Skip to main content

Monotone iterative method for a p-Laplacian boundary value problem with fractional conformable derivatives

Abstract

By using monotone iterative method, the extremal solutions and the unique solution are obtained for a nonlinear fractional p-Laplacian boundary value problem involving fractional conformable derivatives and nonlocal integral boundary conditions. Comparison theorems related to the proposed study are also proved. The paper concludes with an illustrative example for the main result.

1 Introduction

Fractional calculus provides powerful tools to deal with complex phenomena occurring in various areas of applied and technical sciences such as control theory, optical and thermal systems, rheology, materials and mechanical systems, robotics, etc. Numerous researchers have investigated different aspects (existence, uniqueness, stability, etc.) of fractional differential equations involving Caputo, Riemann–Liouville, Hadamard type derivatives, for instance, see [1,2,3,4,5,6,7,8,9,10]. For some recent results on Riemann–Liouville fractional differential equations, we refer the reader to the articles [11,12,13,14,15] and the references cited therein. Fractional p-Laplacian boundary value problems also received considerable attention, for example, see [16,17,18,19,20,21,22,23,24,25,26]. The literature on fractional differential equations equipped with integral boundary conditions also contains a variety of interesting results [27,28,29,30,31,32].

Monotone iterative method is found to be an important and efficient method to obtain sequences of monotone solutions for initial and boundary value problems. For some applications of this technique to nonlinear fractional differential equations, see [15, 33,34,35,36,37,38,39,40,41,42,43]. In 2017, Jarad et. al. [44] proposed a new fractional derivative, which is known as fractional conformable derivative (see definition (2.4)). To the best of the authors’ knowledge, the fractional p-Laplacian problem involving fractional conformable derivatives is yet to be investigated. In this paper, we apply monotone iterative method to prove the existence of extremal and uniqueness of solutions for the following nonlinear fractional p-Laplacian problem involving fractional conformable derivatives and nonlocal integral boundary condition:

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }(\phi _{p}({}^{\gamma }_{0}D^{\alpha }h(t)))=f(t, h(t), {}^{\gamma }_{0}D^{\alpha }h(t)), \quad t\in (0,d], d>0, \\ t^{\frac{\alpha (1-\beta )}{p-1}} {{}^{\gamma }_{0}D^{\alpha }h(t)}|_{t=0}= \int _{0}^{\tau }a(s)h(s)\,ds, \quad g(\tilde{h}(0),\tilde{h}(d))=0, \tau \in (0,d), \end{cases} $$
(1.1)

where \(0<\alpha , \gamma , \beta \leq 1\), \(\phi _{p}(t)=|t|^{p-2}t\), \(a\in C([0,d],[0,\infty ))\), \(f\in C([0,d]\times \mathbb{R}^{2}, \mathbb{R})\), \(g\in C(\times \mathbb{R}^{2},\mathbb{R})\), \(\phi _{p}\), \(p>1\), denotes the p-Laplacian operator and \(\phi _{p}^{-1}=\phi _{q}\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\tilde{h}(0)=t^{\alpha (1-\gamma )}h(t)|_{t=0}\), \(\tilde{h}(d)=t^{\alpha (1-\gamma )}h(t)|_{t=d}\), and \({}^{\gamma }_{0}D^{\alpha }\) is the fractional conformable derivative of order γ.

We emphasize that the results obtained for problem (1.1) are new and significantly contribute to the existing literature on p-Laplacian problems with fractional conformable derivatives. In order to establish the desired results, we prove two comparison theorems related to the problem at hand, which are presented in Sect. 2. The main results are presented in Sect. 3.

2 Preliminaries and lemmas

For \(\alpha , \gamma \in (0,1)\), we denote by \(C_{\alpha (1- \gamma )}([0,d],\mathbb{R})\) a Banach space

$$ \bigl\{ h\in C((0,d],\mathbb{R}):t^{\alpha (1-\gamma )}h\in C\bigl([0,d], \mathbb{R} \bigr)\bigr\} , $$
(2.1)

endowed with the norm \(\|h\|_{C_{\alpha (1-\gamma )}}=\sup_{t\in [0,d]}t^{\alpha (1-\gamma )}|h(t)|\).

Let

$$ Y=\bigl\{ h(t)\in C_{\alpha (1-\gamma )}\bigl([0,d],\mathbb{R}\bigr): {}^{\gamma }_{0}D ^{\alpha }h(t)\in C_{k} \bigl([0,d],\mathbb{R}\bigr) \text{ and } t^{k}{{}^{\gamma }_{0}D^{\alpha }h(t)|_{t=0}}= \varepsilon \bigr\} , $$
(2.2)

where \(0<\alpha , \gamma <1\), \(k=\frac{\alpha (1-\beta )}{p-1}\), \(\varepsilon =\int _{0}^{\tau }a(s)h(s)\,ds\), be a Banach space equipped with the norm \(\|h\|_{Y}=\max \{\sup_{t\in [0,d]}t^{ \alpha (1-\gamma )}|h(t)|, \sup_{t\in [0,d]}|{}^{\gamma }_{0}D ^{\alpha }h(t)| \}\).

Definition 2.1

([44])

The Riemann–Liouville type fractional conformable integral of order \(\gamma \in \mathbb{C}\), \(\operatorname{Re}(\gamma )\geq 0\) is defined by

$$ {}_{a}^{\gamma }I^{\alpha }h(t)=\frac{1}{\varGamma (\gamma )} \int _{a}^{t} \biggl(\frac{(t-a)^{\alpha }-(s-a)^{\alpha }}{\alpha } \biggr)^{\gamma -1}h(s)\frac{ds}{(s-a)^{1- \alpha }}. $$
(2.3)

Definition 2.2

([44])

The fractional conformable derivative of Riemann–Liouville type of order \(\gamma \in \mathbb{C}\), \(\operatorname{Re}(\gamma ) \geq 0\) is defined by

$$ \begin{aligned} {}_{a}^{\gamma }D^{\alpha }h(t)&={}_{a}^{n} \mathcal{T}^{\alpha }\bigl({}^{n- \gamma }_{a}I^{\alpha } \bigr)h(t) \\ &=\frac{{}_{a}^{n}\mathcal{T}^{\alpha }}{\varGamma (n-\gamma )} \int _{a} ^{t} \biggl(\frac{(t-a)^{\alpha }-(s-a)^{\alpha }}{\alpha } \biggr)^{n- \gamma -1}h(s)\frac{ds}{(s-a)^{1-\alpha }}, \end{aligned} $$
(2.4)

where

$$ n=\bigl[\operatorname{Re}(\gamma )\bigr]+1, \qquad {}_{a}^{n} \mathcal{T}^{\alpha }=\underbrace{{}_{a}\mathcal{T}^{\alpha } {}_{a}\mathcal{T}^{\alpha }\cdots {}_{a} \mathcal{T}^{\alpha }} _{n \text{ times}}, $$
(2.5)

and \({}_{a}\mathcal{T}^{\alpha }\) is the conformable differential operator [45]

$$ {}_{a}\mathcal{T}^{\alpha }h(t)=(t-a)^{1-\alpha }h^{\prime }(t). $$
(2.6)

