Skip to main content

Minimal thinness with respect to the Schrödinger operator and its applications on singular Schrödinger-type boundary value problems

Abstract

The application of the new criteria for minimally thin sets with respect to the Schrödinger operator to an approximate solution of singular Schrödinger-type boundary value problems are discussed in this study. The method is based on approximating functions and their derivatives by using the natural and weakened total energies. This study shows that the new criteria are very effective and powerful tools in solving such problems. At the end of the paper, we are also concerned with the boundary behaviors of solutions for a kind of quasilinear Schrödinger equation.

1 Introduction

In this paper, we further consider the following Schrödinger problem (see [1]):

$$ iz_{t}=-\Delta z+W(x)z-a(x)h\bigl( \vert z \vert ^{2}\bigr)z-k\Delta l\bigl( \vert z \vert ^{2} \bigr)l'\bigl( \vert z \vert ^{2}\bigr)z, $$
(1)

where \(x \in \mathbb{R}^{n}\), \(z:\mathbb{R}\times \mathbb{R}^{n} \to \mathbb{C}\), \(a,W:\mathbb{R}^{n}\to \mathbb{R}\) is a given potential, k is real constant, and l and h are real functions. The above quasilinear equations have been accepted as models of several physical phenomena corresponding to various types of l; we refer to [2] and the references given therein for physical applications of these problems. Specifically, we would like to mention that the superfluid film equation in plasma physics has this structure for \(l(s)=s\) (see e.g. [3, 4]), while in the case \(l(s)=(1 +s)^{1/2}\), (1) models the self-channeling of a high-power ultrashort laser in matter (see e.g. [5, 6]).

The standing waves solutions of (1); that is, solutions of the type \(z(t,x)=\exp (-iEt)u(x)\) where \(E \in \mathbb{R}\) and \(u>0\) is a real function. Inserting z into (1), with \(l(s)=s\) and \(l(s)=(1 +s^{2})^{1/2}\), turns, respectively, the following equations (see e.g. [7]):

$$\begin{aligned}& -\Delta u + V_{\infty }u-k\Delta \bigl(u^{2}\bigr))u = a(x)h(u), \\ & -\Delta u + V_{\infty }u-k\Delta \bigl(\bigl(1+u^{2} \bigr)^{1/2}\bigr) \frac{u}{(1+u^{2})^{1/2}}= a(x)h(u), \end{aligned}$$

where \(x \in \mathbb{R}^{n}\) and \(V_{\infty }=W-E\).

It is well known that an unknown Borel probability measure on \(W= S\times T\) controls the sampling process, where \(T=\mathbb{R}\) and S is a compact metric space in \(\mathbb{R}^{n}\). As in [8], the exact weak solutions of (1) can be defined by \(g_{\varrho }(s)= \int _{T} y \,d\varrho (t|s)\), where \(\varrho (\cdot |s)\) is the conditional probability measure induced by ϱ on T given \(s\in S\).

To our knowledge, the criteria for minimally thin sets with respect to the Schrödinger operator (1) was introduced for the first time in the context of the stationary Schrödinger equations in [9, 10]. In 2018, Jiang, Zhang and Li (see [11]) further improved this complex method and applied to study meromorphic solutions for the linear differential equations with analytic coefficients and obtain some applications. Recently, Zhang (see [12, 13]) defined a new type of minimal thinness with respect to the stationary Schrödinger operator, established new criteria for it and applied the result to study growth properties at infinity of the maximum modulus with respect to the Schrödinger operator.

In this paper, we will continue to apply new criteria for solutions for a kind of quasilinear Schrödinger equations. Although we are motivated here by [9,10,11,12,13], there were substantial difficulties to adapt the above approach to the present situation. Let \(\mathfrak{H}_{E}\) be the completion of the linear span of the set of functions \(\{E_{s} :=E(s,\cdot ) : s \in S \}\) equipped with (see [8, 14])

$$ \Biggl\langle \sum_{i=1}^{n} \xi _{i} E_{s_{i}}, \sum_{l=1}^{m} \o _{j} E_{t_{j}} \Biggr\rangle _{E} := \sum _{i=1}^{n} \sum_{l=1}^{m} \xi _{i} \o _{j} E(s_{i} , t_{j}). $$

Let \(s\in S\) and \(g\in \mathfrak{H}_{E}\). Define (see [15, Remark 2.3])

$$\begin{aligned} g(s)=\langle g, \,E_{s}\rangle _{E}. \end{aligned}$$
(2)

It follows from (2) that (see [16])

$$\begin{aligned} \Vert g \Vert _{\infty }\leq \kappa \Vert g \Vert _{E}, \end{aligned}$$
(3)

where

$$ \kappa := \sup_{t, s\in S} \bigl\vert E(s,t) \bigr\vert < \infty . $$

Define (see [17])

$$\begin{aligned}& g_{\mathbf{w},\chi }(s)=g_{\mathbf{w},\zeta ,\chi ,s}(s)=g_{ \mathbf{w},\zeta ,\chi ,s}(u)|_{u=s}, \\& g_{\mathbf{w},\zeta ,\chi ,s} :=\arg \min_{f\in \mathfrak{H}_{E}} \Biggl\{ \frac{1}{m}\sum_{i=1}^{m}\varPhi \biggl(\frac{s}{\zeta },\frac{s _{i}}{\zeta } \biggr) \bigl(t_{i}-g(s_{i}) \bigr)^{2}+\chi \Vert g \Vert _{E}^{2} \Biggr\} , \end{aligned}$$
(4)

where

$$\begin{aligned} & \varPhi (s,t)\leq 1,\quad \forall s,t \in \mathbb{R}^{n}, \end{aligned}$$
(5)
$$\begin{aligned} & \varPhi (s,t)\geq c_{q},\quad \forall \vert s-t \vert \leq 1. \end{aligned}$$
(6)

