Curds, C.R., Cockburn, A.: Studies on the growth and feeding of tetrahymena pyriformis in axenic and monoxenic culture. J. Gen. Microbiol. 54, 343–358 (1968)
Article
Google Scholar
Hassell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969)
Article
Google Scholar
Salt, G.W.: Predator and prey densities as controls of the rate of capture by the predator didinium nasutum. Ecology 55, 434–439 (1974)
Article
Google Scholar
Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)
Article
Google Scholar
Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol. 61, 19–32 (1999)
Article
MATH
Google Scholar
Bianca, C., Pennisi, M., Motta, S., Ragusa, M.A.: Immune system network and cancer vaccine. AIP Conf. Proc. 1389, 945–948 (2011). https://doi.org/10.1063/1.3637764
Article
Google Scholar
Bianca, C., Pappalardo, F., Motta, S., Ragusa, M.A.: Persistence analysis in a Kolmogorov-type model for cancer-immune system competition. AIP Conf. Proc. 1558, 1797–1800 (2013). https://doi.org/10.1063/1.4825874
Article
Google Scholar
Kuang, Y.: Rich dynamics of Gause-type ratio-dependent predator–prey system. Fields Inst. Commun. 21, 325–337 (1999)
MathSciNet
MATH
Google Scholar
Conser, C., Angelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)
Article
Google Scholar
Kesh, D., Sarkar, A.K., Roy, A.B.: Persistence of two prey-one predator system with ratio-dependent predator influence. Math. Methods Appl. Sci. 23, 347–356 (2000)
Article
MathSciNet
MATH
Google Scholar
Pang, P.Y.H., Wang, M.: Strategy and stationary pattern in a three-species predator–prey model. J. Differ. Equ. 200, 245–273 (2004)
Article
MathSciNet
MATH
Google Scholar
Baek, S., Ko, W., Ahn, I.: Coexistence of a one-prey two-predators model with ratio-dependent functional responses. Appl. Math. Comput. 219, 1897–1908 (2012)
MathSciNet
MATH
Google Scholar
Ko, W., Ahn, I.: A diffusive one-prey and two-competing-predator system with a ratio-dependent functional response: I, long time behavior and stability of equilibria. J. Math. Anal. Appl. 397, 9–28 (2013)
Article
MathSciNet
MATH
Google Scholar
Ko, W., Ahn, I.: A diffusive one-prey and two-competing-predator system with a ratio-dependent functional response: II stationary pattern formation. J. Math. Anal. Appl. 397, 29–45 (2013)
Article
MathSciNet
MATH
Google Scholar
Sarwardi, S., Haque, M., Mandal, P.K.: Ratio-dependent predator–prey model of interacting population with delay effect. Nonlinear Dyn. 69, 817–836 (2012)
Article
MathSciNet
MATH
Google Scholar
Sen, M., BanerJee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey–predator model with the Allee effect. Ecol. Complex. 11, 12–27 (2012)
Article
Google Scholar
Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. 62, 291–331 (2011)
Article
MathSciNet
MATH
Google Scholar
Zhang, G., Wang, W., Wang, X.: Coexistence states for a diffusive one-prey and two-predators model with B–D functional response. J. Math. Anal. Appl. 387, 931–948 (2012)
Article
MathSciNet
MATH
Google Scholar
Zhou, J., Mu, C.: Coexistence of a diffusive predator–prey model with Holling type-II functional response and density dependent mortality. J. Math. Anal. Appl. 385, 913–927 (2012)
Article
MathSciNet
MATH
Google Scholar
Mandal, P.S.: Noise-induced extinction for a ratio-dependent predator–prey model with strong Allee effect in prey. Phys. A, Stat. Mech. Appl. 496, 40–52 (2018)
Article
MathSciNet
Google Scholar
Louartassi, Y., Alla, A., Hattaf, K., Nabil, A.: Dynamics of a predator–prey model with harvesting and reserve area for prey in the presence of competition and toxicity. J. Appl. Math. Comput. (2018). https://doi.org/10.1007/s12190-018-1181-0
Google Scholar
Yin, F.Q., Li, Y.K.: Positive periodic solutions of a single species model with feedback regulation and distributed time delay. Appl. Math. Comput. 153, 475–484 (2004)
MathSciNet
MATH
Google Scholar
Chen, F.: Global stability of a single species model with feedback control and distributed time delay. Appl. Math. Comput. 178, 474–479 (2006)
MathSciNet
MATH
Google Scholar
Nie, L., Teng, Z., Hu, L., Peng, J.: Permanence and stability in non-autonomous predator–prey Lotka–Volterra systems with feedback controls. Comput. Math. Appl. 58, 436–448 (2009)
Article
MathSciNet
MATH
Google Scholar
Chen, F.: The permanence and global attractivity of Lotka–Volterra competition system with feedback controls. Nonlinear Anal., Real World Appl. 7, 133–143 (2006)
Article
MathSciNet
MATH
Google Scholar
Fan, Y., Wang, L.: Global asymptotical stability of a logistic model with feedback control. Nonlinear Anal., Real World Appl. 11, 2686–2697 (2010)
Article
MathSciNet
MATH
Google Scholar
Gopalsamy, K., Weng, P.: Global attractivity in a competition system with feedback controls. Comput. Math. Appl. 45, 665–676 (2003)
