- Research
- Open Access
- Published:
Existence of solution for p-Laplacian boundary value problems with two singular and subcritical nonlinearities
Boundary Value Problems volume 2019, Article number: 97 (2019)
Abstract
We consider a boundary value problem for p-Laplacian systems with two singular and subcritical nonlinearities. We obtain one theorem which shows that there exists at least one nontrivial weak solution for these problems under some conditions. We obtain this result by variational method and critical point theory.
1 Introduction
Let Ω be a bounded domain of \(R^{n}\) with smooth boundary ∂Ω, \(n\ge 2\). Let G be an open subset in \(R^{2}\) with compact complement \(C_{1}\cup C_{2}=R^{n}\setminus G\) containing \(\theta =(0,0)\) and \(e=(e_{1},e_{2})\), where \(\theta =(0,0)\in C_{1}\) and \(e=(e_{1},e_{2})\in C_{2}\), \(n\ge 2\). In this paper we investigate existence and multiplicity of the solutions \((u,v)\in W^{1,p}(\varOmega , G)\) for the p-Laplacian system with two singular and subcritical nonlinearities under the Dirichlet boundary condition:
where a, b, p, q, r, α, and β are real constants, and \(1< p<\infty \), \(q, r>1\), and \(p<\alpha +\beta <p ^{*}\), where \(p^{*}\) is a critical exponent such that
Singular problems involving p-Laplacian arise in applications of non-Newtonian fluid theory or the turbulent flow of a gas in a porous medium (cf. [12, 19]). Our problems are characterized as a singular elliptic system with singular nonlinearities at \(\{(u,v)=\theta \}\) and \(\{(u,v)=e\}\). We recommend the book [12] for the singular elliptic problems. We also recommend Rǎdulescu’s paper [21] establishing the recent contributions in singular phenomena in nonlinear elliptic problems from blow-up boundary solutions to equations with singular nonlinearities in two types of stationary singular problems: the logistic equation
and the Lane–Emden–Fowler equation
where Φ is a smooth nonlinear function, while Ψ has one or more singularities. The solutions of (1.2) are called large (or blow-up) solutions. More studies on blow-up boundary solutions of logistic type equation like (1.2) can be found in [2,3,4,5, 7, 8, 11, 13, 14, 16,17,18, 20, 22]. Singular Dirichlet boundary value problems for the Lane–Emden–Fowler equation like (1.3) involving singular nonlinearities have been intensively studied in the last decades. The first study in this direction is due to Fulks and Maybee [10], who proved existence and uniqueness of the problem
by using fixed point arguments and no solution of (1.4), provided that \(0<\alpha <1\) and \(\lambda _{1}\ge 1\) (that is, if Ω is small), where \(\lambda _{1}\) denotes the first eigenvalue of −Δ in \(H^{1}_{0}(\varOmega )\). Shi and Yau studied in [23] the existence of radial symmetric solutions of the problem
where \(\alpha >0\), \(0< p<1\), \(\lambda >0\) and \(B_{1}\) is the unit ball in \(R^{N}\). They showed in [23] that there exists \(\lambda _{1}>\lambda _{0}>0\) such that (1.5) has no solution for \(\lambda <\lambda _{0}\), exactly one solution for \(\lambda =\lambda _{0}\) or \(\lambda >\lambda _{1}\), and two solutions for \(\lambda _{0}<\lambda \le \lambda _{1}\). Dupaigne, Ghergu, and Rǎdulescu [9] proved existence and multiplicity of the Lane–Emden–Fowler equation with convection and singular potential
M. Trabelsi and N. Trabelsi [24] considered the semilinear elliptic system and proved existence of the singular limit solutions for a two-dimensional semilinear elliptic system of Liouville type.