Lemma 2.1

([44])

Let \(0<\operatorname{Re}(\gamma )<1\), \(n=-[- \operatorname{Re}(\gamma )]\), \(f\in L((0,d),\mathbb{R})\). Then

$$ {}^{\gamma }_{a}I^{\alpha }\bigl({}^{\gamma }_{a}D^{\alpha }h(t) \bigr)=h(t)-\frac{ {}_{a}^{\gamma -1}D^{\alpha }h(a)}{\alpha ^{\gamma -1}\varGamma (\gamma )}(t-a)^{ \alpha \gamma -\alpha }. $$

Let us first consider the problem

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }(\phi _{p}({}^{\gamma }_{0}D^{\alpha }h(t)))=f(t, h(t), {}^{\gamma }_{0}D^{\alpha }h(t)), \quad t\in (0,d], \\ t^{\frac{\alpha (1-\beta )}{p-1}} {{}^{\gamma }_{0}D^{\alpha }h(t)}|_{t=0}= \int _{0}^{\tau }a(s)h(s)\,ds, \quad \tilde{h}(0)=r, \tau \in (0,d). \end{cases} $$
(2.7)

Applying Lemma 2.1 to problem (2.7) with \(l(t)=\phi _{p}({}^{\gamma }_{0}D^{\alpha }h(t))\) and \(\tilde{h}(0)=r\), we obtain

$$ h(t)=rt^{\alpha (\gamma -1)}+\frac{1}{\varGamma (\gamma )} \int _{0}^{t} \biggl(\frac{t^{\alpha }-s^{\alpha }}{\alpha } \biggr)^{\gamma -1}\phi _{q}\bigl(l(s)\bigr) \frac{ds}{s ^{1-\alpha }}=:Bl(t) $$
(2.8)

and

$$ \phi _{p}\bigl(t^{\frac{\alpha (1-\beta )}{p-1}} {{}^{\gamma }_{0}D^{\alpha }h(t)}\bigr)=t ^{\alpha (1-\beta )}\phi _{p}\bigl({}^{\gamma }_{0}D^{\alpha }h(t) \bigr)=t^{\alpha (1-\beta )}l(t). $$
(2.9)

Thus problem (2.7) takes the form

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }l(t)=f(t, Bl(t), \phi _{q}(l(t))), \quad t\in (0,d], \\ t^{\alpha (1-\beta )}l(t)|_{t=0}=\phi _{p}[\int _{0}^{\tau }a(s)h(s)\,ds], \quad \tau \in (0,d). \end{cases} $$
(2.10)

If (2.10) has a solution \(l(t)\), then we get a solution \(h(t)\) of Eq. (2.7) after inserting \(l(t)\) in Eq.(2.8). This shows the existence of a solution for problem (2.10).

In the following lemma, we use \(\|h\|_{*}=\sup_{t\in [0,d]}|h(t)|\).

Lemma 2.2

Suppose that \(f\in C([0,d]\times \mathbb{R}^{2},\mathbb{R})\), \(0<\alpha , \beta <1\), and there exists a nonnegative bounded integrable function M on \([0,d]\) such that

$$ \bigl\vert f(t,h_{1},h_{2})-f(t,l_{1},l_{2}) \bigr\vert \leq M(t) \bigl\vert \phi _{p}(l_{2})- \phi _{p}(h _{2}) \bigr\vert , \quad t\in (0,d]. $$

Then problem (2.10) has a unique solution \(l(t)\in C _{\alpha (1-\beta )}([0,d],\mathbb{R})\), if

$$ \frac{d^{\alpha (\beta -1)}\xi ^{p-2}\eta ^{q-2}}{\varGamma (\gamma +1)} \int _{0}^{\tau }a(s) \biggl(\frac{s^{\alpha }}{\alpha } \biggr)^{\gamma -1}\,ds+\frac{Md ^{\alpha \beta }}{\varGamma (\beta +1)\alpha ^{\beta }}< 1, $$
(2.11)

where ξ takes the values between \(\int _{0}^{\tau }a(s){{}_{0}^{ \gamma }I^{\alpha }\phi _{q}(h(s))}\,ds\) and \(\int _{0}^{\tau }a(s){{}_{0} ^{\gamma }I^{\alpha }\phi _{q}(l(s))}\,ds\), the values of η remain between \(h(u)\) and \(l(u)\), and \(M=\sup_{t\in [0,d]}|M(t)|\).

Proof

According to Lemma 2.1 and \(t^{\alpha (1-\beta )}l(t)|_{t=0}= \phi _{p}(\int _{0}^{\tau }a(s)h(s)\,ds)\), problem (2.10) is equivalent to the following integral equation:

$$ \begin{aligned}[b] l(t)&=\phi _{p} \biggl[ \int _{0}^{\tau }a(s)Bl(s)\,ds \biggr]t^{\alpha (\beta -1)}\\ &\quad {}+ \frac{1}{ \varGamma (\beta )} \int _{0}^{t} \biggl(\frac{t^{\alpha }-s^{\alpha }}{ \alpha } \biggr)^{\beta -1}f\bigl(s, Bl(s), \phi _{q}\bigl(l(s)\bigr) \bigr)\frac{ds}{s^{1- \alpha }}\\ &:=Al(t). \end{aligned} $$
(2.12)