Article
MathSciNet
MATH
Google Scholar
Lai, Y.C., Tel, T.: Transient Chaos: Complex Dynamics on Finite Time Scales. Springer, Berlin (2011)
Book
MATH
Google Scholar
Li, J., Zhao, A., Yan, J.: The permanence and global attractivity of a Kolmogorov system with feedback controls. Nonlinear Anal., Real World Appl. 10, 506–518 (2009)
Article
MathSciNet
MATH
Google Scholar
Yang, Z.: Positive periodic solutions of a class of single species neutral models with state dependent delay and feedback control. Eur. J. Appl. Math. 17, 735–757 (2006)
Article
MathSciNet
MATH
Google Scholar
Lande, R., Engen, S., Saether, B.E.: Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press, Oxford (2003)
Book
MATH
Google Scholar
Liu, Y., Shan, M., Lian, X.: Stochastic extinction and persistence of a parasite-host epidemiological model. Phys. A, Stat. Mech. Appl. 462, 586–602 (2016)
Article
MathSciNet
Google Scholar
Ridolfi, L., D’Odorico, P., Laio, F.: Noise-Induced Phenomena in the Environmental Sciences. Cambridge University Press, Cambridge (2011)
Book
MATH
Google Scholar
Spagnolo, B., Cirone, M., La Barbera, A., De Pasquale, F.: Noise-induced effects in population dynamics. J. Phys. Condens. Matter 14, 2247–2255 (2002)
Article
Google Scholar
Spagnolo, B., Fiasconaro, A., Valenti, D.: Noise induced phenomena in Lotka–Volterra systems. Fluct. Noise Lett. 3, L177–L185 (2003)
Article
Google Scholar
Spagnolo, B., Valenti, D., Fiasconaro, A.: Noise in ecosystems: a short review. Math. Biosci. Eng. 1, 185–211 (2004)
Article
MathSciNet
MATH
Google Scholar
Fiasconaro, A., Mazo, J.J., Spagnolo, B.: Noise-induced enhancement of stability in a metastable system with damping. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 82, 041120 (2010)
Article
Google Scholar
Ghergu, M., Radulescu, V.: A singular Gierer–Meinhardt system with different source terms. Proc. R. Soc. Edinb., Sect. A 138, 1215–1234 (2008)
Article
MathSciNet
MATH
Google Scholar
Ghergu, M., Radulescu, V.: Turing patterns in general reaction-diffusion systems of Brusselator type. Commun. Contemp. Math. 12, 661–679 (2010)
Article
MathSciNet
MATH
Google Scholar
Liu, X., Ren, Y., Li, Y.: Four positive periodic solutions of a discrete time Lotka–Volterra competitive system with harvesting terms. Opusc. Math. 31, 257–267 (2011)
Article
MathSciNet
MATH
Google Scholar
Giacomoni, J., Hernandez, J., Sauvy, P.: Quasilinear and singular elliptic systems. Adv. Nonlinear Anal. 2, 1–41 (2013)
Article
MathSciNet
MATH
Google Scholar
Ghergu, M., Radulescu, V.: Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics. Springer Monographs in Mathematics. Springer, Heidelberg (2012)
MATH
Google Scholar
Ciuchi, S., Depasquale, F., Spagnolo, B.: Nonlinear relaxation in the presence of an absorbing barrier. Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, 3915–3926 (1993)
Google Scholar
Bashkirtseva, I., Ryashko, L.: How environmental noise can contract and destroy a persistence zone in population models with Allee effect. Theor. Popul. Biol. 115, 61–68 (2017)
Article
MATH
Google Scholar
Bashkirtseva, I., Ryashko, L.: Noise-induced shifts in the population model with a weak Allee effect. Phys. A, Stat. Mech. Appl. 491, 28–36 (2018)
Article
MathSciNet
Google Scholar
Dubkov, A., Spagnolo, B.: Langevin approach to Lévy flights in fixed potentials: exact results for stationary probability distributions. Acta Phys. Pol. B 38, 1745–1758 (2007)
MATH
Google Scholar
Gao, J.B., Hwang, S.K., Liu, J.M.: When can noise induce chaos? Phys. Rev. Lett. 82, 1132–1135 (1999)
Article
Google Scholar
Li, Y., Zhang, T.: Permanence of a discrete n-species cooperation system with time-varying delays and feedback controls. Math. Comput. Model. 53, 1320–1330 (2011). https://doi.org/10.1016/j.mcm.2010.12.018
Article
MathSciNet
MATH
Google Scholar
Sun, G.Q., Jin, Z., Li, L., Liu, Q.X.: The role of noise in a predator–prey model with Allee effect. J. Biol. Phys. 35, 185–196 (2009)
Article
Google Scholar
Zhang, X.B., Huo, H.F., Xiang, H., Shi, Q.H., Li, D.G.: The threshold of a stochastic SIQS epidemic model. Phys. A, Stat. Mech. Appl. 482, 362–374 (2017)
Article
MathSciNet
Google Scholar
Shi, Q.H., Wang, S.: Nonrelativistic approximation in the energy space for KGS system. J. Math. Anal. Appl. 462, 1242–1253 (2018)
Article
MathSciNet
MATH
Google Scholar
Lu, Z.Q., Liang, G.Z.: Dynamics of a nonautonomous ratio-dependent two competing predator-one prey model. J. Henan Norm. Univ. Nat. Sci. 35(2), 211–214 (2007) (In Chinese)
MathSciNet
MATH
Google Scholar
Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)
MATH
Google Scholar
Basener, W.: Topology and Its Applications. Wiley, Hoboken (2006)
Book
MATH
Google Scholar