We introduce the space
endowed with the norm
and the Sobolev space
endowed with the norm
Let \(L^{p}(\varOmega ,R^{2})=L^{p}(\varOmega ,R)\times L^{p}(\varOmega ,R)\) and \(H=W^{1,p}(\varOmega ,R^{2})=W^{1,p}(\varOmega ,R)\times W^{1,p}(\varOmega ,R)\). Then \(L^{p}(\varOmega ,R^{2})\) and H are Hilbert spaces with the norm
and the norm
respectively. It was proved in [15] that, for \(1< p<\infty \), the eigenvalue problem
has a nondecreasing sequence of nonnegative eigenvalues \(\lambda ^{(p)} _{j}\) obtained by the Ljusternik–Schnirelman principle tending to ∞ as \(j\to \infty \), where the first eigenvalue \(\lambda ^{(p)} _{1}\) is simple and only eigenfunctions associated with \(\lambda ^{(p)} _{1}\) do not change sign, the set of eigenvalues is closed, the first eigenvalue \(\lambda ^{(p)}_{1}\) is isolated. Thus there is a sequence of eigenfunctions \((\phi ^{(p)}_{j})_{j}\) corresponding to the eigenvalues \(\lambda ^{(p)}_{j}\) such that the first eigenfunction \(\phi ^{(p)}_{1}\) is positive or negative depending on p.
Let us set \(-\Delta _{p} u=-\operatorname{div}(|\nabla u|^{p-2}\nabla u)\). Let us define an open subset of the Hilbert space \(H=W^{1,p}(\varOmega ,R ^{2})\):
Then ΛG is the loop space on G.
In this paper, we are looking for weak solutions \((u,v)\) of (1.1) in ΛG satisfying
Let A be . Let us set
Let \(\mu ^{1}_{\lambda ^{(p)}_{i}}\) and \(\mu ^{2}_{\lambda ^{(p)}_{i}}\) be the eigenvalues of the matrix , i.e.,
We note that weak solutions of (1.1) correspond to critical points of the continuous and Fréchet differentiable functional \(f(u,v)\in C^{1}(\varLambda G,R)\),
where \(R_{a,b}(u,v)=\frac{1}{p}\int _{\varOmega }[|\nabla u|^{p}+|\nabla v|^{p}-a |u|^{p}-b |v|^{p}]\,dx\), which will be proved in Sect. 3. When \(p<\alpha +\beta <p^{*}\), the embedding \(W^{1,p}_{0}(\varOmega ,G)\hookrightarrow L^{\alpha +\beta }(\varOmega ,G)\) is continuous and compact, so we can assure that the functional \(f(u,v)\) satisfies the \((\mathit{P.S.})\) condition, which will be also proved in Sect. 3.
Our main result is as follows.
Theorem 1.1
Assume that a, b, p, q, r, α, and β are real constants, and \(1< p<\infty \), \(q, r>1\), and \(p<\alpha +\beta <p^{*}\), \(n\ge 2\),
-
(i)
\(2\lambda ^{(p)}_{i}>a+b\),
-
(ii)
for \(i\ge 1\).
Then (1.1) has at least one nontrivial weak solution \((u(x),v(x))\) such that \((u(x),v(x))\neq (0,0)\) and \((u(x),v(x))\neq (e_{1},e_{2})\).
For the proof of Theorem 1.1, we approach variational method and use critical point theory on eigenspaces. In Sect. 2, we introduce the eigenspaces spanned by the eigenfunctions corresponding to the eigenvalues of the matrix and obtain some variational results on the eigenspaces. In Sect. 3, we prove that the corresponding functional of (1.1) satisfies the \((\mathit{P.S.})\) condition and prove Theorem 1.1.
