Curds, C.R., Cockburn, A.: Studies on the growth and feeding of tetrahymena pyriformis in axenic and monoxenic culture. J. Gen. Microbiol. **54**, 343–358 (1968)

Article
Google Scholar

Hassell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control. Nature **223**, 1133–1137 (1969)

Article
Google Scholar

Salt, G.W.: Predator and prey densities as controls of the rate of capture by the predator didinium nasutum. Ecology **55**, 434–439 (1974)

Article
Google Scholar

Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. **139**, 311–326 (1989)

Article
Google Scholar

Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol. **61**, 19–32 (1999)

Article
MATH
Google Scholar

Bianca, C., Pennisi, M., Motta, S., Ragusa, M.A.: Immune system network and cancer vaccine. AIP Conf. Proc. **1389**, 945–948 (2011). https://doi.org/10.1063/1.3637764

Article
Google Scholar

Bianca, C., Pappalardo, F., Motta, S., Ragusa, M.A.: Persistence analysis in a Kolmogorov-type model for cancer-immune system competition. AIP Conf. Proc. **1558**, 1797–1800 (2013). https://doi.org/10.1063/1.4825874

Article
Google Scholar

Kuang, Y.: Rich dynamics of Gause-type ratio-dependent predator–prey system. Fields Inst. Commun. **21**, 325–337 (1999)

MathSciNet
MATH
Google Scholar

Conser, C., Angelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. **56**, 65–75 (1999)

Article
Google Scholar

Kesh, D., Sarkar, A.K., Roy, A.B.: Persistence of two prey-one predator system with ratio-dependent predator influence. Math. Methods Appl. Sci. **23**, 347–356 (2000)

Article
MathSciNet
MATH
Google Scholar

Pang, P.Y.H., Wang, M.: Strategy and stationary pattern in a three-species predator–prey model. J. Differ. Equ. **200**, 245–273 (2004)

Article
MathSciNet
MATH
Google Scholar

Baek, S., Ko, W., Ahn, I.: Coexistence of a one-prey two-predators model with ratio-dependent functional responses. Appl. Math. Comput. **219**, 1897–1908 (2012)

MathSciNet
MATH
Google Scholar

Ko, W., Ahn, I.: A diffusive one-prey and two-competing-predator system with a ratio-dependent functional response: I, long time behavior and stability of equilibria. J. Math. Anal. Appl. **397**, 9–28 (2013)

Article
MathSciNet
MATH
Google Scholar

Ko, W., Ahn, I.: A diffusive one-prey and two-competing-predator system with a ratio-dependent functional response: II stationary pattern formation. J. Math. Anal. Appl. **397**, 29–45 (2013)

Article
MathSciNet
MATH
Google Scholar

Sarwardi, S., Haque, M., Mandal, P.K.: Ratio-dependent predator–prey model of interacting population with delay effect. Nonlinear Dyn. **69**, 817–836 (2012)

Article
MathSciNet
MATH
Google Scholar

Sen, M., BanerJee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey–predator model with the Allee effect. Ecol. Complex. **11**, 12–27 (2012)

Article
Google Scholar

Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. **62**, 291–331 (2011)

Article
MathSciNet
MATH
Google Scholar

Zhang, G., Wang, W., Wang, X.: Coexistence states for a diffusive one-prey and two-predators model with B–D functional response. J. Math. Anal. Appl. **387**, 931–948 (2012)

Article
MathSciNet
MATH
Google Scholar

Zhou, J., Mu, C.: Coexistence of a diffusive predator–prey model with Holling type-II functional response and density dependent mortality. J. Math. Anal. Appl. **385**, 913–927 (2012)

Article
MathSciNet
MATH
Google Scholar

Mandal, P.S.: Noise-induced extinction for a ratio-dependent predator–prey model with strong Allee effect in prey. Phys. A, Stat. Mech. Appl. **496**, 40–52 (2018)

Article
MathSciNet
Google Scholar

Louartassi, Y., Alla, A., Hattaf, K., Nabil, A.: Dynamics of a predator–prey model with harvesting and reserve area for prey in the presence of competition and toxicity. J. Appl. Math. Comput. (2018). https://doi.org/10.1007/s12190-018-1181-0

Google Scholar

Yin, F.Q., Li, Y.K.: Positive periodic solutions of a single species model with feedback regulation and distributed time delay. Appl. Math. Comput. **153**, 475–484 (2004)

MathSciNet
MATH
Google Scholar

Chen, F.: Global stability of a single species model with feedback control and distributed time delay. Appl. Math. Comput. **178**, 474–479 (2006)

MathSciNet
MATH
Google Scholar

Nie, L., Teng, Z., Hu, L., Peng, J.: Permanence and stability in non-autonomous predator–prey Lotka–Volterra systems with feedback controls. Comput. Math. Appl. **58**, 436–448 (2009)

Article
MathSciNet
MATH
Google Scholar

Chen, F.: The permanence and global attractivity of Lotka–Volterra competition system with feedback controls. Nonlinear Anal., Real World Appl. **7**, 133–143 (2006)

Article
MathSciNet
MATH
Google Scholar

Fan, Y., Wang, L.: Global asymptotical stability of a logistic model with feedback control. Nonlinear Anal., Real World Appl. **11**, 2686–2697 (2010)

Article
MathSciNet
MATH
Google Scholar

Gopalsamy, K., Weng, P.: Global attractivity in a competition system with feedback controls. Comput. Math. Appl. **45**, 665–676 (2003)

Article
MathSciNet
MATH
Google Scholar

Lai, Y.C., Tel, T.: Transient Chaos: Complex Dynamics on Finite Time Scales. Springer, Berlin (2011)