For any \(h, l\in C_{\alpha (1-\beta )}([0,d],\mathbb{R})\), we have

$$\begin{aligned} & \Vert Ah-Al \Vert _{*} \\ &\quad\leq \sup_{t\in [0,d]}t^{\alpha (\beta -1)} \biggl\vert \phi _{p}\biggl[ \int _{0}^{\tau }a(s)Bh(s)\,ds\biggr]-\phi _{p}\biggl[ \int _{0}^{\tau }a(s)Bl(s)\,ds\biggr] \biggr\vert \\ &\qquad {}+\sup_{t\in [0,d]}\frac{1}{\varGamma (\beta )} \int _{0}^{t} \biggl(\frac{t^{\alpha }-s^{\alpha }}{\alpha } \biggr)^{\beta -1} \bigl\vert f\bigl(s, Bh(s), \phi _{q} \bigl(h(s)\bigr)\bigr)-f\bigl(s, Bl(s), \phi _{q}\bigl(l(s)\bigr) \bigr) \bigr\vert \frac{ds}{s^{1-\alpha }} \\ &\quad\leq \sup_{t\in [0,d]}t^{\alpha (\beta -1)} \biggl\vert \phi _{p} \biggl[ \int _{0}^{\tau }a(s) \biggl(rs^{\alpha (\gamma -1)}+ \frac{1}{ \varGamma (\gamma )} \int _{0}^{s} \biggl(\frac{s^{\alpha }-u^{\alpha }}{ \alpha } \biggr)^{\gamma -1}\phi _{q}\bigl(h(u)\bigr) \frac{du}{u^{1-\alpha }} \biggr) \,ds \biggr] \\ &\qquad {}-\phi _{p} \biggl[ \int _{0}^{\tau }a(s) \biggl(rs^{\alpha (\gamma -1)}+ \frac{1}{ \varGamma (\gamma )} \int _{0}^{s} \biggl(\frac{s^{\alpha }-u^{\alpha }}{ \alpha } \biggr)^{\gamma -1}\phi _{q}\bigl(l(u)\bigr) \frac{du}{u^{1-\alpha }} \biggr)\,ds \biggr] \biggr\vert \\ &\qquad {}+\sup_{t\in [0,d]}\frac{1}{\varGamma (\beta )} \int _{0}^{t} \biggl(\frac{t^{\alpha } -s^{\alpha }}{\alpha } \biggr)^{\beta -1}M(s) \bigl\vert h(s)-l(s) \bigr\vert \frac{ds}{s ^{1-\alpha }} \\ &\quad\leq \sup_{t\in [0,d]}t^{\alpha (\beta -1)} \biggl\vert \biggl[ \int _{0}^{\tau }a(s) \bigl(rs^{\alpha (\gamma -1)} \bigr)\,ds\\ &\qquad {}+ \int _{0}^{\tau }a(s)\frac{1}{ \varGamma (\gamma )} \int _{0}^{s} \biggl(\frac{s^{\alpha }-u^{\alpha }}{ \alpha } \biggr)^{\gamma -1} \bigl\vert \phi _{q}\bigl(h(u)\bigr) \bigr\vert \frac{du}{u^{1-\alpha }})\,ds \biggr]^{p-1} \\ &\qquad {}- \biggl[ \int _{0}^{\tau }a(s) \bigl(rs^{\alpha (\gamma -1)} \bigr)\,ds+ \int _{0}^{ \tau }a(s)\frac{1}{\varGamma (\gamma )} \int _{0}^{s} \biggl(\frac{s^{\alpha }-u^{\alpha }}{\alpha } \biggr)^{\gamma -1} \bigl\vert \phi _{q}\bigl(l(u)\bigr) \bigr\vert \frac{du}{u ^{1-\alpha }})\,ds \biggr]^{p-1} \biggr\vert \\ &\qquad{}+\sup_{t\in [0,d]}\frac{1}{\varGamma (\beta )} \int _{0}^{t} \biggl(\frac{t^{\alpha }-s^{\alpha }}{\alpha } \biggr)^{\beta -1}M(s)\frac{ds}{s ^{1-\alpha }} \Vert h-l \Vert _{*} \\ &\quad\leq \sup_{t\in [0,d]}t^{\alpha (\beta -1)} \biggl\vert (p-1)\xi ^{p-2} \biggl[ \int _{0}^{\tau }a(s) \bigl(rs^{\alpha (\gamma -1)} \bigr)\,ds+ \int _{0}^{ \tau }a(s)\frac{1}{\varGamma (\gamma )} \int _{0}^{s} \biggl(\frac{s^{\alpha }-u^{\alpha }}{\alpha } \biggr)^{\gamma -1} \\ &\qquad{}\times\phi _{q}\bigl(h(u)\bigr) \frac{du}{u^{1-\alpha }}\,ds - \int _{0}^{\tau }a(s) \bigl(rs ^{\alpha (\gamma -1)} \bigr)\,ds\\ &\qquad {} - \int _{0}^{\tau }a(s)\frac{1}{\varGamma (\gamma )} \int _{0}^{s} \biggl(\frac{s^{\alpha }-u^{\alpha }}{\alpha } \biggr)^{ \gamma -1}\phi _{q}\bigl(l(u)\bigr) \frac{du}{u^{1-\alpha }}\,ds \biggr] \biggr\vert \\ &\qquad{}+\sup_{t\in [0,d]}\frac{M}{\varGamma (\beta +1)} \biggl( \frac{t ^{\alpha }}{\alpha } \biggr)^{\beta } \Vert h-l \Vert _{*} \\ &\quad\leq d^{\alpha (\beta -1)}(p-1)\xi ^{p-2} \biggl\vert \int _{0}^{\tau }a(s)\frac{1}{ \varGamma (\gamma )} \int _{0}^{s} \biggl(\frac{s^{\alpha }-u^{\alpha }}{ \alpha } \biggr)^{\gamma -1} \bigl(\phi _{q}\bigl(h(u)\bigr)-\phi _{q}\bigl(l(u)\bigr)\bigr) \frac{du}{u ^{1-\alpha }}\,ds \biggr\vert \\ &\qquad{}+\frac{Md^{\alpha \beta }}{\varGamma (\beta +1)\alpha ^{\beta }} \Vert h-l \Vert _{*} \\ &\quad\leq d^{\alpha (\beta -1)}(p-1)\xi ^{p-2}(q-1)\eta ^{q-2} \int _{0} ^{\tau }a(s)\frac{1}{\varGamma (\gamma )} \int _{0}^{s} \biggl(\frac{s^{ \alpha }-u^{\alpha }}{\alpha } \biggr)^{\gamma -1}\frac{du}{u^{1-\alpha }}\,ds \Vert h-l \Vert _{*} \\ &\qquad{}+\frac{Md^{\alpha \beta }}{\varGamma (\beta +1)\alpha ^{\beta }} \Vert h-l \Vert _{*} \\ &\quad= \biggl(\frac{d^{\alpha (\beta -1)}\xi ^{p-2}\eta ^{q-2}}{\varGamma ( \gamma +1)} \int _{0}^{\tau }a(s) \biggl(\frac{s^{\alpha }}{\alpha } \biggr)^{\gamma -1}\,ds+\frac{Md^{\alpha \beta }}{\varGamma (\beta +1) \alpha ^{\beta }} \biggr) \Vert h-l \Vert _{*}, \end{aligned}$$

which, in view of (2.11), implies that the operator A has a unique fixed point by the Banach fixed point theorem. In consequence, problem (2.10) has a unique solution. □

Lemma 2.3

If \(0<\alpha , \gamma , \beta <1\), \(\psi \in C_{\alpha (1-\beta )}([0,d], \mathbb{R})\), and M is a nonnegative bounded integrable function on \([0,d]\), then the following problem

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }(\phi _{p}({}^{\gamma }_{0}D^{\alpha }h(t)))+M(t) \phi _{p}({}^{\gamma }_{0}D^{\alpha }h(t))=\psi (t), \quad t\in (0,d], \\ t^{\frac{\alpha (1-\beta )}{p-1}} {{}^{\gamma }_{0}D^{\alpha }h(t)}|_{t=0}=c, \quad \tilde{h}(0)=r, \end{cases} $$
(2.13)

has a unique solution \(h\in Y\), provided that \(Md^{\alpha \beta }< \varGamma (\beta +1)\alpha ^{\beta }\).