2 Variational results on eigenspaces
Let \(q_{\lambda ^{(p)}_{i}}(a,b)\), \(\mu ^{1}_{\lambda ^{(p)}_{i}}\), and \(\mu ^{2}_{\lambda ^{(p)}_{i}}\) be the numbers introduced in Sect. 1. We note that
Let \((c^{1}_{\lambda ^{(p)}_{i}},d^{1}_{\lambda ^{(p)}_{i}})\) and \((c^{2}_{\lambda ^{(p)}_{i}},d^{2}_{\lambda ^{(p)}_{i}})\) be the eigenvectors of corresponding to \(\mu ^{1}_{\lambda ^{(p)}_{i}}\) and \(\mu ^{2}_{\lambda ^{(p)}_{i}}\), respectively. Let us set
Then \(H^{+}(a,b)\), \(H^{-}(a,b)\), and \(H^{0}(a,b)\) are the positive, negative, and null spaces relative to the quadratic form \(R_{a,b}(u,v)\) in H and
From now on we shall assume that \(2\lambda ^{(p)}_{i}>a+b\) and \(q_{\lambda ^{(p)}_{i}}(a,b)>0\). Because \(\mu ^{1}_{\lambda ^{(p)}_{i}}>0\) and \(\mu ^{2}_{\lambda ^{(p)}_{i}}>0\), \(\forall i\ge 1\),
and
We note that H can be split by two subspaces \(Y_{1}\) and \(Y_{2}\) such that
\(\operatorname{dim}Y_{1}<\infty \) and
Let us set
Then
Let us set
Let us define
We note that weak solutions of (1.1) correspond to critical points of the continuous and Fréchet differentiable functional \(f(u,v)\in C^{1}(\varLambda G,R)\),
Let us define
Lemma 2.1
Assume that a, b, p, q, r, α, and β are real constants, and \(1< p<\infty \), \(q, r>1\), \(p<\alpha +\beta <p^{*}\), \(2\lambda ^{(p)}_{i}>a+b\), and \(q_{\lambda ^{(p)}_{i}}(a,b)>0\). Let \(i\in N\) and \((a_{0},b_{0})\in \partial D ^{\prime }_{\lambda ^{(p)}_{i}}\) and \((z_{1},z_{2})\in \partial B_{1} \cap (H^{1}_{\mu _{\lambda ^{(p)}_{m+1}}}\oplus H^{2}_{ \mu _{\lambda ^{(p)}_{m+1}}})\subset \partial B_{1}\cap X_{2}\). Then there exist a neighborhood W of \((a_{0},b_{0})\), a small number \(\sigma >0\), and a large number \(R>0\) such that, for any \((a,b)\in W \setminus D^{\prime }_{\lambda ^{(p)}_{i}}\), if \((u,v)\in \partial Q= \partial (\bar{B_{R}}\cap X_{1}\oplus \{\sigma (z_{1}z_{2})\mid 0< \sigma <R\})\), then
Proof
Let \((a,b)\in W\setminus D^{\prime }_{\lambda ^{(p)}_{i}}\). Let us choose an element \((z_{1},z_{2})\in \partial B_{1}\cap X_{2}\) and \((u,v)\in X_{1}\oplus \{\sigma (z_{1},z_{2})\mid \sigma >0\}\). Then, by (2.1), we have
Then there exist a large number \(R>0\) and a small number \(\sigma >0\) with \(0<\sigma <R\) such that if \((u,v)\in \partial Q\), then we have \(0<\int _{\varOmega }[\frac{1}{(|u|^{2}+|v|^{2})^{q}}+\frac{1}{(|u-e_{1}|^{2}+|v-e _{2}|^{2})^{r}}]\,dx\le C_{1}\) for some constant \(0< C_{1}<1\), and, by \(p<\alpha +\beta <p^{*}\), we have
Thus we have \(\sup_{(u,v)\in \partial Q} f(u,v)<0\). Moreover, if \((u,v)\in Q\), then we have \(f(u,v)\le \frac{1}{p}\mu ^{2}_{\lambda ^{(p)} _{m}}\|(u,v)\|^{p}_{L^{p}(\varOmega )}+\frac{1}{p}\sigma ^{p} \mu ^{2}_{ \lambda ^{(p)}_{m}}+C_{1}<\infty \). □
Lemma 2.2
