }(\tau_{\gamma })- \frac{p-t}{p(N-t)} \Vert w_{\gamma } \Vert ^{p}+o(1) \\ &< \frac{p-t}{p(N-t)} \biggl( \frac{S^{\frac{N-t}{p-t}}}{Q_{M}^{ \frac{N-p}{p-t}}}-l \biggr) -D \lambda^{\frac{p}{p-1+s}} \\ &\leq -D \lambda^{\frac{p}{p-1+s}}, \end{aligned}

which contradicts (4.10). Therefore, we deduce that

$$I_{\lambda ,\mu }(\tau_{1})=\lim_{\gamma \rightarrow 0}I_{\gamma }( \tau_{\gamma })>\rho >0.$$

Consequently, problem (1.1) has two different solutions $$u_{1}$$ and $$\tau_{1}$$. Furthermore, $$\tau_{1} \not \equiv 0$$, together with the maximum principle, we conclude that $$\tau_{1} >0$$ a.e. $$x\in \Omega$$. That is, $$\tau_{1}$$ is a positive solution of problem (1.1).

The proof of Theorem 4.1 is completed. □

### Remark 4.1

In order to apply the Brézis–Lieb lemma, we need to establish the convergence results for the sequences with gradient terms [5, 9]. Furthermore, the strong maximum principle for a p-Laplace operator is also used.

## References

1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

2. Bouchekif, M., Messirdi, S.: On nonhomogeneous elliptic equations with critical Sobolev exponent and prescribed singularities. Taiwan. J. Math. 20(2), 431–447 (2016)

3. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

4. Cencelj, M., Repovs, D., Virk, Z.: Multiple perturbations of a singular eigenvalue problem. Nonlinear Anal. 119, 37–45 (2015)

5. Chen, G.W.: Quasilinear elliptic equations with Hardy terms and Hardy–Sobolev critical exponents: nontrivial solutions. Bound. Value Probl. 2015, 1 (2015)

6. Chen, S., Wang, Z.Q.: Existence and multiple solutions for a critical quasilinear equation with singular potentials. Nonlinear Differ. Equ. Appl. 22(4), 699–719 (2015)

7. Chhetri, M., Drábek, P., Shivaji, R.: Analysis of positive solutions for classes of quasilinear singular problems on exterior domains. Adv. Nonlinear Anal. 6(4), 447–459 (2017)

8. D’Ambrosio, L., Mitidieri, E.: Quasilinear elliptic equations with critical potentials. Adv. Nonlinear Anal. 6(2), 147–164 (2017)

9. de Valeriola, S., Willem, M.: On some quasilinear critical problems. Adv. Nonlinear Stud. 9, 825–836 (2009)

10. Dhanya, R., Prashanth, S., Tiwari, S., Sreenadh, K.: Elliptic problems in $$\mathbb{R}^{N}$$ with critical and singular discontinuous nonlinearities. Complex Var. Elliptic Equ. 61, 1656–1676 (2016)

11. Dupaigne, L., Ghergu, M., Radulescu, V.: Lane–Emden–Fowler equations with convection and singular potential. J. Math. Pures Appl. 87(6), 563–581 (2007)

12. Ferrara, M., Molica Bisci, G.: Existence results for elliptic problems with Hardy potential. Bull. Sci. Math. 138(7), 846–859 (2014)

13. Filippucci, R., Pucci, P., Robert, F.: On a p-Laplace equation with multiple critical nonlinearities. J. Math. Pures Appl. 91(2), 156–177 (2009)

14. Ghergu, M., Radulescu, V.: Sublinear singular elliptic problems with two parameters. J. Differ. Equ. 195(2), 520–536 (2003)

15. Ghergu, M., Radulescu, V.: Multi-parameter bifurcation and asymptotics for the singular Lane–Emden–Fowler equation with a convection term. Proc. R. Soc. Edinb. A 135(1), 61–83 (2005)