Scheme (4) yields (see [18, 19])

$$\begin{aligned}& g_{\mathbf{w},\varsigma }(s)=g_{\mathbf{w},\zeta ,\varsigma ,s}(s)=g _{\mathbf{w},\zeta ,\varsigma ,s}(u)|_{u=s}, \\& g_{\mathbf{w},\zeta ,\varsigma ,s}=\arg \min_{f\in \mathfrak{H}_{E,\,\mathbf{w}} } \Biggl\{ \frac{1}{m}\sum _{i=1} ^{m}\varPsi \biggl(\frac{s}{\zeta }, \frac{s_{i}}{\zeta } \biggr) \bigl(g(s_{i})-t _{i} \bigr)^{2}+\varsigma \sum_{i=1}^{m} \vert \xi _{i} \vert ^{q} \Biggr\} , \end{aligned}$$

and

$$\begin{aligned} \mathfrak{H}_{E,\,\mathbf{w}}= \Biggl\{ g(s)=\sum_{i=1}^{m} \xi _{i}E(s,s _{i}):\xi =(\xi _{1},\ldots ,\xi _{m})\in \mathbb{R}^{m},m\in \mathbb{N} \Biggr\} . \end{aligned}$$

In order to study the boundary behaviors of \(g_{\mathbf{w},\varsigma }\), we derive

$$ \Vert g_{\mathbf{w},\varsigma }-g_{\varrho } \Vert _{\varrho _{S}} $$

with (see [20,21,22,23] for more details)

$$ \bigl\Vert g(\cdot ) \bigr\Vert _{\varrho _{S}}:=\biggl( \int _{S} \bigl\vert g(\cdot ) \bigr\vert ^{2}\,d{ \varrho _{S}}\biggr)^{ \frac{1}{2}}. $$

The remainder of this paper is organized as follows. In Sect. 2, we will provide the main results. In Sect. 3, some basic but important estimates and properties are summarized. The proofs of main results will be given in Sect. 4. Section 5 contains the conclusions of the paper.

2 Main results

The integral operator \(L_{E}:L_{\varrho _{S}} ^{2}(S)\rightarrow L_{ \varrho _{S}} ^{2}(S)\) is defined by

$$ (L_{E} g) (s) = \int _{S} E(s,t)g(t)\,d\varrho _{S}(t). $$

Let \(\{\mu _{i}\} \) be the eigenvalues of \(L_{E}\) and \(\{e_{i}\}\) be the corresponding eigenfunctions. Then we define

$$ L_{E}^{r}(g)=\sum_{i=1}^{\infty } \mu _{i}^{r}\langle g,e_{i} \rangle _{L_{\varrho _{S}} ^{2}}e_{i} $$

for \(g\in L_{\varrho _{S}} ^{2}(S)\). We assume that \(g_{\varrho }\) satisfies \(L_{E}^{-r}g_{\varrho }\in L^{2}_{\varrho _{S}}\), where r is a positive constant depending on the size of the initial data in a suitable norm.

Let \(c_{p}~(0< p<2)\) be a positive constant. Define (see [24])

$$\begin{aligned} \log \mathfrak{N}_{2}(B_{1}, \epsilon )\leq c_{p}\epsilon ^{-p}, \end{aligned}$$
(7)

where

$$ B_{1}= \bigl\{ f\in \mathfrak{H}_{E,\,\mathbf{w}}: \Vert g \Vert _{E}\leq 1 \bigr\} . $$

Now we are in a position to obtain the existence of solutions for the problem (1).

Theorem 1

Suppose \(L_{E}^{-r}g_{\varrho }\in L^{2}_{\varrho _{S}}\) with \(r>0\), (7) with \(0< p<2\). Then there exist solutions for the problem (1), which can be defined by

$$ \mathfrak{H}(\mathbf{w},\chi ,\varsigma )= \int _{S}\bigl(\mathfrak{E}_{ \mathbf{w},s}\bigl(\gamma _{M}(g_{\mathbf{w}, \zeta ,\varsigma ,s})\bigr)+\varsigma \varOmega _{\mathbf{w}}(g_{\mathbf{w}, \zeta ,\varsigma ,s}) \bigr)\,d\varrho _{S}(s) $$

and

$$ \mathfrak{H}(\mathbf{w},\chi ,\varsigma )\leq \frac{m\varsigma M^{2}}{(m \chi )^{q}}. $$

For the further application of Theorem 1, we have the following result. Similar results for solutions of the stationary Schrödinger equations, we refer the reader to the papers (see [13, 25]).

Proposition 1

Let \(L_{E}^{-r}g_{\varrho }\in L^{2}_{\varrho _{S}}\), where \(r>0\). Then

$$\begin{aligned} \mathfrak{D}(\chi )\leq C_{1}\chi ^{\min \{2r,1\}}. \end{aligned}$$
(8)

It follows from Theorem 1 that we can decompose solutions for the problem (1) into two parts, \(\mathfrak{H}_{1}( \mathbf{w},\varsigma )+\mathfrak{H}_{2}(\mathbf{w},\chi )\), where

$$ \int _{S} \bigl\{ \mathfrak{E}_{s}\bigl(\gamma _{M}(g_{\mathbf{w}, \zeta , \varsigma ,s})\bigr)-\mathfrak{E}_{s}(g_{\varrho })- \mathfrak{E}_{ \mathbf{w},s}\bigl(\gamma _{M}(g_{\mathbf{w}, \zeta ,\varsigma ,s})\bigr)+ \mathfrak{E}_{\mathbf{w},s}(g_{\varrho }) \bigr\} \,d\varrho _{S}(s) $$

and

$$ \int _{S} \bigl\{ \mathfrak{E}_{\mathbf{w},s}(g_{\chi })- \mathfrak{E} _{\mathbf{w},s}(g_{\varrho })-\mathfrak{E}_{s}(g_{\chi })+ \mathfrak{E}_{s}(g_{\varrho }) \bigr\} \,d\varrho _{S}(s). $$

Finally, we further study the boundary behaviors for solutions for the problem (1).

Theorem 2

Let the assumptions of Theorem 1 hold. Then

$$\begin{aligned} \mathfrak{H}_{2}(\mathbf{w},\chi )\leq \frac{\mathfrak{D}(\chi )}{2}+\frac{7 (3M+\kappa \sqrt{\frac{\mathfrak{D}(\chi )}{\chi }} )^{2} \log (2/\delta )}{3m}, \end{aligned}$$
(9)

where \(0<\delta <1\).