Assume that a, b, p, q, r, α, and β are real constants, and \(1< p<\infty \), \(q, r>1\), \(p<\alpha +\beta <p^{*}\), \(2\lambda ^{(p)}_{i}>a+b\), and \(q_{\lambda ^{(p)}_{i}}(a,b)>0\). Let \(i\in N\) and \((a_{0},b_{0})\in \partial D ^{\prime }_{\lambda ^{(p)}_{i}}\) and \((z_{1},z_{2})\in \partial B_{1} \cap (H^{1}_{\mu _{\lambda ^{(p)}_{m+1}}}\oplus H^{2}_{ \mu _{\lambda ^{(p)}_{m+1}}})\subset \partial B_{1}\cap X_{2}\). Then there exist a neighborhood W of \((a_{0},b_{0})\) and a small number \(\rho >0\) such that, for any \((a,b)\in W\setminus D^{\prime }_{ \lambda ^{(p)}_{i}}\), if \((u,v)\in \partial B_{\rho }\cap X_{2}\), then we have
Proof
Let \((a,b)\in W\setminus D^{\prime }_{\lambda ^{(p)}_{i}}\) and \((u,v)\in X_{2}\). Then, by (2.1), we have
Since \(p<\alpha +\beta <p^{*}\), there exists a small number \(\rho >0\) such that if \((u,v)\in \partial B_{r}\cap X_{2}\), then \(f(u,v)>0\). Thus \(\inf_{(u,v)\in \partial B_{r}\cap X_{2}}f(u,v)>0\). Moreover, if \((u,v)\in B_{r}\cap X_{2}\), then \(f(u,v)\ge -\frac{2}{\alpha +\beta }(C _{\alpha ,\beta }^{(p)})^{-(\alpha +\beta )}(\varOmega )\|(u,v)\|^{ \alpha +\beta }_{H}>-\infty \). Thus \(\inf_{(u,v)\in B_{r}\cap X_{2}}f(u,v)>- \infty \). So the lemma is proved. □
Let us define
Lemma 2.3
Assume that a, b, p, q, r, α, and β are real constants, and \(1< p<\infty \), \(q, r>1\), \(p<\alpha +\beta <p^{*}\), \(2\lambda ^{(p)}_{i}>a+b\), and \(q_{\lambda ^{(p)}_{i}}(a,b)>0\). Let \(i\in N\) and \((a_{0},b_{0})\in \partial D ^{\prime }_{\lambda ^{(p)}_{i}}\). Then there exist a neighborhood W of \((a_{0},b_{0})\), a small number σ, a small number \(\rho >0\), and a large number \(R>0\) such that, for any \((a,b)\in W\setminus D^{ \prime }_{\lambda ^{(p)}_{i}}\),
Proof
By Lemma 2.1, we have
By Lemma 2.2, we have
Thus the lemma is proved. □
3 \((\mathit{P.S.})\) condition and proof of Theorem 1.1
We need some lemma for the proof that \(f(u,v)\) satisfies the \((\mathit{P.S.})\) condition.
Lemma 3.1
Let \(1< p<\infty \). Let \(1<\tau \le p^{*}\). Then the embedding
is continuous and compact and, for every \((u,v)\in C^{\infty }_{0}( \varOmega ,R^{2})\), we have
for a positive constant C independent of u.
By Lemma 3.1, we obtain the following.
Lemma 3.2
Assume that \(1\le p<\infty \), a, b, p, q, r, α, and β are real constants and \(q, r>1\) and \(p<\alpha +\beta <p^{*}\). Then all the solutions of (1.1) belong to \(\varLambda G\subset H\).
Proof
Since the right-hand side of (1.1) belongs to \(L^{\alpha +\beta }( \varOmega ,G)\), where \(p<\alpha +\beta <p^{*}\), and by Lemma 3.1, the embedding \(W^{1,p}(\varOmega ,G)\hookrightarrow L^{\alpha +\beta }( \varOmega ,G)\) is continuous and compact, it follows that \(-\Delta _{p} ^{-1}\) is a compact operator and the solutions of (3.1) are in \(W^{1,p}(\varOmega ,G)=\varLambda G\). □
Lemma 3.3
Assume that \(1\le p<\infty \), a, b, p, q, r, α, and β are real constants and \(q, r>1\) and \(p<\alpha +\beta <p^{*}\). Then the functional \(f(u,v)\) is continuous, Fréchet differentiable with \(Fr\acute{e}chet\) derivative in ΛG,
Moreover, \(Df\in C\). That is, \(f\in C^{1}\).
