- Research
- Open Access
- Published:
Minimal thinness with respect to the Schrödinger operator and its applications on singular Schrödinger-type boundary value problems
Boundary Value Problems volume 2019, Article number: 91 (2019)
Abstract
The application of the new criteria for minimally thin sets with respect to the Schrödinger operator to an approximate solution of singular Schrödinger-type boundary value problems are discussed in this study. The method is based on approximating functions and their derivatives by using the natural and weakened total energies. This study shows that the new criteria are very effective and powerful tools in solving such problems. At the end of the paper, we are also concerned with the boundary behaviors of solutions for a kind of quasilinear Schrödinger equation.
1 Introduction
In this paper, we further consider the following Schrödinger problem (see [1]):
where \(x \in \mathbb{R}^{n}\), \(z:\mathbb{R}\times \mathbb{R}^{n} \to \mathbb{C}\), \(a,W:\mathbb{R}^{n}\to \mathbb{R}\) is a given potential, k is real constant, and l and h are real functions. The above quasilinear equations have been accepted as models of several physical phenomena corresponding to various types of l; we refer to [2] and the references given therein for physical applications of these problems. Specifically, we would like to mention that the superfluid film equation in plasma physics has this structure for \(l(s)=s\) (see e.g. [3, 4]), while in the case \(l(s)=(1 +s)^{1/2}\), (1) models the self-channeling of a high-power ultrashort laser in matter (see e.g. [5, 6]).
The standing waves solutions of (1); that is, solutions of the type \(z(t,x)=\exp (-iEt)u(x)\) where \(E \in \mathbb{R}\) and \(u>0\) is a real function. Inserting z into (1), with \(l(s)=s\) and \(l(s)=(1 +s^{2})^{1/2}\), turns, respectively, the following equations (see e.g. [7]):
where \(x \in \mathbb{R}^{n}\) and \(V_{\infty }=W-E\).
It is well known that an unknown Borel probability measure on \(W= S\times T\) controls the sampling process, where \(T=\mathbb{R}\) and S is a compact metric space in \(\mathbb{R}^{n}\). As in [8], the exact weak solutions of (1) can be defined by \(g_{\varrho }(s)= \int _{T} y \,d\varrho (t|s)\), where \(\varrho (\cdot |s)\) is the conditional probability measure induced by ϱ on T given \(s\in S\).
To our knowledge, the criteria for minimally thin sets with respect to the Schrödinger operator (1) was introduced for the first time in the context of the stationary Schrödinger equations in [9, 10]. In 2018, Jiang, Zhang and Li (see [11]) further improved this complex method and applied to study meromorphic solutions for the linear differential equations with analytic coefficients and obtain some applications. Recently, Zhang (see [12, 13]) defined a new type of minimal thinness with respect to the stationary Schrödinger operator, established new criteria for it and applied the result to study growth properties at infinity of the maximum modulus with respect to the Schrödinger operator.
In this paper, we will continue to apply new criteria for solutions for a kind of quasilinear Schrödinger equations. Although we are motivated here by [9,10,11,12,13], there were substantial difficulties to adapt the above approach to the present situation. Let \(\mathfrak{H}_{E}\) be the completion of the linear span of the set of functions \(\{E_{s} :=E(s,\cdot ) : s \in S \}\) equipped with (see [8, 14])
Let \(s\in S\) and \(g\in \mathfrak{H}_{E}\). Define (see [15, Remark 2.3])
It follows from (2) that (see [16])
where
Define (see [17])
where
Scheme (4) yields (see [18, 19])
and
In order to study the boundary behaviors of \(g_{\mathbf{w},\varsigma }\), we derive
with (see [20,21,22,23] for more details)
The remainder of this paper is organized as follows. In Sect. 2, we will provide the main results. In Sect. 3, some basic but important estimates and properties are summarized. The proofs of main results will be given in Sect. 4. Section 5 contains the conclusions of the paper.
2 Main results
The integral operator \(L_{E}:L_{\varrho _{S}} ^{2}(S)\rightarrow L_{ \varrho _{S}} ^{2}(S)\) is defined by
Let \(\{\mu _{i}\} \) be the eigenvalues of \(L_{E}\) and \(\{e_{i}\}\) be the corresponding eigenfunctions. Then we define
for \(g\in L_{\varrho _{S}} ^{2}(S)\). We assume that \(g_{\varrho }\) satisfies \(L_{E}^{-r}g_{\varrho }\in L^{2}_{\varrho _{S}}\), where r is a positive constant depending on the size of the initial data in a suitable norm.
Let \(c_{p}~(0< p<2)\) be a positive constant. Define (see [24])
where
Now we are in a position to obtain the existence of solutions for the problem (1).