Theorem 3

Let the assumptions of Theorem 1 hold. Then

$$\begin{aligned} \mathfrak{H}_{1}(\mathbf{w},\varsigma )\leq {}& \frac{1}{2} \int _{S} \bigl\{ \mathfrak{E}_{s}\bigl(\gamma _{M}(g_{\mathbf{w}, \zeta ,\varsigma ,s})\bigr)- \mathfrak{E}_{s}(g_{\varrho }) \bigr\} \,d\varrho _{S}(s) \\ &{}+\frac{176M^{2}}{m}\log \biggl(\frac{2}{\delta } \biggr)+C_{p,M}R_{ \varsigma }^{\frac{2p}{2+p}}m^{-\frac{2}{2+p}}, \end{aligned}$$
(10)

where \(0<\delta <1\) and

$$ R_{\varsigma }=\kappa m^{1-\frac{1}{q}} \biggl(\frac{M^{2}}{\varsigma } \biggr)^{\frac{1}{q}}. $$

3 Lemmas

Some basic but important estimates are needed in this section. The following lemma indicates that the natural and weakened total energies are conserved in time.

Lemma 1

We have the following estimates:

$$\begin{aligned}& \mathfrak{E}_{\tau ,g}(t) = \mathfrak{E}_{\tau ,g}(0), \quad \forall t \in [0,\tau ], \end{aligned}$$
(11)
$$\begin{aligned}& \widetilde{E}_{\tau ,g}(t) = \widetilde{E}_{\tau ,g}(0), \quad \forall t \in [0,\tau ]. \end{aligned}$$
(12)

Proof

Multiplying the first equation by \(g_{\varrho }'\), we obtain

$$\bigl\langle g_{\varrho }''(t) - \partial _{g}^{2} g_{\varrho }(t) + \delta g_{\chi }(t) , g_{\varrho }'(t) \bigr\rangle _{\mathbb{R}^{N},g} =0. $$

It follows that

$$\begin{aligned} &\bigl\langle g_{\varrho }''(t), g_{\varrho }'(t) \bigr\rangle _{\mathbb{R}^{N},g} + \bigl\langle \bigl(-\partial _{g}^{2}\bigr)^{1/2} g_{\varrho }(t) , \bigl(-\partial _{g} ^{2} \bigr)^{1/2} g_{\varrho }'(t) \bigr\rangle _{\mathbb{R}^{N},g} + \delta \bigl\langle g_{\chi }(t), g_{\varrho }'(t) \bigr\rangle _{\mathbb{R}^{N},g} =0. \end{aligned}$$

Therefore

$$ \frac{d}{dt} \gamma _{M}(g_{\varrho };t) + \delta \bigl\langle g_{\chi }(t), g_{\varrho }'(t) \bigr\rangle _{\mathbb{R}^{N},g} =0, $$
(13)

which leads to

$$ \frac{d}{dt} \gamma _{M}(g_{\chi };t) + \delta \bigl\langle g_{\varrho }(t), g_{\chi }'(t) \bigr\rangle _{\mathbb{R}^{N},g} =0. $$
(14)

Adding (13) and (14), we can write

$$\frac{d}{dt} \mathfrak{E}_{\tau ,g}(t) =0, $$

which is equivalent to (11).

By taking the sum of the resulting two identities we obtain

$$\begin{aligned} &\frac{d}{dt} \widetilde{\mathfrak{E}}_{g}(g_{\varrho };t) + \frac{d}{dt} \widetilde{\mathfrak{E}}_{g}(g_{\chi };t) + \delta \bigl\langle g_{\chi }(t),\bigl(-\partial _{g}^{2} \bigr)^{-1} g_{\varrho }'(t) \bigr\rangle _{\mathbb{R}^{N},g} + \delta \bigl\langle g_{\varrho }(t),\bigl(-\partial _{g}^{2} \bigr)^{-1} g_{ \chi }'(t) \bigr\rangle _{\mathbb{R}^{N},g} =0, \end{aligned}$$

using the symmetry of the matrix \((-\partial _{g}^{2} )^{-1}\) we obtain

$$\frac{d}{dt} \widetilde{\mathfrak{E}}_{\tau ,g}(t) =0. $$

 □

From Lemma 1, we deduce the following result.

Lemma 2

Let \(0 \leq \delta \leq \frac{\delta _{0}}{3}\). Then

$$ \int _{S} \bigl( \gamma _{M}(g_{\varrho };t) + \widetilde{\mathfrak{E}}_{g}(g _{\chi };t) \bigr) \,dt \geq \frac{C\tau }{2} \bigl( \widetilde{\mathfrak{E}}_{g}(g _{\varrho };0) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };0) \bigr) $$
(15)

for a positive constant depending only on τ.

Proof

We recall

$$\gamma _{M}(g_{\varrho };t) = \frac{1}{2} \bigl\Vert g_{\varrho }'(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} + \frac{1}{2} \bigl\Vert \bigl(-\partial _{g}^{2} \bigr)^{1/2} g_{\varrho }(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2}, $$

and we can write

$$\gamma _{M}(g_{\varrho };t) \geq \frac{\delta _{0}}{2} \bigl\Vert \bigl(-\partial _{g}^{2}\bigr)^{-1/2} g_{\varrho }'(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} + \frac{ \delta _{0}}{2} \bigl\Vert g_{\varrho }(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} = \delta _{0} \widetilde{ \mathfrak{E}}_{g}(g_{\varrho };t). $$

It follows from Lemma 1 that

$$ \int _{S} \bigl( \gamma _{M}(g_{\varrho };t) + \widetilde{\mathfrak{E}}_{g}(g _{\chi };t) \bigr)\,dt \geq C \int _{S} \bigl( \widetilde{\mathfrak{E}}_{g}(g_{ \varrho };t) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };t) \bigr)\,dt. $$
(16)