Book
MATH
Google Scholar

Li, J., Zhao, A., Yan, J.: The permanence and global attractivity of a Kolmogorov system with feedback controls. Nonlinear Anal., Real World Appl. **10**, 506–518 (2009)

Article
MathSciNet
MATH
Google Scholar

Yang, Z.: Positive periodic solutions of a class of single species neutral models with state dependent delay and feedback control. Eur. J. Appl. Math. **17**, 735–757 (2006)

Article
MathSciNet
MATH
Google Scholar

Lande, R., Engen, S., Saether, B.E.: Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press, Oxford (2003)

Book
MATH
Google Scholar

Liu, Y., Shan, M., Lian, X.: Stochastic extinction and persistence of a parasite-host epidemiological model. Phys. A, Stat. Mech. Appl. **462**, 586–602 (2016)

Article
MathSciNet
Google Scholar

Ridolfi, L., D’Odorico, P., Laio, F.: Noise-Induced Phenomena in the Environmental Sciences. Cambridge University Press, Cambridge (2011)

Book
MATH
Google Scholar

Spagnolo, B., Cirone, M., La Barbera, A., De Pasquale, F.: Noise-induced effects in population dynamics. J. Phys. Condens. Matter **14**, 2247–2255 (2002)

Article
Google Scholar

Spagnolo, B., Fiasconaro, A., Valenti, D.: Noise induced phenomena in Lotka–Volterra systems. Fluct. Noise Lett. **3**, L177–L185 (2003)

Article
Google Scholar

Spagnolo, B., Valenti, D., Fiasconaro, A.: Noise in ecosystems: a short review. Math. Biosci. Eng. **1**, 185–211 (2004)

Article
MathSciNet
MATH
Google Scholar

Fiasconaro, A., Mazo, J.J., Spagnolo, B.: Noise-induced enhancement of stability in a metastable system with damping. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. **82**, 041120 (2010)

Article
Google Scholar

Ghergu, M., Radulescu, V.: A singular Gierer–Meinhardt system with different source terms. Proc. R. Soc. Edinb., Sect. A **138**, 1215–1234 (2008)

Article
MathSciNet
MATH
Google Scholar

Ghergu, M., Radulescu, V.: Turing patterns in general reaction-diffusion systems of Brusselator type. Commun. Contemp. Math. **12**, 661–679 (2010)

Article
MathSciNet
MATH
Google Scholar

Liu, X., Ren, Y., Li, Y.: Four positive periodic solutions of a discrete time Lotka–Volterra competitive system with harvesting terms. Opusc. Math. **31**, 257–267 (2011)

Article
MathSciNet
MATH
Google Scholar

Giacomoni, J., Hernandez, J., Sauvy, P.: Quasilinear and singular elliptic systems. Adv. Nonlinear Anal. **2**, 1–41 (2013)

Article
MathSciNet
MATH
Google Scholar

Ghergu, M., Radulescu, V.: Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics. Springer Monographs in Mathematics. Springer, Heidelberg (2012)

MATH
Google Scholar

Ciuchi, S., Depasquale, F., Spagnolo, B.: Nonlinear relaxation in the presence of an absorbing barrier. Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics **47**, 3915–3926 (1993)

Google Scholar

Bashkirtseva, I., Ryashko, L.: How environmental noise can contract and destroy a persistence zone in population models with Allee effect. Theor. Popul. Biol. **115**, 61–68 (2017)

Article
MATH
Google Scholar

Bashkirtseva, I., Ryashko, L.: Noise-induced shifts in the population model with a weak Allee effect. Phys. A, Stat. Mech. Appl. **491**, 28–36 (2018)

Article
MathSciNet
Google Scholar

Dubkov, A., Spagnolo, B.: Langevin approach to Lévy flights in fixed potentials: exact results for stationary probability distributions. Acta Phys. Pol. B **38**, 1745–1758 (2007)

MATH
Google Scholar

Gao, J.B., Hwang, S.K., Liu, J.M.: When can noise induce chaos? Phys. Rev. Lett. **82**, 1132–1135 (1999)

Article
Google Scholar

Li, Y., Zhang, T.: Permanence of a discrete *n*-species cooperation system with time-varying delays and feedback controls. Math. Comput. Model. **53**, 1320–1330 (2011). https://doi.org/10.1016/j.mcm.2010.12.018

Article
MathSciNet
MATH
Google Scholar

Sun, G.Q., Jin, Z., Li, L., Liu, Q.X.: The role of noise in a predator–prey model with Allee effect. J. Biol. Phys. **35**, 185–196 (2009)

Article
Google Scholar

Zhang, X.B., Huo, H.F., Xiang, H., Shi, Q.H., Li, D.G.: The threshold of a stochastic SIQS epidemic model. Phys. A, Stat. Mech. Appl. **482**, 362–374 (2017)

Article
MathSciNet
Google Scholar

Shi, Q.H., Wang, S.: Nonrelativistic approximation in the energy space for KGS system. J. Math. Anal. Appl. **462**, 1242–1253 (2018)

Article
MathSciNet
MATH
Google Scholar

Lu, Z.Q., Liang, G.Z.: Dynamics of a nonautonomous ratio-dependent two competing predator-one prey model. J. Henan Norm. Univ. Nat. Sci. **35**(2), 211–214 (2007) (In Chinese)

MathSciNet
MATH
Google Scholar

Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)

MATH
Google Scholar

Basener, W.: Topology and Its Applications. Wiley, Hoboken (2006)

Book
MATH
Google Scholar