Proof

Letting \(l(t)=\phi _{p}({}^{\gamma }_{0}D^{\alpha }h(t))\), we have

$$ \textstyle\begin{cases} {}^{\gamma }_{0}D^{\alpha }h(t)=\phi _{q}(l(t)), \quad t\in (0,d], \\ \tilde{h}(0)=r, \end{cases} $$
(2.14)

and

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }l(t)+M(t)l(t)=\psi (t), \quad t\in (0,d], \\ t^{\alpha (1-\beta )}l(t)|_{t=0}=\phi _{p}(c). \end{cases} $$
(2.15)

Let \(f(t, Bl(t), \phi _{q}(l(t)))=\psi (t)-M(t)l(t)\). For \(l_{1}, l _{2}\in C_{\alpha (1-\beta )}([0,d],\mathbb{R})\), we have

$$ \bigl\vert f\bigl(t, Bl_{1}, \phi _{q}(l_{1}) \bigr)-f\bigl(t, Bl_{2}, \phi _{q}(l_{2}) \bigr) \bigr\vert = \bigl\vert M(t) \bigr\vert \vert l _{2}-l_{1} \vert \leq M \vert l_{2}-l_{1} \vert . $$

Thus, problem (2.15) has a unique solution \(l\in C_{ \alpha (1-\beta )}([0,d],\mathbb{R})\) by Lemma 2.2, and \({}^{\gamma }_{0}D^{\alpha }h\in C_{\frac{\alpha (1-\beta )}{p-1}}([0,d], \mathbb{R})\). Moreover, problem (2.14) has a solution \(h\in C_{\alpha (1-\gamma )}([0,d],\mathbb{R})\) by Lemma 2.1. By inserting l in h, we get a unique solution \(h\in Y\) of problem (2.13). □

Definition 2.3

If \(h\in Y\) is a lower solution of (1.1), then

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }(\phi _{p}({}^{\gamma }_{0}D^{\alpha }h(t))) \leq f(t, h(t), {}^{\gamma }_{0}D^{\alpha }h(t)), \quad t\in (0,d], d>0, \\ t^{\frac{\alpha (1-\beta )}{p-1}} {{}^{\gamma }_{0}D^{\alpha }h(t)}|_{t=0} \leq \int _{0}^{\tau }a(s)h(s)\,ds, \quad g(\tilde{h}(0),\tilde{h}(d))\leq 0, \tau \in (0,d). \end{cases} $$
(2.16)

If \(l\in Y\) is an upper solution of (1.1), then

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }(\phi _{p}({}^{\gamma }_{0}D^{\alpha }l(t))) \geq f(t, l(t), {}^{\gamma }_{0}D^{\alpha }l(t)), \quad t\in (0,d], d>0, \\ t^{\frac{\alpha (1-\beta )}{p-1}} {{}^{\gamma }_{0}D^{\alpha }l(t)}|_{t=0} \geq \int _{0}^{\tau }a(s)h(s)\,ds, \quad g(\tilde{l}(0),\tilde{l}(d))\geq 0, \tau \in (0,d). \end{cases} $$
(2.17)

Lemma 2.4

(Comparison theorem)

\((C_{1})\) :

Let M be a nonnegative bounded integrable function on \([0,d]\). If \(m\in C_{\alpha (1-\beta )}([0,d],\mathbb{R})\) satisfies

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }m(t)+M(t)m(t)\geq 0, \quad t\in (0,d], \\ t^{\alpha (1-\beta )}m(t)|_{t=0}\geq 0, \end{cases} $$

then \(m(t)\geq 0\), \(t\in (0,d]\).

\((C_{2})\) :

Assume that \(n\in C_{\alpha (1-\gamma )}([0,d],\mathbb{R})\) satisfies

$$ \textstyle\begin{cases} {}^{\gamma }_{0}D^{\alpha }n(t)\geq 0, \quad t\in (0,d], \\ t^{\alpha (1-\gamma )}n(t)|_{t=0}\geq 0. \end{cases} $$

Then \(n(t)\geq 0\), \(t\in (0,d]\).

Proof

Assume that \(m(t)\geq 0\) is not true. Then there exist \(t_{1}, t_{2} \in (0,d]\) such that \(m(t_{2})<0\), \(m(t_{1})=0\) and \(m(t)\geq 0\) for \(t\in (0,t_{1})\) and \(m(t)<0\) for \(t\in (t_{1},t_{2})\). Since \(M(t)\geq 0\), \(\forall t\in [0,d]\), we have \({}^{\beta }_{0}D^{\alpha }m(t) \geq 0\), \(\forall t\in (t_{1},t_{2})\).

According to

$$ {}^{\beta }_{0}D^{\alpha }m(t)=t^{1-\alpha } \frac{d}{dt}{{}_{0}^{1- \beta }I^{\alpha }m(t)}, $$

we obtain that \({}_{0}^{1-\beta }I^{\alpha }m(t)\) is nondecreasing on \((t_{1},t_{2})\). Hence \({}_{0}^{1-\beta }I^{\alpha }m(t)-{{}_{0}^{1- \beta }I^{\alpha }m(t_{1})}\geq 0\), \(t\in (t_{1},t_{2})\). On the other hand, we have

$$ \begin{aligned} &{}_{0}^{1-\beta }I^{\alpha }m(t)-{{}_{0}^{1-\beta }I^{\alpha }m(t _{1})} \\ &\quad =\frac{1}{\varGamma (1-\beta )} \int _{0}^{t} \biggl(\frac{t^{\alpha }-s ^{\alpha }}{\alpha } \biggr)^{-\beta }m(s)\frac{ds}{s^{1-\alpha }}-\frac{1}{ \varGamma (1-\beta )} \int _{0}^{t_{1}} \biggl(\frac{{t_{1}}^{\alpha }-s^{ \alpha }}{\alpha } \biggr)^{-\beta }m(s)\frac{ds}{s^{1-\alpha }} \\ &\quad =\frac{1}{\varGamma (1-\beta )} \int _{0}^{t_{1}} \biggl[ \biggl( \frac{t^{ \alpha }-s^{\alpha }}{\alpha } \biggr)^{-\beta }- \biggl(\frac{{t_{1}}^{ \alpha }-s^{\alpha }}{\alpha } \biggr)^{-\beta } \biggr]m(s) \frac{ds}{s ^{1-\alpha }} \\ &\qquad{}+\frac{1}{\varGamma (1-\beta )} \int _{t_{1}}^{t} \biggl(\frac{{t}^{\alpha }-s^{\alpha }}{\alpha } \biggr)^{-\beta }m(s)\frac{ds}{s^{1-\alpha }} \\ &\quad < 0, \quad \forall t\in (t_{1},t_{2}), \end{aligned} $$

which is a contradiction. Therefore, \(m(t)\geq 0\), \(\forall t\in (0,d]\).