On the other hand

$$\bigl\vert \widetilde{\mathfrak{E}}_{\tau ,g}(t) - \bigl( \widetilde{ \mathfrak{E}} _{g}(g_{\varrho };t) + \widetilde{ \mathfrak{E}}_{g}(g_{\chi };t)\bigr) \bigr\vert = \bigl\vert \delta \bigl\langle \bigl(-\partial _{g}^{2} \bigr)^{-1} g_{\varrho }(t),g_{ \chi }(t) \bigr\rangle _{\mathbb{R}^{N},g} \bigr\vert , $$

and thanks to Lemma 1 and [26, Theorem 2.1], one has

$$ \bigl\vert \widetilde{\mathfrak{E}}_{\tau ,g}(t) - \bigl( \widetilde{\mathfrak{E}} _{g}(g_{\varrho };t) + \widetilde{ \mathfrak{E}}_{g}(g_{\chi };t)\bigr) \bigr\vert \leq \frac{\delta }{\delta _{0}} \bigl( \widetilde{\mathfrak{E}}_{g}(g_{ \varrho };t) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };t) \bigr). $$
(17)

Hence

$$\widetilde{\mathfrak{E}}_{g}(g_{\varrho };t) + \widetilde{ \mathfrak{E}}_{g}(g_{\chi };t) \geq \frac{\delta _{0}}{ \delta _{0} + \delta } \widetilde{\mathfrak{E}}_{\tau ,g}(t). $$

Integrating this last inequality over \(t \in [0,\tau ]\) and using the fact that the energy \(\widetilde{\mathfrak{E}}_{\tau ,g}(t)\) is conservative, we deduce that

$$ \int _{S} \bigl( \widetilde{\mathfrak{E}}_{g}(g_{\varrho };t) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };t) \bigr) \,dt \geq \frac{\delta _{0} \tau }{\delta _{0} + \delta }\widetilde{\mathfrak{E}}_{\tau ,g}(0). $$
(18)

Moreover, thanks to inequality (17), we have

$$\widetilde{\mathfrak{E}}_{\tau ,g}(0) \geq \frac{\delta _{0} - \delta }{\delta _{0}} \bigl( \widetilde{\mathfrak{E}}_{g}(g_{\varrho };0) + \widetilde{ \mathfrak{E}}_{g}(g_{\chi };0) \bigr), $$

and inserting this last equation into (18) yields

$$ \int _{S} \bigl( \widetilde{\mathfrak{E}}_{g}(g_{\varrho };t) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };t) \bigr) \,dt \geq \frac{\delta _{0} - \delta }{\delta _{0} + \delta }\tau \bigl( \widetilde{\mathfrak{E}}_{g}(g _{\varrho };0) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };0) \bigr). $$
(19)

However, since

$$\frac{\delta _{0} - \delta }{\delta _{0} + \delta } \geq \frac{1}{2} $$

for all \(\delta \leq \frac{\delta _{0}}{3}\), we deduce from (19) that

$$\int _{S} \bigl( \widetilde{\mathfrak{E}}_{g}(g_{\varrho };t) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };t) \bigr) \,dt \geq \frac{\tau }{2} \bigl( \widetilde{\mathfrak{E}}_{g}(g_{\varrho };0) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };0) \bigr). $$

Inserting this inequality into (16), the desired estimate (15) is obtained. □

We complete this subsection with the following lemma.

Lemma 3

We have

$$\begin{aligned}& \begin{aligned}[b] \int _{S} \widetilde{\mathfrak{E}}_{g}(g_{\chi };t) \,dt \leq {}&\frac{C}{ \delta (\sqrt{\delta _{0}}-\delta )} \bigl( \gamma _{M}(g_{\varrho };0) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };0) \bigr) \\ &{} + \frac{C}{(\sqrt{\delta _{0}}-\delta )^{2}} \int _{S} \gamma _{M}(g_{\varrho };t) \,dt, \end{aligned} \end{aligned}$$
(20)
$$\begin{aligned}& \begin{aligned}[b] \int _{S} \bigl\Vert g_{\chi }(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} \,dt \leq {}&\frac{C}{\delta (\sqrt{\delta _{0}}-\delta )} \bigl( \gamma _{M}(g _{\varrho };0) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };0) \bigr) \\ &{}+ \frac{C}{(\sqrt{\delta _{0}}-\delta )^{2}} \int _{S} \gamma _{M}(g_{\varrho };t) \,dt, \end{aligned} \end{aligned}$$
(21)
$$\begin{aligned}& \begin{aligned}[b] \widetilde{\mathfrak{E}}_{g}(g_{\chi }; \tau ) + \widetilde{\mathfrak{E}}_{g}(g_{\chi }; 0) \leq{}& \frac{C}{\sqrt{ \delta _{0}}-\delta } \bigl( \gamma _{M}(g_{\varrho };0) + \widetilde{ \mathfrak{E}}_{g}(g_{\chi };0) \bigr) \\ &{}+ \frac{C \delta }{(\sqrt{\delta _{0}}-\delta )^{2}} \int _{S} \gamma _{M}(g_{\varrho };t) \,dt, \end{aligned} \end{aligned}$$
(22)

where \(0 \leq \delta \leq \min ( \delta _{0}, \sqrt{\delta _{0}} )\).

Proof

First, we recall the following estimates:

$$\begin{aligned}& \begin{aligned}[b] \int _{S} \bigl\Vert g_{\chi }(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} \,dt \leq{}& \frac{C}{\delta ( \sqrt{\delta _{0}}-\delta )} \bigl( \gamma _{M}(g _{\varrho };0) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };0) \bigr) \\ &{} + \frac{C}{(\sqrt{\delta _{0}}-\delta )^{2}} \int _{S} \bigl( \bigl\Vert g_{\varrho }(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} + \bigl\Vert g_{ \varrho }'(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} \bigr)\,dt, \end{aligned} \\& \begin{aligned} \int _{S} \bigl\Vert \bigl(-\partial _{g}^{2} \bigr)^{-1/2}g_{\chi }'(t) \bigr\Vert _{ \mathbb{R}^{N},g}^{2} \,dt \leq{}& \frac{C}{\delta (\sqrt{\delta _{0}}- \delta )} \bigl( \gamma _{M}(g_{\varrho };0) + \widetilde{\mathfrak{E}}_{g}(g _{\chi };0) \bigr) \\ &{} + \frac{C}{(\sqrt{\delta _{0}}-\delta )^{2}} \int _{S} \bigl( \bigl\Vert g_{\varrho }(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} + \bigl\Vert g_{ \varrho }'(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} \bigr)\,dt, \end{aligned} \end{aligned}$$
(23)

from the proof of Lemma 2.