Theorem 1
Suppose \(L_{E}^{-r}g_{\varrho }\in L^{2}_{\varrho _{S}}\) with \(r>0\), (7) with \(0< p<2\). Then there exist solutions for the problem (1), which can be defined by
and
For the further application of Theorem 1, we have the following result. Similar results for solutions of the stationary Schrödinger equations, we refer the reader to the papers (see [13, 25]).
Proposition 1
Let \(L_{E}^{-r}g_{\varrho }\in L^{2}_{\varrho _{S}}\), where \(r>0\). Then
It follows from Theorem 1 that we can decompose solutions for the problem (1) into two parts, \(\mathfrak{H}_{1}( \mathbf{w},\varsigma )+\mathfrak{H}_{2}(\mathbf{w},\chi )\), where
and
Finally, we further study the boundary behaviors for solutions for the problem (1).
Theorem 2
Let the assumptions of Theorem 1 hold. Then
where \(0<\delta <1\).
Theorem 3
Let the assumptions of Theorem 1 hold. Then
where \(0<\delta <1\) and
3 Lemmas
Some basic but important estimates are needed in this section. The following lemma indicates that the natural and weakened total energies are conserved in time.
Lemma 1
We have the following estimates:
Proof
Multiplying the first equation by \(g_{\varrho }'\), we obtain
It follows that
Therefore
which leads to
Adding (13) and (14), we can write
which is equivalent to (11).
By taking the sum of the resulting two identities we obtain
using the symmetry of the matrix \((-\partial _{g}^{2} )^{-1}\) we obtain
□
From Lemma 1, we deduce the following result.
Lemma 2
Let \(0 \leq \delta \leq \frac{\delta _{0}}{3}\). Then
for a positive constant Cτ depending only on τ.
Proof
We recall
and we can write
It follows from Lemma 1 that
On the other hand
and thanks to Lemma 1 and [26, Theorem 2.1], one has
Hence
Integrating this last inequality over \(t \in [0,\tau ]\) and using the fact that the energy \(\widetilde{\mathfrak{E}}_{\tau ,g}(t)\) is conservative, we deduce that
Moreover, thanks to inequality (17), we have
and inserting this last equation into (18) yields
However, since
for all \(\delta \leq \frac{\delta _{0}}{3}\), we deduce from (19) that
Inserting this inequality into (16), the desired estimate (15) is obtained. □
We complete this subsection with the following lemma.
Lemma 3
We have
where \(0 \leq \delta \leq \min ( \delta _{0}, \sqrt{\delta _{0}} )\).
Proof
First, we recall the following estimates:
from the proof of Lemma 2.
Taking the sum of these two inequalities, we obtain
And thanks to Lemma 2, we improve (24) as follows:
which proves the inequality (20).
The other estimates (21) and (22), are obtained easily from equations (23), (24) and the relation
□
4 Proofs of main results
Now we derive the learning rates.
Proof of Theorem 1
Let \(\mathbf{{y}}=(t_{1}, t_{2}, t_{3},\ldots , t_{m})^{ \tau }\), \(K[{\mathbf{{s}}}]=(E(s_{i},s_{j}))_{i,j=1}^{m}\) and \(\mathbf{{a}}^{\mathbf{w}}=(a_{1}^{\mathbf{w}},\ldots ,a _{m}^{\mathbf{w}})\) be the coefficient of \(g_{\mathbf{w},\varsigma }\). It follows from the representation theorem (see [27, 28]) that
for \(i=1,2,\ldots ,m\).
By the Hölder inequality, we have
It follows that
from (5).
Thus
Since
we get
This yields our desired estimation. □
Proof of Theorem 2
Let
for any \(z=(u,t)\in Z\). Then
By (3) we have
Combining with (5), we have
Therefore
and
By Lemma 1,
□
Proof of Theorem 3
Consider the set of functions
We have
from (5), which yields
So
It has been proved in [13, 29] that
which implies that
Then we get
for any \(h_{1}\), \(h_{2}\in \mathfrak{G}_{R}\), which yields
It follows from the capacity condition (7) that
By applying Lemma 2 to \(\mathscr{G}\) with \(Q=8M^{2}\) we have
for any \(0<\delta <1\), where
Moreover, we take \(f=g_{\mathbf{w},\zeta ,\varsigma ,s}\) and derive the following bound of \(g_{\mathbf{w},\zeta ,\varsigma ,s}\) by using the same method in [9, Lemma 3] and (5):
If we take
then we can complete the proof of Theorem 3. □
5 Conclusion
The application of the new criteria for minimally thin sets with respect to the Schrödinger operator to an approximate solution of singular Schrödinger-type boundary value problems were discussed in this study. The method was based on approximating functions and their derivatives by using the natural and weakened total energies. This study showed that the new criteria were very effective and powerful tools in solving such problems. At the end of the paper, we were also concerned with the boundary behaviors of solutions for a kind of quasilinear Schrödinger equation.