Obviously, the conclusion of \((C_{2})\) holds. It follows from (2.8) that \(n(t)\geq 0\), \(\forall t\in (0,d]\). □

3 Main results

Theorem 3.1

Assume that

\((L_{1})\) :

\(h_{0}, l_{0}\in Y\) are lower and upper solutions of (1.1), respectively with \(h_{0}(t)\leq l_{0}(t)\), \(t\in (0,d]\);

\((L_{2})\) :

there exists a function \(M\in C([0,d],\mathbb{R})\), \(t\in [0,d]\) such that

$$ f\bigl(t, l(t), {}^{\gamma }_{0}D^{\alpha }l(t)\bigr)-f \bigl(t, h(t), {}^{\gamma }_{0}D ^{\alpha }h(t)\bigr)\geq -M(t)\bigl[\phi _{p}\bigl({}^{\gamma }_{0}D^{\alpha }l(t) \bigr)-\phi _{p}\bigl({}^{\gamma }_{0}D^{\alpha }h(t) \bigr)\bigr] $$

for \(h_{0}(t)\leq h(t)\leq l(t)\leq l_{0}(t)\), \(t\in (0,d]\);

\((L_{3})\) :

the function g satisfies

$$ g(m_{2},n_{2})-g(m_{1},n_{1}) \geq m_{2}-m_{1} $$

for \(\tilde{h}_{0}(0)\leq m_{2}\leq m_{1}\leq \tilde{l}_{0}(0)\), \(\tilde{h}_{0}(d)\leq n_{2}\leq n_{1}\leq \tilde{l}_{0}(d)\), if \(M(t)d^{\alpha \beta }<\varGamma (\beta +1)\alpha ^{\beta }\).

Then there exist sequences \(\{h_{n}\}, \{l_{n}\}\in Y\) such that (1.1) has extremal solutions \(m(t)\), \(n(t)\) in \([h_{0},l_{0}]=\{h\in Y:h_{0}(t)\leq h(t)\leq l_{0}(t), t\in (0,d]\}\) satisfying

$$ \textstyle\begin{cases} h_{0}(t)\leq h_{1}(t)\leq \cdots \leq h_{n}(t)\leq \cdots \leq m(t)\leq n(t)\leq \cdots \leq l_{n}(t)\leq \cdots \leq l_{1}(t)\leq l_{0}(t),\\ {}^{\gamma }_{0}D^{\alpha }h_{0}\leq {{}^{\gamma }_{0}D^{\alpha }h_{1}} \leq \cdots \leq {{}^{\gamma }_{0}D^{\alpha }h_{n}}\leq \cdots \leq {{}^{\gamma }_{0}D^{\alpha }m}\leq {{}^{\gamma } _{0}D^{\alpha }n}\leq \cdots \\ \hphantom{{}^{\gamma }_{0}D^{\alpha }h_{0}} \leq {{}^{\gamma }_{0}D^{\alpha }l_{n}}\leq \cdots \leq {{}^{\gamma }_{0}D^{\alpha }l_{1}} \leq {{}^{\gamma }_{0}D^{\alpha }l_{0}}, \\ \phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{0})\leq {\phi _{p}({}^{\gamma } _{0}D^{\alpha }h_{1})}\leq \cdots \leq {\phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{n})}\leq \cdots\leq {\phi _{p}({}^{\gamma }_{0}D^{\alpha }m)}\leq {\phi _{p}({}^{\gamma }_{0}D^{\alpha }n)}\leq \cdots \\ \hphantom{\phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{0})} \leq {\phi _{p}({}^{\gamma }_{0}D^{\alpha }l_{n})} \leq \cdots \leq {\phi _{p}({}^{\gamma }_{0}D^{\alpha }l _{1})}\leq {\phi _{p}({}^{\gamma }_{0}D^{\alpha }l_{0})}, \end{cases} $$

for \(t\in (0,d]\), \(n=1, 2, 3, \dots\).

Proof

Let \(F(h(t))=f(t, h(t), {}^{\gamma }_{0}D^{\alpha }h(t))\). For \(n=1,2, \dots\), we define

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }(\phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{n}(t)))+M(t) \phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{n}(t)) \\ \quad =F(h_{n-1}(t))+M(t)\phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{n-1}(t)),\quad t\in (0,d], \\ t^{\frac{\alpha (1-\beta )}{p-1}} {{}^{\gamma }_{0}D^{\alpha }h_{n}(t)}|_{t=0}= \int _{0}^{\tau }a(s)h_{n-1}(s)\,ds, \\ \tilde{h}_{n}(0)=\tilde{h}_{n-1}(0)-g(\tilde{h}_{n-1}(0), \tilde{h} _{n-1}(d)),\quad \tau \in (0,d), \end{cases} $$
(3.1)

and

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }(\phi _{p}({}^{\gamma }_{0}D^{\alpha }l_{n}(t)))+M(t) \phi _{p}({}^{\gamma }_{0}D^{\alpha }l_{n}(t)) \\ \quad =F(l_{n-1}(t))+M(t)\phi _{p}({}^{\gamma }_{0}D^{\alpha }l_{n-1}(t)),\quad t\in (0,d], \\ t^{\frac{\alpha (1-\beta )}{p-1}} {{}^{\gamma }_{0}D^{\alpha }l_{n}(t)}|_{t=0}= \int _{0}^{\tau }a(s)l_{n-1}(s)\,ds, \\ \tilde{l}_{n}(0)=\tilde{l}_{n-1}(0)-g(\tilde{l}_{n-1}(0), \tilde{l} _{n-1}(d)),\quad \tau \in (0,d). \end{cases} $$
(3.2)

Notice that the functions \(h_{1}\), \(l_{1}\) are well defined in Y by Lemma 2.3.