Proof
Let us set \(H(x,u,v)=\frac{1}{p}(a |u|^{p}+b |v|^{p}) - \frac{1}{(|u|^{2}+|v|^{2})^{q}}- \frac{1}{(|u-e_{1}|^{2}+|v-e_{2}|^{2})^{r}}+\frac{2}{\alpha +\beta }|u|^{ \alpha }|v|^{\beta }\). Then \(H_{u}(x,u,v)=a |u|^{p-2}u-\operatorname{grad} _{u}\frac{1}{(|u|^{2}+|v|^{2})^{q}}-\operatorname{grad}_{u}\frac{1}{(|u-e_{1}|^{2}+|v-e _{2}|^{2})^{r}}+\frac{2\alpha }{\alpha +\beta }|u|^{\alpha -1}|v|^{ \beta }\) and \(H_{v}(x,u,v)=b |v|^{p-2}v-\operatorname{grad}_{v} \frac{1}{(|u|^{2}+|v|^{2})^{q}}-\operatorname{grad}_{v}\frac{1}{(|u-e_{1}|^{2}+|v-e _{2}|^{2})^{r}}+\frac{2\beta }{\alpha +\beta }|u|^{\alpha }|v|^{ \beta -1}\). First we shall prove that \(f(u,v)\) is continuous. For \(u, v\in \varLambda G\),
We have
and
Thus we have
Next we shall prove that \(f(u,v)\) is Fréchet differentiable. For \(u, v\in \varLambda G\),
Thus \(f\in C^{1}\). □
Lemma 3.4
(A priori estimate)
Assume that \(1\le p<\infty \), a, b, p, q, r, α, and β are real constants, \(q, r>1\), \(p<\alpha +\beta <p^{*}\), \(2\lambda ^{(p)}_{i}>a+b\), and \(q_{\lambda ^{(p)}_{i}}(a,b)>0\). Let \((u_{n},v_{n})_{n}\) be any sequence in ΛG and \(\gamma \in R\) be any positive real number. Then there exist constants \(C_{i}=C_{i}( \gamma )\), \(i=1, 2, 3\), such that if \((u_{n},v_{n})_{n}\in \varLambda G\) satisfies that \(f(u_{n},v_{n})\to \gamma \) and \(Df(u_{n},v_{n})\to \theta \), then
Proof
Let \(\gamma \in R\) be any positive real number. Let \((u_{n},v_{n})_{n}\) be any sequence in ΛG such that \(f(u_{n},v_{n})\to \gamma \) and \(Df(u_{n},v_{n})\to \theta \). Then there exists a small number \(\epsilon >0\) such that
By \(\lim_{n\to \infty }Df(u_{n},v_{n})=\theta \), we have
where \(g_{p}(t)=|t|^{p-2}t\) for \(t\neq 0\) and \(g_{p}(0)=0\). By \(2\lambda ^{(p)}_{i}>a+b\) and \(q_{\lambda ^{(p)}_{i}}(a,b)= \operatorname{Det}( \lambda ^{(p)}_{j} I-A)=(\lambda ^{(p)}_{j}-a)(\lambda ^{(p)}_{j}-b)>0\), we have \(\lambda ^{(p)}_{j}-a>0\) and \(\lambda ^{(p)}_{j}-b>0\). Thus \((-\Delta _{p} -a g_{p})^{-1}\) and \((-\Delta _{p} -b g_{p})^{-1}\) are positive operators. Since
and \((-\Delta _{p} -a g_{p})^{-1}\) and \((-\Delta _{p} -b g_{p})^{-1}\) are positive operators, it follows that \(\lim_{n\to \infty }u_{n}>0\) and \(\lim_{n\to \infty }v_{n}>0\). Then we have
Therefore we have
Since \(1< p<\infty \), \(q, r>1\), \(p<\alpha +\beta <p^{*}\), we have that \(\frac{2q}{p}+1>0\) and \(\frac{2}{p}- \frac{2}{\alpha +\beta }>0\). Since \(\int _{\varOmega } \frac{1}{(|u_{n}-e_{1}|^{2}+|v_{n}-e_{2}|^{2})^{r}}\,dx>0\), \(- \frac{1}{p}\lim_{n\to \infty }\int _{\varOmega }\operatorname{grad}_{u} \frac{1}{(|u _{n}-e_{1}|^{2}+|v_{n}-e_{2}|^{2})^{r}}\cdot u_{n} \,dx >0\), and \(-\frac{1}{p}\lim_{n\to \infty }\int _{\varOmega }\operatorname{grad}_{v}\frac{1}{(|u _{n}-e_{1}|^{2}+|v_{n}-e_{2}|^{2})^{r}}\cdot v_{n}\,dx>0\), it follows that there exist constants \(C_{i}=C_{i}(\gamma )\), \(i=1, 2, 3\), such that \(\lim_{n\to \infty }\|(u_{n},v_{n})\|_{L^{\alpha +\beta }(\varOmega )} \le C_{1}\), \(\lim_{n\to \infty }\int _{\varOmega }(\frac{1}{|u_{n}|^{2}+|v _{n}|^{2})^{q} }\,dx\le C_{2}\), and \(\int _{\varOmega }\frac{1}{(|u_{n}-e _{1}|^{2}+|v_{n}-e_{2}|^{2})^{r}}\,dx\le C_{3}\). □