Taking the sum of these two inequalities, we obtain

$$ \begin{aligned}[b] \int _{S} \widetilde{\mathfrak{E}}_{g}(g_{\chi };t) \,dt\leq{}& \frac{C}{ \delta (\sqrt{\delta _{0}}-\delta )} \bigl( \gamma _{M}(g_{\varrho };0) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };0) \bigr) \\ &{} + \frac{C}{(\sqrt{\delta _{0}}-\delta )^{2}} \int _{S} \bigl( \bigl\Vert g_{\varrho }(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} + \bigl\Vert g_{ \varrho }'(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} \bigr)\,dt. \end{aligned} $$
(24)

And thanks to Lemma 2, we improve (24) as follows:

$$\begin{aligned} \int _{S} \widetilde{\mathfrak{E}}_{g}(g_{\chi };t) \, dt\leq{}& \frac{C}{ \delta (\sqrt{\delta _{0}}-\delta )} \bigl( \gamma _{M}(g_{\varrho };0) + \widetilde{\mathfrak{E}}_{g}(g_{\chi };0) \bigr) \\ &{} + \frac{C}{(\sqrt{\delta _{0}}-\delta )^{2}} \int _{S} \gamma _{M}(g_{\varrho };t) \, dt, \end{aligned}$$

which proves the inequality (20).

The other estimates (21) and (22), are obtained easily from equations (23), (24) and the relation

$$\int _{S} \bigl( \bigl\Vert g_{\varrho }(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} + \bigl\Vert g_{\varrho }'(t) \bigr\Vert _{\mathbb{R}^{N},g}^{2} \bigr)\,dt \leq \max \biggl( \frac{1}{\delta _{0}},1 \biggr) \int _{S} \gamma _{M}(g_{\varrho };t) \,dt. $$

 □

4 Proofs of main results

Now we derive the learning rates.

Proof of Theorem 1

Let \(\mathbf{{y}}=(t_{1}, t_{2}, t_{3},\ldots , t_{m})^{ \tau }\), \(K[{\mathbf{{s}}}]=(E(s_{i},s_{j}))_{i,j=1}^{m}\) and \(\mathbf{{a}}^{\mathbf{w}}=(a_{1}^{\mathbf{w}},\ldots ,a _{m}^{\mathbf{w}})\) be the coefficient of \(g_{\mathbf{w},\varsigma }\). It follows from the representation theorem (see [27, 28]) that

$$\begin{aligned} a_{i}^{\mathbf{w}}=\frac{1}{\chi m}\varPsi \biggl( \frac{s}{\zeta },\frac{s _{i}}{\zeta } \biggr) \bigl(t_{i}-g_{\mathbf{w}, \zeta ,\chi ,s}(s_{i}) \bigr) \end{aligned}$$

for \(i=1,2,\ldots ,m\).

By the Hölder inequality, we have

$$\begin{aligned} \sum_{i=1}^{m} \bigl\vert a_{i}^{\mathbf{w}} \bigr\vert ^{q} ={}&\frac{1}{(\chi m)^{q}} \sum_{i=1}^{m} \biggl\vert \varPsi \biggl( \frac{s}{\zeta },\frac{s_{i}}{\zeta } \biggr) \bigl(t _{i}-g_{\mathbf{w}, \zeta ,\chi ,s}(s_{i}) \bigr) \biggr\vert ^{q} \\ \leq {}&\frac{1}{(\chi m)^{q}} \Biggl(\sum_{i=1}^{m} \varPsi \biggl(\frac{s}{ \zeta },\frac{s_{i}}{\zeta } \biggr)^{\frac{1}{2-q}} \Biggr)^{1- \frac{q}{2}} \\ &{} \times \Biggl(\sum_{i=1}^{m} \biggl( \frac{s}{\zeta },\frac{s_{i}}{ \zeta } \biggr) \bigl(t_{i}-g_{\mathbf{w}, \zeta ,\chi ,s}(s_{i}) \bigr)^{2} \Biggr)^{ \frac{q}{2}}. \end{aligned}$$

It follows that

$$\begin{aligned} \sum_{i=1}^{m} \bigl\vert a_{i}^{\mathbf{w}} \bigr\vert ^{q}\leq \frac{m}{(\chi m)^{q}} \bigl(\mathfrak{E}_{\mathbf{w},s}(g_{\mathbf{w}, \zeta ,\chi ,s}) \bigr)^{\frac{q}{2}} \end{aligned}$$

from (5).

Thus

$$\begin{aligned} & \mathfrak{E}_{\mathbf{w},s}\bigl(\gamma _{M}(g_{\mathbf{w}, \zeta , \varsigma ,s}) \bigr)+\varsigma \varOmega _{\mathbf{w}}(g_{\mathbf{w}, \zeta , \varsigma ,s}) \\ &\quad \leq \mathfrak{E}_{\mathbf{w},s}(g_{\mathbf{w}, \zeta ,\varsigma ,s})+ \varsigma \varOmega _{\mathbf{w}}(g_{\mathbf{w}, \zeta ,\varsigma ,s}) \\ &\quad \leq \mathfrak{E}_{\mathbf{w},s}(g_{\mathbf{w}, \zeta ,\chi ,s})+ \varsigma \varOmega _{\mathbf{w}}(g_{\mathbf{w}, \zeta ,\chi ,s}) \\ &\quad \leq \mathfrak{E}_{\mathbf{w},s}(g_{\mathbf{w}, \zeta ,\chi ,s})+\frac{m \varsigma }{(\chi m)^{q}} \bigl( \mathfrak{E}_{\mathbf{w},s}(g_{ \mathbf{w}, \zeta ,\chi ,s}) \bigr)^{\frac{q}{2}} \\ &\quad \leq \mathfrak{E}_{\mathbf{w},s}(g_{\mathbf{w}, \zeta ,\chi ,s})+ \chi \Vert g_{\mathbf{w}, \zeta ,\chi ,s} \Vert _{E}^{2} \\ &\qquad{} +\frac{m\varsigma }{(\chi m)^{q}} \bigl(\mathfrak{E}_{\mathbf{w},s}(g _{\mathbf{w}, \zeta ,\chi ,s})+ \chi \Vert g_{\mathbf{w}, \zeta ,\chi ,s} \Vert _{E}^{2} \bigr)^{\frac{q}{2}}. \end{aligned}$$