Now, we prove that \(h_{0}(t)\leq h_{1}(t)\leq l_{1}(t)\leq l_{0}(t)\), \({}^{\gamma }_{0}D^{\alpha }h_{0}(t)\leq {{}^{\gamma }_{0}D^{\alpha }h _{1}(t)}\leq {{}^{\gamma }_{0}D^{\alpha }l_{1}(t)}\leq {{}^{\gamma }_{0}D ^{\alpha }l_{0}(t)}\), \(t\in (0,d]\), and \(\tilde{h}_{0}(0)\leq \tilde{h}_{1}(0)\leq \tilde{l}_{1}(0)\leq \tilde{l}_{0}(0)\). Let \(\lambda (t)=\phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{1}(t))-\phi _{p}({}^{ \gamma }_{0}D^{\alpha }h_{0}(t))\). From (2.9), (3.1), and \((L_{1})\), we have

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }\lambda (t)+M(t)\lambda (t)=F(h_{0}(t))-{{}^{ \beta }_{0}D^{\alpha }(\phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{0}(t)))} \geq 0, \\ t^{\alpha (1-\beta )}\lambda (t)|_{t=0}=\phi _{p}(t^{\frac{\alpha (1- \beta )}{p-1}}{{}^{\gamma }_{0}D^{\alpha }h_{1}(t))}|_{t=0} -\phi _{p}(t ^{\frac{\alpha (1-\beta )}{p-1}}{{}^{\gamma }_{0}D^{\alpha }h_{0}(t))}|_{t=0} \\ \hphantom{t^{\alpha (1-\beta )}\lambda (t)|_{t=0}}\geq \int _{0}^{\tau }a(s)h_{0}(s)\,ds-\int _{0}^{\tau }a(s)h_{0}(s)\,ds=0. \end{cases} $$

By \((C_{1})\) of Lemma 2.4, we obtain \(\lambda (t)\geq 0\), \(t\in (0,d]\), which means \(\phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{1}(t)) \geq \phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{0}(t))\). The monotone increasing property of \(\phi _{p}(t)\) ensures that \({}^{\gamma }_{0}D ^{\alpha }h_{1}(t)\geq {{}^{\gamma }_{0}D^{\alpha }h_{0}(t)}\). Thus, \({}^{\gamma }_{0}D^{\alpha }(h_{1}(t)-h_{0}(t))\geq 0\). According to \(\tilde{h}_{1}(0)-\tilde{h}_{0}(0)=-g(\tilde{h}_{0}(0), \tilde{h}_{0}(d)) \geq 0\), we have \(h_{1}(t)\geq h_{0}(t)\), \(t\in (0,d]\) by \((C_{2})\) of Lemma 2.4. In a similar manner, we can obtain that \(l_{1}(t)\leq l_{0}(t)\), \({}^{\gamma }_{0}D^{\alpha }h_{1}(t)\leq {{}^{ \gamma }_{0}D^{\alpha }h_{0}(t)}\), \(t\in (0,d]\), and \(\tilde{l}_{1}(0) \leq \tilde{l}_{0}(0)\).

Setting \(\eta (t)=\phi _{p}({}^{\gamma }_{0}D^{\alpha }l_{1}(t))-\phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{1}(t))\) and using \((L_{2})\), we have

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }\eta (t)+M(t)\eta (t)=F(l_{0}(t))-F(h_{0}(t))+M(t)[ \phi _{p}({}^{\gamma }_{0}D^{\alpha }l_{0}(t)) -\phi _{p}({}^{\gamma }_{0}D ^{\alpha }h_{0}(t))]\geq 0, \\ t^{\alpha (1-\beta )}\eta (t)|_{t=0}=\phi _{p}(t^{\frac{\alpha (1- \beta )}{p-1}}{{}^{\gamma }_{0}D^{\alpha }l_{1}(t))}|_{t=0} -\phi _{p}(t ^{\frac{\alpha (1-\beta )}{p-1}}{{}^{\gamma }_{0}D^{\alpha }h_{1}(t))}|_{t=0} \geq 0. \end{cases} $$

By \((C_{1})\) of Lemma 2.4, we obtain \(\eta (t)\geq 0\), \(t\in (0,d]\). Then \(\phi _{p}({}^{\gamma }_{0}D^{\alpha }l_{1}(t))\geq \phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{1}(t))\), and \({}^{\gamma }_{0}D ^{\alpha }l_{1}(t)\geq {{}^{\gamma }_{0}D^{\alpha }h_{1}(t)}\). By \((L_{3})\), we have

$$ \begin{aligned} \tilde{l}_{1}(0)-\tilde{h}_{1}(0)&= \tilde{l}_{0}(0)-g\bigl(\tilde{l}_{0}(0), \tilde{l}_{0}(d)\bigr)-\tilde{h}_{0}(0)+g\bigl( \tilde{h}_{0}(0), \tilde{h}_{0}(d)\bigr) \\ &=\tilde{l}_{0}(0)-\tilde{h}_{0}(0)+g\bigl( \tilde{h}_{0}(0), \tilde{h} _{0}(d)\bigr)-g\bigl( \tilde{l}_{0}(0), \tilde{l}_{0}(d)\bigr) \\ &\geq \tilde{l}_{0}(0)-\tilde{h}_{0}(0)+ \tilde{h}_{0}(0)-\tilde{l} _{0}(0)=0. \end{aligned} $$

Thus, \(l_{1}(t)\geq h_{1}(t)\), \(t\in (0,d]\) by \((C_{2})\) of Lemma 2.4.

Next, we show that \(h_{1}\), \(l_{1}\) are lower and upper solutions of (1.1), respectively. By (3.1) and \((L_{2})\), we obtain

$$ \begin{aligned} &{}^{\beta }_{0}D^{\alpha } \bigl(\phi _{p}\bigl({}^{\gamma }_{0}D^{\alpha }h_{1}(t) \bigr)\bigr)\\ &\quad =F\bigl(h _{0}(t)\bigr)-M(t)\bigl[\phi _{p} \bigl({}^{\gamma }_{0}D^{\alpha }h_{1}(t) \bigr) -\phi _{p}\bigl({}^{ \gamma }_{0}D^{\alpha }h_{0}(t) \bigr)\bigr]-F\bigl(h_{1}(t)\bigr)+F\bigl(h_{1}(t)\bigr) \\ &\quad \leq M(t)\bigl[\phi _{p}\bigl({}^{\gamma }_{0}D^{\alpha }h_{1}(t) \bigr)-\phi _{p}\bigl({}^{ \gamma }_{0}D^{\alpha }h_{0}(t) \bigr)\bigr] -M(t)\bigl[\phi _{p}\bigl({}^{\gamma }_{0}D^{ \alpha }h_{1}(t) \bigr) \\ &\qquad{}-\phi _{p}\bigl({}^{\gamma }_{0}D^{\alpha }h_{0}(t) \bigr)\bigr]+F\bigl(h_{1}(t)\bigr) \\ &\quad =F\bigl(h_{1}(t)\bigr). \end{aligned} $$