16. Ghergu, M., Radulescu, V.: Singular elliptic problems with lack of compactness. Ann. Mat. Pura Appl. 185(1), 63–79 (2006)

17. Ghergu, M., Radulescu, V.: Singular Elliptic Problems: Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and Its Applications, vol. 37. Clarendon, Oxford (2008)

18. Giacomoni, J., Mukherjee, T., Sreenadh, K.: Positive solutions of fractional elliptic equation with critical and singular nonlinearity. Adv. Nonlinear Anal. 6, 327–354 (2017)

19. Han, P.G.: Quasilinear elliptic problems with critical exponents and Hardy terms. Nonlinear Anal. 61(5), 735–758 (2005)

20. Hashizume, M.: Minimization problem on the Hardy–Sobolev inequality. Nonlinear Differ. Equ. Appl. 24(22), 1–12 (2017)

21. Hsu, T.S.: Multiple positive solutions for a class of quasilinear elliptic equations involving concave-convex nonlinearities and Hardy terms. Bound. Value Probl. 2011(37), 1 (2011)

22. Kang, D.: On the quasilinear elliptic problems with critical Sobolev–Hardy exponents and Hardy terms. Nonlinear Anal. 68(7), 1973–1985 (2008)

23. Kang, D., Kang, Y.: Positive solutions to the weighted critical quasilinear problems. Appl. Math. Comput. 213, 432–439 (2009)

24. Lei, C.Y., Liao, J.F., Tang, C.L.: Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents. J. Math. Anal. Appl. 421, 521–538 (2015)

25. Li, J., Tong, Y.X.: Multiplicity of solutions for quasilinear elliptic systems with singularity. Acta Math. Appl. Sin. Engl. Ser. 31, 277–286 (2015)

26. Li, Y.Y., Ruf, B., Guo, Q.Q.: Quasilinear elliptic problems with combined critical Sobolev–Hardy terms. Ann. Mat. Pura Appl. 192, 93–113 (2013)

27. Liao, J.F., Liu, J., Zhang, P., Tang, C.L.: Existence of two positive solutions for a class of semilinear elliptic equations with singularity and critical exponent. Ann. Pol. Math. 116, 273–292 (2016)

28. Mukherjee, T., Sreenadh, K.: Fractional elliptic equations with critical growth and singular nonlinearities. Electron. J. Differ. Equ. 2016(54), 1 (2016)

29. Nursultanov, M., Rozenblum, G.: Eigenvalue asymptotics for the Sturm–Liouville operator with potential having a strong local negative singularity. Opusc. Math. 37(1), 109–139 (2017)

30. Sano, M., Takahashi, F.: Sublinear eigenvalue problems with singular weights related to the critical Hardy inequality. Electron. J. Differ. Equ. 2016(212), 1 (2016)

31. Saoudi, K., Ghanmi, A.: A multiplicity results for a singular equation involving the $$p(x)$$-Laplace operator. Complex Var. Elliptic Equ. 5(62), 1–31 (2017)

32. Sun, J., Wu, T.: Existence of nontrivial solutions for a biharmonic equation with p-Laplacian and singular sign-changing potential. Appl. Math. Lett. 66, 61–67 (2017)

33. Wei, J.C., Yan, S.S.: Bubble solutions for an elliptic problem with critical growth in exterior domain. Nonlinear Anal. 119, 46–61 (2015)

34. Xiang, C.L.: Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential. J. Differ. Equ. 259, 3929–3954 (2015)

### Acknowledgements

We would like to thank the referees for their valuable comments and suggestions to improve our paper.

### Availability of data and materials

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

## Funding

This project is supported by the Natural Science Foundation of Shanxi Province (201601D011003), NSFC (11401583) and the Fundamental Research Funds for the Central Universities (16CX02051A).

## Author information

Authors

### Contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

### Corresponding author

Correspondence to Yanbin Sang.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests. 