Since

$$\begin{aligned} \mathfrak{E}_{\mathbf{w},s}(g_{\mathbf{w}, \zeta ,\chi ,s})+\chi \Vert g _{\mathbf{w}, \zeta ,\chi ,s} \Vert _{E}^{2}\leq \mathfrak{E}_{\mathbf{w},s}(0)+ \chi \Vert 0 \Vert _{E}^{2}, \end{aligned}$$

we get

$$\begin{aligned} & \mathfrak{E}_{\mathbf{w},s}\bigl(\gamma _{M}(g_{\mathbf{w}, \zeta , \varsigma ,s}) \bigr)+\varsigma \varOmega _{\mathbf{w}}(g_{\mathbf{w}, \zeta , \varsigma ,s}) \\ &\quad\leq \mathfrak{E}_{\mathbf{w},s}(g_{\mathbf{w}, \zeta ,\chi ,s})+ \chi \Vert g_{\mathbf{w}, \zeta ,\chi ,s} \Vert _{E}^{2}+\frac{m\varsigma M ^{2}}{(\chi m)^{q}}. \end{aligned}$$

This yields our desired estimation. □

Proof of Theorem 2

Let

$$ h(u,t)= \int _{S}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{\zeta } \biggr)\bigl[\bigl(t-g _{\chi }(u)\bigr)^{2}- \bigl(t-g_{\varrho }(u)\bigr)^{2}\bigr]\,d\varrho _{S}(s) $$

for any \(z=(u,t)\in Z\). Then

$$\begin{aligned} & \int _{Z}h\,d\varrho = \int _{S} \bigl\{ \mathfrak{E}_{s}(g_{\chi })- \mathfrak{E}_{s}(g_{\varrho }) \bigr\} \,d\varrho _{S}(s); \\ &\frac{1}{m}\sum_{i=1}^{m}h(w_{i})= \int _{S} \bigl\{ \mathfrak{E}_{ \mathbf{w},s}(g_{\chi })- \mathfrak{E}_{\mathbf{w},s}(g_{\varrho }) \bigr\} \,d\varrho _{S}(s). \end{aligned}$$

By (3) we have

$$\begin{aligned} \Vert g_{\chi } \Vert _{\infty }\leq \kappa \Vert g_{\chi } \Vert _{E}\leq \kappa \sqrt{\frac{ \mathfrak{D}(\chi )}{\chi }}. \end{aligned}$$

Combining with (5), we have

$$\begin{aligned} \bigl\vert h(u,t) \bigr\vert &\leq \bigl( \Vert g_{\chi } \Vert _{\infty }+M\bigr) \bigl(3M+ \Vert g_{\chi } \Vert _{\infty } \bigr) \\ &\leq \biggl(3M+\kappa \sqrt{\frac{\mathfrak{D}(\chi )}{\chi }} \biggr)^{2}:=B_{\chi }. \end{aligned}$$

Therefore

$$ \biggl\Vert h(u,t)- \int _{Z}h\,d\varrho \biggr\Vert _{\infty }\leq 2B_{\chi } $$

and

$$\begin{aligned} \zeta ^{2}(h) \leq& \int _{Z}h^{2}\,d\varrho \\ =& \int _{Z} \biggl( \int _{S}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{\zeta } \biggr)\,d\varrho _{S}(s) \biggr)^{2} \bigl(g_{\chi }(u)-g_{\varrho }(u) \bigr)^{2} \\ &{} \times \bigl(g_{\chi }(u)+g_{\varrho }(u)-2y \bigr)^{2}\,d\varrho (u,t) \\ \leq& \bigl(3M+ \Vert g_{\chi } \Vert _{\infty } \bigr)^{2} \Vert g_{\chi }-g_{\varrho } \Vert _{ \varrho _{S}}^{2} \\ \leq& B_{\chi }\mathfrak{D}(\chi ). \end{aligned}$$

By Lemma 1,

$$\begin{aligned} \frac{1}{m}\sum_{i=1}^{m}h(w_{i})- \int _{Z}h\,d\varrho \leq \frac{ \mathfrak{D}(\chi )}{2}+\frac{7B_{\chi }\log (2/\delta )}{3m}. \end{aligned}$$
(25)

 □

Proof of Theorem 3

Consider the set of functions

$$\begin{aligned} \mathfrak{G}_{R}= \biggl\{ &h(u,t)= \int _{S}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{ \zeta } \biggr) \bigl(\bigl(t-\gamma _{M}(g) (u)\bigr)^{2} -\bigl(t-g_{\varrho }(u)\bigr)^{2} \bigr)\,d\varrho _{S}(s):f\in B_{R} \biggr\} . \end{aligned}$$