By \((L_{3})\), we have

$$ \begin{aligned} 0&=g\bigl(\tilde{h}_{0}(0), \tilde{h}_{0}(d)\bigr)-g\bigl(\tilde{h}_{1}(0), \tilde{h}_{1}(d)\bigr)+g\bigl(\tilde{h}_{1}(0), \tilde{h}_{1}(d)\bigr)+\tilde{h}_{1}(0)- \tilde{h}_{0}(0) \\ &\geq \tilde{h}_{0}(0)-\tilde{h}_{1}(0)+g\bigl( \tilde{h}_{1}(0), \tilde{h}_{1}(d)\bigr)+ \tilde{h}_{1}(0)-\tilde{h}_{0}(0) \\ &=g\bigl(\tilde{h}_{1}(0), \tilde{h}_{1}(d)\bigr), \end{aligned} $$

and

$$ t^{\frac{\alpha (1-\beta )}{p-1}} {{}^{\gamma }_{0}D^{\alpha }h_{1}(t)}|_{t=0}= \int _{0}^{\tau }a(s)h_{0}(s)\,ds\leq \int _{0}^{\tau }a(s)h_{1}(s)\,ds, $$
(3.3)

which imply that \(h_{1}\) is a lower solution of (1.1). Analogously, we can verify that \(l_{1}\) is an upper solution of (1.1).

Using the mathematical induction, we have

$$\begin{aligned}& \begin{aligned} &h_{0}(t)\leq h_{1}(t)\leq \cdots \leq h_{n}(t)\leq h_{n+1}(t) \leq l_{n+1}(t)\leq l_{n}(t)\leq \cdots \leq l_{1}(t)\leq l_{0}(t), \\ &{}^{\gamma }_{0}D^{\alpha }h_{0}\leq {{}^{\gamma }_{0}D^{\alpha }h_{1}} \leq \cdots \leq {{}^{\gamma }_{0}D^{\alpha }h_{n}} \leq {{}^{\gamma }_{0}D^{\alpha }h_{n+1}}\leq {{}^{\gamma }_{0}D^{\alpha }l _{n+1}}\leq {{}^{\gamma }_{0}D^{\alpha }l_{n}}\leq \cdots \\ &\hphantom{{}^{\gamma }_{0}D^{\alpha }h_{0}}\leq {{}^{\gamma }_{0}D^{\alpha }l_{1}} \leq {{}^{\gamma }_{0}D^{\alpha }l _{0}}, \\ &\tilde{h}_{0}(0)\leq \tilde{h}_{1}(0)\leq \cdots \leq \tilde{h}_{n}(0)\leq \tilde{h}_{n+1}(0)\leq \tilde{l}_{n+1}(0)\leq \tilde{l}_{n}(0) \leq \cdots \leq \tilde{l}_{1}(0)\leq \tilde{l}_{0}(0) \end{aligned} \end{aligned}$$
(3.4)

for \(t\in (0,d]\), \(n=1, 2, 3, \dots\).

By the standard analysis, we can get that the sequences \(\{t^{\alpha (1-\gamma )}h_{n}\}\) and \(\{t^{\alpha (1-\gamma )}l_{n}\}\) are uniformly bounded and equicontinuous. Thus, in view of Arzela–Ascoli theorem, we obtain

$$ \begin{aligned} &\lim_{n\rightarrow \infty }h_{n}(t)=m(t), \qquad \lim_{n\rightarrow \infty }l_{n}(t)=n(t), \quad t\in (0,d], \\ &\lim_{n\rightarrow \infty }{{}^{\gamma }_{0}D^{\alpha }h_{n}(t)}= {{}^{\gamma }_{0}D^{\alpha }m(t)}, \qquad \lim _{n\rightarrow \infty }{{}^{\gamma }_{0}D^{\alpha }l_{n}(t)} ={{}^{ \gamma }_{0}D^{\alpha }n(t)}, \quad t\in (0,d]. \end{aligned} $$

Hence, \(h_{0}(t)\leq m(t)\leq n(t)\leq l_{0}(t)\) on \((0,d]\) and \(m(t)\), \(n(t)\) are solutions of (1.1).

Moreover, we show that \(m(t)\), \(n(t)\) are extremal solutions of (1.1). Let \(h\in [h_{0},l_{0}]\) be any solution of (1.1). Let \(h_{n}(t)\leq h(t)\leq l_{n}(t)\), \(t\in (0,d]\) and that

$$ j(t)=\phi _{p}\bigl({}^{\gamma }_{0}D^{\alpha }h(t) \bigr)-\phi _{p}\bigl({}^{\gamma }_{0}D ^{\alpha }h_{n+1}(t)\bigr), \qquad k(t)=\phi _{p} \bigl({}^{\gamma }_{0}D^{\alpha }l_{n+1}(t) \bigr)-\phi _{p}\bigl({}^{\gamma }_{0}D^{\alpha }h(t) \bigr). $$

By \((L_{2})\), we obtain

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }j(t)+M(t)j(t)=F(h(t))-F(h_{n}(t))+M(t)[\phi _{p}({}^{\gamma }_{0}D^{\alpha }h(t)) -\phi _{p}({}^{\gamma }_{0}D^{\alpha }h_{n}(t))]\geq 0, \\ t^{\alpha (1-\beta )}j(t)|_{t=0}=\phi _{p}(t^{ \frac{\alpha (1-\beta )}{p-1}}{{}^{\gamma }_{0}D^{\alpha }h(t))}|_{t=0} -\phi _{p}(t^{\frac{\alpha (1-\beta )}{p-1}}{{}^{\gamma }_{0}D^{\alpha }h _{n+1}(t))}|_{t=0}\geq 0, \end{cases} $$

and

$$ \textstyle\begin{cases} {}^{\beta }_{0}D^{\alpha }k(t)+M(t)k(t)=F(l_{n}(t))-F(h(t))+M(t)[\phi _{p}({}^{\gamma }_{0}D^{\alpha }l_{n}(t)) -\phi _{p}({}^{\gamma }_{0}D^{ \alpha }h(t))]\geq 0, \\ t^{\alpha (1-\beta )}k(t)|_{t=0}=\phi _{p}(t^{ \frac{\alpha (1-\beta )}{p-1}}{{}^{\gamma }_{0}D^{\alpha }l_{n+1}(t))}|_{t=0} -\phi _{p}(t^{\frac{\alpha (1-\beta )}{p-1}}{{}^{\gamma }_{0}D^{\alpha }h(t))}|_{t=0} \geq 0. \end{cases} $$

Thus, by \((C_{1})\) of Lemma 2.4, we have \(j(t)\geq 0\), \(k(t) \geq 0\). Then \(\phi _{p}({}^{\gamma }_{0}D^{\alpha }h(t))\geq \phi _{p}({}^{ \gamma }_{0}D^{\alpha }h_{n+1}(t))\), \(\phi _{p}({}^{\gamma }_{0}D^{ \alpha }l_{n+1}(t))\geq \phi _{p}({}^{\gamma }_{0}D^{\alpha }h(t))\). Hence, \({}^{\gamma }_{0}D^{\alpha }(h(t)-h_{n+1}(t))\geq 0\), \({}^{\gamma }_{0}D ^{\alpha }(l_{n+1}(t)-h(t))\geq 0\).