References
Cottle, R.: Nonlinear programs with positively bounded jacobians. Ph.D. Dissertation, Department of Mathematics, University of California, Berkeley (1964)
Glowinski, R., Lions, J., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)
Cui, Y., Ma, W., Sun, Q., Su, X.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal., Model. Control 23(1), 31–39 (2018)
Cui, Y., Ma, W., Wang, X., Su, X.: Uniqueness theorem of differential system with coupled integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 9, 1 (2018)
Zou, Y., He, G.: A fixed point theorem for systems of nonlinear operator equations and applications to \((p1,p2)\)-Laplacian system. Mediterr. J. Math. 15(2), 74 (2018)
Zhang, X., Liu, L., Wu, Y., Cui, Y.: The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach. J. Math. Anal. Appl. 464(2), 1089–1106 (2018)
Lions, J., Stampaccia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–512 (1967)
Bremermann, J.: Distributions, Complex Variables, and Fourier Transforms. Addison-Wesley, Reading (1965)
Zhao, H., Ma, W.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74(6), 1399–1405 (2017)
Zhang, J., Ma, W.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74(3), 591–596 (2017)
Jiang, C., Zhang, F., Li, T.: Synchronization and antisynchronization of N-coupled fractional-order complex chaotic systems with ring connection. Math. Methods Appl. Sci. 41(7), 2625–2638 (2018)
Zhang, X., Liu, L., Wu, Y., Cui, Y.: Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach. Electron. J. Differ. Equ. 2018, 147 (2018)
Zhang, X., Jiang, J., Wu, Y., Cui, Y.: Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows. Appl. Math. Lett. 90, 229–237 (2019)
Gasiorowicz, S.: Elementary Particle Physics. Wiley, New York (1966)
Gelfand, I., Shilov, G.: Generalized Functions, vol. 1. Academic Press, New York (1964)
Passare, M.: Residues, currents, and their relation to ideals of holomorphic functions. Math. Scand. 62, 75–152 (1988)
Bliedtner, J., Hansen, W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage. Springer, Berlin (1986)
Dong, X., Bai, Z., Zhang, S.: Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 2017, Article ID 5 (2017)
Liu, L., Deng, F., Hou, T.: Almost sure exponential stability of implicit numerical solution for stochastic functional differential equation with extended polynomial growth condition. Appl. Math. Comput. 330, 201–212 (2018)
Andersson, M., Carlsson, H.: \(H^{p}\)-estimates of holomorphic division formulas. Pac. J. Math. 173, 307–335 (1996)
Antosik, P., Mikusinski, J., Sikorski, R.: Theory of Distributions the Sequential Approach. PWN, Warsaw (1973)
Ikegami, T.: Compactifications of Martin type of harmonic spaces. Osaka J. Math. 23, 653–680 (1986)
Shang, S., Bai, Z., Tian, Y., Yue, Y.: Periodic solution for second-order impulsive differential inclusions with relativistic operator. Bound. Value Probl. 2018, Article ID 173 (2018)
Chen, S., Ma, W.: Lump solutions to a generalized Bogoyavlensky–Konopelchenko equation. Front. Math. China 13(3), 525–534 (2018)
Zhang, X., Wu, Y., Cui, Y.: Existence and nonexistence of blow-up solutions for a Schrödinger equation involving a nonlinear operator. Appl. Math. Lett. 82, 85–91 (2018)
Meng, B., Wang, X.: Adaptive synchronization for uncertain delayed fractional-order Hopfield neural networks via fractional-order sliding mode control. Math. Probl. Eng. 2018, Article ID 1603629 (2018)
Noor, M.: Mixed variational-like inequalities. Commun. Appl. Nonlinear Anal. 1, 63–75 (1994)
Wu, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation. Math. Model. Anal. 23(4), 611–626 (2018)
Yang, J., Ma, W., Qin, Z.: Lump and lump-soliton solutions to the \((2+1)\)-dimensional Ito equation. Anal. Math. Phys. 8(3), 427–436 (2018)
Acknowledgements
Not applicable.
Availability of data and materials
Not applicable.
Funding
This work was supported by the Post-Doctoral Applied Research Projects of Qingdao (no. 2015122) and the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (no. 2014RCJJ032).
Author information
Authors and Affiliations
Contributions
The author read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The author declares that he has no competing interests.
Consent for publication
Not applicable.
Additional information
Abbreviations
Not applicable.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Meng, B. Minimal thinness with respect to the Schrödinger operator and its applications on singular Schrödinger-type boundary value problems. Bound Value Probl 2019, 91 (2019). https://doi.org/10.1186/s13661-019-1206-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-1206-0
Keywords
- Schrödinger-type boundary value problem
- Boundary behavior
- Schrödinger equation