We have

$$\begin{aligned} \bigl\vert h(u,t) \bigr\vert &\leq \int _{S}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{\zeta } \biggr) \bigl\vert \bigl(\gamma _{M}(g) (u)-g_{\varrho }(u) \bigr) \times \bigl(\gamma _{M}(g) (u)+g_{\varrho }(u)-2y \bigr) \bigr\vert \,d\varrho _{S}(s) \\ &\leq 8M^{2} \end{aligned}$$

from (5), which yields

$$\begin{aligned} \bigl\vert h(u,t) \bigr\vert ^{2} &= \biggl\vert \int _{S}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{ \zeta } \biggr) \bigl(\gamma _{M}(g) (u)-g_{\varrho }(u) \bigr) \times \bigl(\gamma _{M}(g) (u)+g_{\varrho }(u)-2y \bigr)\,d\varrho _{S}(s) \biggr\vert ^{2} \\ &\leq 16M^{2} \int _{S}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{\zeta } \biggr) \bigl(\gamma _{M}(g) (u)-g_{\varrho }(u) \bigr)^{2}\,d\varrho _{S}(s) \int _{S}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{\zeta } \biggr)\,d\varrho _{S}(s). \end{aligned}$$

So

$$\begin{aligned} \mathfrak{E}\bigl(h^{2}\bigr)\leq 16M^{2} \int _{S} \biggl( & \int _{S}\varPsi \biggl(\frac{s}{ \zeta },\frac{u}{\zeta } \biggr) \bigl(\gamma _{M}(g) (u)-g_{\varrho }(u) \bigr)^{2}\,d\varrho _{S}(u) \biggr)\,d\varrho _{S}(s). \end{aligned}$$

It has been proved in [13, 29] that

$$\begin{aligned} & \int _{S}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{\zeta } \biggr) \bigl(g(u)-g _{\varrho }(u) \bigr)^{2}\,d\varrho _{S}(u) \\ &\quad= \int _{Z}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{\zeta } \biggr)\bigl[\bigl(g(u)-t\bigr)^{2}-\bigl(g _{\varrho }(u)-t \bigr)^{2}\bigr]\,d\varrho (u,t), \end{aligned}$$

which implies that

$$\begin{aligned} \mathfrak{E}\bigl(h^{2}\bigr)\leq{}& 16M^{2} \int _{S} \biggl( \int _{Z}\varPsi \biggl(\frac{s}{ \zeta },\frac{u}{\zeta } \biggr)\bigl[\bigl(\gamma _{M}(g) (u)-t\bigr)^{2} \\ &{} -\bigl(g_{\varrho }(u)-t\bigr)^{2}\bigr]\,d\varrho (u,t) \biggr)\,d\varrho _{S}(s) \\ ={}&16M^{2} \int _{Z} \biggl( \int _{S}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{ \zeta } \biggr)\bigl[\bigl(\gamma _{M}(g) (u)-t\bigr)^{2} \\ & {} -\bigl(g_{\varrho }(u)-t\bigr)^{2}\bigr]\,d\varrho _{S}(s) \biggr)\,d\varrho (u,t) \\ ={}&16M^{2}\mathfrak{E}(h). \end{aligned}$$

Then we get

$$\begin{aligned} & \bigl\vert h_{1}(u,t)-h_{2}(u,t) \bigr\vert \\ &\quad= \biggl\vert \int _{S}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{\zeta } \biggr) \bigl(\bigl(\gamma _{M}(g_{1}) (u)-t \bigr)^{2}-\bigl(\gamma _{M}(g_{2}) (u)-t \bigr)^{2} \bigr)\,d \varrho _{S}(s) \biggr\vert \\ &\quad \leq \biggl| \int _{S}\varPsi \biggl(\frac{s}{\zeta },\frac{u}{\zeta } \biggr) \bigl(\gamma _{M}(g_{1}) (u)\bigr)-\gamma _{M}(g_{2}) (u)) \\ & \qquad{} \times \bigl(\gamma _{M}(g_{1}) (u)+\gamma _{M}(g_{2}) (u)-2t\bigr)\,d\varrho _{S}(s) \biggr| \\ &\quad \leq 4M \bigl\vert g_{1}(u)-g_{2}(u) \bigr\vert \end{aligned}$$
(26)

for any \(h_{1}\), \(h_{2}\in \mathfrak{G}_{R}\), which yields

$$\begin{aligned} \mathfrak{N}_{2}(\mathfrak{G}_{R},\varepsilon )\leq \mathfrak{N}_{2} \biggl(B_{R},\frac{\varepsilon }{4M} \biggr)= \mathfrak{N}_{2} \biggl(B_{1},\frac{ \varepsilon }{4MR} \biggr). \end{aligned}$$

It follows from the capacity condition (7) that

$$\begin{aligned} \log \mathfrak{N}_{2}(\mathfrak{G}_{R},\epsilon )\leq c_{p}(4M)^{p}R ^{p}\epsilon ^{-p}. \end{aligned}$$

By applying Lemma 2 to \(\mathscr{G}\) with \(Q=8M^{2}\) we have

$$\begin{aligned} \mathfrak{E}g-\frac{1}{m}\sum_{i=1}^{m}h(w_{i}) &\leq \frac{ \mathfrak{E}g}{2}+\frac{176M^{2}}{m}\log \biggl(\frac{2}{\delta } \biggr)+C_{p,M}R^{\frac{2p}{2+p}}m^{-\frac{2}{2+p}} \end{aligned}$$

for any \(0<\delta <1\), where

$$ C_{p,M}=c_{p}'(4M)^{\frac{4}{2+p}}c_{p}^{\frac{2}{2+p}}. $$

Moreover, we take \(f=g_{\mathbf{w},\zeta ,\varsigma ,s}\) and derive the following bound of \(g_{\mathbf{w},\zeta ,\varsigma ,s}\) by using the same method in [9, Lemma 3] and (5):

$$\begin{aligned} \Vert g_{\mathbf{w},\varsigma } \Vert _{E}\leq \kappa m^{1-\frac{1}{q}} \biggl(\frac{M ^{2}}{\varsigma } \biggr)^{\frac{1}{q}}. \end{aligned}$$

If we take

$$ R=R_{\varsigma }=\kappa m^{1-\frac{1}{q}} \biggl(\frac{M^{2}}{\varsigma } \biggr)^{\frac{1}{q}}, $$

then we can complete the proof of Theorem 3. □

5 Conclusion

The application of the new criteria for minimally thin sets with respect to the Schrödinger operator to an approximate solution of singular Schrödinger-type boundary value problems were discussed in this study. The method was based on approximating functions and their derivatives by using the natural and weakened total energies. This study showed that the new criteria were very effective and powerful tools in solving such problems. At the end of the paper, we were also concerned with the boundary behaviors of solutions for a kind of quasilinear Schrödinger equation.