Lemma 3.5
If any sequence \((u_{n},v_{n})_{n}\) in ΛG satisfies
then
Proof
The proof can be checked easily. □
Now, we shall prove that \(f(u,v)\) satisfies \((\mathit{P.S.})_{\gamma }\) with \(\gamma >0\) as follows.
Lemma 3.6
(Palais–Smale condition)
Assume that \(1\le p<\infty \), a, b, p, q, r, α, and β are real constants, and \(q, r>1\) and \(p<\alpha + \beta <p^{*}\). Let γ be any positive real number. Then \(f(u,v)\) satisfies the Palais–Smale condition: if \((u_{n},v_{n})_{n}\in \varLambda G\) is any sequence such that \(f(u_{n},v_{n})\to \gamma \) and \(Df(u_{n},v_{n})\to \theta \), \(\theta =(0,0)\), then \((u_{n},v_{n})\) has a convergent subsequence \((u_{n_{i}},v_{n_{i}})\) such that \((u_{n_{i}},v _{n_{i}})\) converges strongly to \((u_{0},v_{0})\in \varLambda G\).
Proof
Let \((u_{n},v_{n})_{n}\) be any sequence in ΛG such that \(f(u_{n},v_{n})\to \gamma \), \(\gamma >0\) and \(Df(u_{n},v_{n})\to \theta \). By Lemma 3.4, \(\lim_{n\to \infty }\|(u_{n},v_{n})\|_{L^{ \alpha +\beta }(\varOmega )}\) is finite. Thus \((u_{n},v_{n})_{n}\) is bounded in \(L^{\alpha +\beta }(\varOmega )\). Then, up to subsequence, \((u_{n},v_{n})_{n}\) converges weakly to some \((u_{0},v_{0})\). Since \(Df(u_{n},v_{n})\to \theta \), we have
By Lemma 3.4, \((u_{n},v_{n})_{n}\),
and
are bounded in \(L^{\alpha +\beta }(\varOmega )\). Since the embedding ΛG into \(L^{\alpha + \beta }(\varOmega )\), \(p<\alpha +\beta <p^{*}\), is compact, \(-\Delta ^{-1} _{p}\) is a compact operator, it follows that \((u_{n},v_{n})_{n}\) has a convergent subsequence \((u_{n_{i}},v_{n_{i}})\) converging strongly to some \((u_{0},v_{0})\) such that
We claim that \((u_{0},v_{0})\neq \theta \) and \((u_{0},v_{0})\neq (e _{1},e_{2})\). By contradiction, we suppose that \((u_{0},v_{0})=\theta \) or \((u_{0},v_{0})=(e_{1},e_{2})\). Then \(f(u_{0},v_{0})=\infty \), which is absurd. Thus \((u_{0},v_{0})\neq \theta \) and \((u_{0},v_{0})\neq (e _{1},e_{2})\). □
Proof of Theorem 1.1
Assume that a, b, p, q, r, α, and β are real constants, and \(1< p<\infty \), \(q, r>1\), \(p<\alpha +\beta <p ^{*}\), \(2\lambda ^{(p)}_{i}>a+b\), and \(q_{\lambda ^{(p)}_{i}}(a,b)>0\). By Lemma 3.3, \(f(u,v)\) is continuous and Fréchet differentiable in ΛG and \(Df\in C\). By Lemma 3.6, \(f(u,v)\) satisfies the Palais–Smale condition. We claim that \(\gamma >0\) is a critical value of \(f(u,v)\), that is, \(f(u,v)\) has a critical point \((u_{0},v_{0})\) such that