References

  1. Cottle, R.: Nonlinear programs with positively bounded jacobians. Ph.D. Dissertation, Department of Mathematics, University of California, Berkeley (1964)

  2. Glowinski, R., Lions, J., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  3. Cui, Y., Ma, W., Sun, Q., Su, X.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal., Model. Control 23(1), 31–39 (2018)

    Article  MathSciNet  Google Scholar 

  4. Cui, Y., Ma, W., Wang, X., Su, X.: Uniqueness theorem of differential system with coupled integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 9, 1 (2018)

    Article  MathSciNet  Google Scholar 

  5. Zou, Y., He, G.: A fixed point theorem for systems of nonlinear operator equations and applications to \((p1,p2)\)-Laplacian system. Mediterr. J. Math. 15(2), 74 (2018)

    Article  Google Scholar 

  6. Zhang, X., Liu, L., Wu, Y., Cui, Y.: The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach. J. Math. Anal. Appl. 464(2), 1089–1106 (2018)

    Article  MathSciNet  Google Scholar 

  7. Lions, J., Stampaccia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–512 (1967)

    Article  Google Scholar 

  8. Bremermann, J.: Distributions, Complex Variables, and Fourier Transforms. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  9. Zhao, H., Ma, W.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74(6), 1399–1405 (2017)

    Article  MathSciNet  Google Scholar 

  10. Zhang, J., Ma, W.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74(3), 591–596 (2017)

    Article  MathSciNet  Google Scholar 

  11. Jiang, C., Zhang, F., Li, T.: Synchronization and antisynchronization of N-coupled fractional-order complex chaotic systems with ring connection. Math. Methods Appl. Sci. 41(7), 2625–2638 (2018)

    Article  MathSciNet  Google Scholar 

  12. Zhang, X., Liu, L., Wu, Y., Cui, Y.: Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach. Electron. J. Differ. Equ. 2018, 147 (2018)

    Article  Google Scholar 

  13. Zhang, X., Jiang, J., Wu, Y., Cui, Y.: Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows. Appl. Math. Lett. 90, 229–237 (2019)

    Article  MathSciNet  Google Scholar 

  14. Gasiorowicz, S.: Elementary Particle Physics. Wiley, New York (1966)

    MATH  Google Scholar 

  15. Gelfand, I., Shilov, G.: Generalized Functions, vol. 1. Academic Press, New York (1964)

    Google Scholar 

  16. Passare, M.: Residues, currents, and their relation to ideals of holomorphic functions. Math. Scand. 62, 75–152 (1988)

    Article  MathSciNet  Google Scholar 

  17. Bliedtner, J., Hansen, W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage. Springer, Berlin (1986)

    MATH  Google Scholar 

  18. Dong, X., Bai, Z., Zhang, S.: Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 2017, Article ID 5 (2017)

    Article  MathSciNet  Google Scholar 

  19. Liu, L., Deng, F., Hou, T.: Almost sure exponential stability of implicit numerical solution for stochastic functional differential equation with extended polynomial growth condition. Appl. Math. Comput. 330, 201–212 (2018)

    MathSciNet  Google Scholar 

  20. Andersson, M., Carlsson, H.: \(H^{p}\)-estimates of holomorphic division formulas. Pac. J. Math. 173, 307–335 (1996)

    Article  Google Scholar 

  21. Antosik, P., Mikusinski, J., Sikorski, R.: Theory of Distributions the Sequential Approach. PWN, Warsaw (1973)

    MATH  Google Scholar 

  22. Ikegami, T.: Compactifications of Martin type of harmonic spaces. Osaka J. Math. 23, 653–680 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Shang, S., Bai, Z., Tian, Y., Yue, Y.: Periodic solution for second-order impulsive differential inclusions with relativistic operator. Bound. Value Probl. 2018, Article ID 173 (2018)

    Article  MathSciNet  Google Scholar 

  24. Chen, S., Ma, W.: Lump solutions to a generalized Bogoyavlensky–Konopelchenko equation. Front. Math. China 13(3), 525–534 (2018)

    Article  MathSciNet  Google Scholar 

  25. Zhang, X., Wu, Y., Cui, Y.: Existence and nonexistence of blow-up solutions for a Schrödinger equation involving a nonlinear operator. Appl. Math. Lett. 82, 85–91 (2018)

    Article  MathSciNet  Google Scholar 

  26. Meng, B., Wang, X.: Adaptive synchronization for uncertain delayed fractional-order Hopfield neural networks via fractional-order sliding mode control. Math. Probl. Eng. 2018, Article ID 1603629 (2018)

    Article  MathSciNet  Google Scholar 

  27. Noor, M.: Mixed variational-like inequalities. Commun. Appl. Nonlinear Anal. 1, 63–75 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Wu, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation. Math. Model. Anal. 23(4), 611–626 (2018)

    Article  MathSciNet  Google Scholar 

  29. Yang, J., Ma, W., Qin, Z.: Lump and lump-soliton solutions to the \((2+1)\)-dimensional Ito equation. Anal. Math. Phys. 8(3), 427–436 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Not applicable.

Availability of data and materials

Not applicable.

Funding

This work was supported by the Post-Doctoral Applied Research Projects of Qingdao (no. 2015122) and the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (no. 2014RCJJ032).

Author information

Authors and Affiliations

Authors

Contributions

The author read and approved the final manuscript.

Corresponding author

Correspondence to Bo Meng.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The author declares that he has no competing interests.

Consent for publication

Not applicable.

Additional information

Abbreviations

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, B. Minimal thinness with respect to the Schrödinger operator and its applications on singular Schrödinger-type boundary value problems. Bound Value Probl 2019, 91 (2019). https://doi.org/10.1186/s13661-019-1206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-019-1206-0

Keywords