In fact, by contradiction, we suppose that \(\gamma >0\) is not a critical value of \(f(u,v)\). Then by Theorem A.4 in [6], for any \(\bar{\epsilon }\in (0,\gamma )>0\), there exist a constant \(\epsilon \in (0,\bar{ \epsilon })\) and a deformation \(\eta \in C([0,1]\times \varLambda G, \varLambda G)\) such that
-
(i)
\(\eta (0,(u,v))=(u,v)\) for all \((u,v)\in \varLambda G\),
-
(ii)
\(\eta (s,(u,v))=(u,v)\) for all \(s\in [0,1]\) if \(f(u,v)\notin [ \gamma -\bar{\epsilon },\gamma +\bar{\epsilon }]\),
-
(iii)
\(f(\eta (1,(u,v)))\le \gamma -\epsilon \) if \(f(u,v)\le \gamma +\epsilon \).
We can choose \(h\in \varGamma \) such that
and
This leads to \(f(h(u,v))\notin [\gamma -\bar{\epsilon },\gamma +\bar{ \epsilon }]\). Thus by (ii),
Hence \(\eta (1,h(u,v))\in \varGamma \). By (iii) and the definition of γ,
which is a contradiction. Thus γ is a critical value of \(f(u,v)\). Thus \(f(u,v)\) has a critical point \((u_{0},v_{0})\) with a critical value
such that
By Lemma 3.4,
Thus (1.1) has at least one nontrivial solution \((u_{0},v_{0})\) such that \((u_{0},v_{0})\neq \theta \) and \((u_{0},v_{0})\neq (e_{1},e_{2})\). Thus Theorem 1.1 is proved. □
References
Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure Appl. Math., vol. 140. Academic Press, New York (2003)
Bandle, C.: Asymptotic behavior of large solutions of quasilinear elliptic problems. Z. Angew. Math. Phys. 54, 731–738 (2003)
Bandle, C., Essèn, M.: On the solutions of quasilinear elliptic problems with boundary blow-up. In: Partial Differential Equations of Elliptic Type (Cortona, 1992). Sympos. Math., vol. 35, pp. 93–111. Cambridge Univ. Press, Cambridge (1994)
Bandle, C., Marcus, M.: ‘Large’ solutions of semilinear elliptic equations: existence, uniqueness, and asymptotic behavior. J. Anal. Math. 58, 9–24 (1992)
Bandle, C., Marcus, M.: Dependence of blowup rate of large solutions of semilinear elliptic equations on the curvature of the boundary. Complex Var. Theory Appl. 49, 555–570 (2004)
Drà bek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities. de Gruyter, Berlin (1997)
Du, Y., Huang, Q.: Blow-up solutions for a class of semilinear elliptic and parabolic equations. SIAM J. Math. Anal. 31, 1–18 (1999)
Dunninger, D.R., Wang, H.: Multiplicity of positive radial solutions for an elliptic system on an annulus domain. Nonlinear Anal. TMA 42(5), 803–811 (2000)
Dupaigne, L., Ghergu, M., Rǎdulescu, V.: Lane–Emden–Fowler equations with convection and singular potential. J. Math. Pures Appl. 87, 563–581 (2007)
Fulks, W., Maybee, J.S.: A singular nonlinear equation. Osaka Math. J. 12, 1–19 (1960)
Garcia-Melián, J., Letelier-Albornoz, R., Sabina de Lis, J.: Uniqueness and asymptotic behavior for solutions of semilinear problems with boundary blow-up. Proc. Am. Math. Soc. 129, 3593–3602 (2001)
Ghergu, M., Rǎdulescu, V.: Singular Elliptic Problems, Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and Its Applications, vol. 37. Oxford University Press, London (2008)
Lazer, A.C., McKenna, P.J.: On a problem of Bieberbach and Rademacher. Nonlinear Anal. TMA 21, 327–335 (1993)
Lazer, A.C., McKenna, P.J.: Asymptotic behavior of solutions of boundary blowup problems. Differ. Integral Equ. 7, 1001–1019 (1994)
Lê, A.: Eigenvalue problems for the p-Laplacian. Nonlinear Anal. 64, 1057–1099 (2006)
Loewner, C., Nirenberg, L.: Partial differential equations invariant under conformal or projective transformations. In: Contribution to Analysis, pp. 245–272. Academic Press, New York (1974)
Marcus, M., Véron, L.: Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14, 237–274 (1997)
Marcus, M., Véron, L.: Existence and uniqueness results for large solutions of general nonlinear elliptic equations. J. Evol. Equ. 3, 637–652 (2003)
O’Regan, D.: Some general existence principles and results for \((\phi (y^{\prime }))^{\prime }=qf(t,y,y ^{\prime })\), \(0< t<1\). SIAM J. Math. Anal. 24, 648–668 (1993)
Rademacher, H.: Einige besondere Probleme der partiellen Differentialgleichungen. In: Frank, P., von Mises, R. (eds.) Die Differential and Integralgleichungen der Mechanik and Physik I, 2nd edn., pp. 838–845. Rosenberg, New York (1943)
Rǎdulescu, V.: Singular phenomena in nonlinear elliptic problems, from blow-up boundary solutions to equations with singular nonlinearities. In: Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, pp. 483–591. North-Holland, Amsterdam (2007)
Ratto, A., Rigoli, M., Véron, L.: Scalar curvature and conformal deformation of hyperbolic space. J. Funct. Anal. 121, 15–77 (1994)
Shi, J., Yao, M.: On a singular nonlinear semilinear elliptic problem. Proc. R. Soc. Edinb., Sect. A 128, 1389–1401 (1998)
Trabelsi, M., Trabelsi, N.: Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type. Adv. Nonlinear Anal. 5(4), 315–329 (2016)
Acknowledgements
Not applicable.
Availability of data and materials
Not applicable.
Funding
Q-Heung Choi was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2017R1D1A1B03030024). Tacksun Jung was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2017R1A2B4005883).
Author information
Authors and Affiliations
Contributions
Q-HC introduced the main ideas of multiplicity study for this problem. TJ participated in applying the method for solving this problem and drafted the manuscript. All authors contributed equally to reading and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Additional information
Abbreviations
Not applicable.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Choi, QH., Jung, T. Existence of solution for p-Laplacian boundary value problems with two singular and subcritical nonlinearities. Bound Value Probl 2019, 97 (2019). https://doi.org/10.1186/s13661-019-1210-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-1210-4
MSC
- 35D30
- 35J35
- 35J58
- 35J75
Keywords
- Boundary value problems for p-Laplacian systems
- Singular potential
- Variational method
- Critical point theory
- \((\mathit{P.S.})_{c}\) condition