By \((L_{3})\), we have

$$ \begin{aligned} \tilde{h}(0)-\tilde{h}_{n+1}(0)&= \tilde{h}(0)-\tilde{h}_{n}(0)+g\bigl( \tilde{h}_{n}(0), \tilde{h}_{n}(d)\bigr)-g\bigl(\tilde{h}(0), \tilde{h}(d)\bigr) \\ &\geq \tilde{h}(0)-\tilde{h}_{n}(0)+\tilde{h}_{n}(0)- \tilde{h}(0) \\ &=0 \end{aligned} $$

and

$$ \begin{aligned} \tilde{l}_{n+1}(0)-\tilde{h}(0)&= \tilde{l}_{n}(0)-\tilde{h}(0)-g\bigl( \tilde{l}_{n}(0), \tilde{l}_{n}(d)\bigr)+g\bigl(\tilde{h}(0), \tilde{h}(d)\bigr) \\ &\geq \tilde{l}_{n}(0)-\tilde{h}(0)+\tilde{h}(0)- \tilde{l}_{n}(0) \\ &=0. \end{aligned} $$

Hence, \(h_{n+1}(t)\leq h(t)\leq l_{n+1}(t)\), \(t\in (0,d]\) by \((C_{2})\) of Lemma 2.4, which, on taking the limit \(n\rightarrow \infty \), yields \(m(t)\leq h(t)\leq n(t)\). Therefore, \(m(t)\), \(n(t)\) are extremal solutions of (1.1). □

Theorem 3.2

If the hypotheses of Theorem 3.1 hold, \(a(t)=0\), and there exists a function \(L(t)\geq 0\) such that

$$ L(t)\bigl[\phi _{p}\bigl({}_{0}^{\gamma }D^{\alpha }l(t) \bigr)-\phi _{p}\bigl({}_{0}^{\gamma }D ^{\alpha }h(t)\bigr)\bigr]\leq f\bigl(t,h(t),{{}_{0}^{\gamma }D^{\alpha }h(t)} \bigr)-f\bigl(t,l(t), {{}_{0}^{\gamma }D^{\alpha }l(t)} \bigr) $$
(3.5)

for \(h_{0}(t)\leq h(t)\leq l(t)\leq l_{0}(t)\), \(t\in (0,d]\) and \(\tilde{h}_{0}(0)=\tilde{l}_{0}(0)\), then (1.1) has a unique solution in \([h_{0},l_{0}]\).

Proof

It follows by Theorem 3.1 that \(m(t)\) and \(n(t)\) are extremal solutions such that \(m(t)\leq n(t)\), \(t\in (0,d]\). Then we just need to prove \(m(t)\geq n(t)\), \(t\in (0,d]\). Letting \(\lambda (t)=\phi _{p}({}_{0} ^{\gamma }D^{\alpha }m(t))-\phi _{p}({}_{0}^{\gamma }D^{\alpha }n(t))\), \(t \in (0,d]\) and using (3.5), we obtain

$$ \textstyle\begin{cases} _{0}^{\beta }D^{\alpha }\lambda (t)=F(m(t))-F(n(t))\geq L(t)[\phi _{p}({}_{0} ^{\gamma }D^{\alpha }n(t))-\phi _{p}({}_{0}^{\gamma }D^{\alpha }m(t))]=-L(t) \lambda (t), \\ t^{\alpha (1-\beta )}\lambda (t)|_{t=0}=\phi _{p}(t^{\frac{\alpha (1- \beta )}{p-1}}{{}^{\gamma }_{0}D^{\alpha }m(t))}|_{t=0} -\phi _{p}(t^{\frac{ \alpha (1-\beta )}{p-1}}{{}^{\gamma }_{0}D^{\alpha }n(t))}|_{t=0}=0. \end{cases} $$
(3.6)

Then, by \((C_{1})\) of Lemma 2.4, we have \(\lambda (t)\geq 0\). Thus, \(\phi _{p}({}_{0}^{\gamma }D^{\alpha }m(t))\geq \phi _{p}({}_{0}^{ \gamma }D^{\alpha }n(t))\). Since \(\phi _{p}(t)\) is nondecreasing, we have \({}^{\gamma }_{0}D^{\alpha }m(t)\geq {{}^{\gamma }_{0}D^{\alpha }n(t)}\), \(t\in (0,d]\). Then, by \((C_{2})\) of Lemma 2.4, we obtain \(m(t)\geq n(t)\). Furthermore, we have \(\tilde{m}(0)=\tilde{n}(0)\) by \(\tilde{h}_{0}(0)=\tilde{l}_{0}(0)\) and (3.4). Therefore, we have \(m=n\). The proof is completed. □

4 Example

Consider the following problem:

$$ \textstyle\begin{cases} {}^{\frac{2}{3}}_{0}D^{{\frac{1}{2}}}(\phi _{3}({}^{\frac{1}{2}}_{0}D^{ \frac{1}{2}}h(t)))=f(t, h(t),{}^{\frac{1}{2}}_{0}D^{\frac{1}{2}}h(t)), \quad t\in (0,1], \\ t^{\frac{1}{12}} {{}^{\frac{1}{2}}_{0}D^{\frac{1}{2}}h(t)}|_{t=0}=\int _{0}^{\tau }a(s)h(s)\,ds, \qquad \frac{1}{2}\tilde{h}(0)-3\tilde{h}(0)\tilde{h}(1)=0, \end{cases} $$
(4.1)

where \(\alpha =\frac{1}{2}\), \(\gamma =\frac{1}{2}\), \(\beta = \frac{2}{3}\), \(d=1\), \(p=3\), \(a(t)=0\), \(\tau =1\), and \(f(t, h(t),{}^{ \frac{1}{2}}_{0}D^{\frac{1}{2}}h(t))=\frac{1}{2}t+h(t)-2{}^{ \frac{1}{2}}_{0}D^{\frac{1}{2}}h(t)\), \(g(m,n)=\frac{1}{2}m-3mn\). Let \(h_{0}(t)=0\), \(l_{0}(t)=\varGamma (\frac{1}{2})t^{\frac{1}{2}}\). Then we have \({}^{\frac{1}{2}}_{0}D^{\frac{1}{2}}h_{0}(t)=0\), \({}^{\frac{1}{2}} _{0}D^{\frac{1}{2}}l_{0}(t)=2^{\frac{1}{2}}t^{\frac{1}{4}}\), and

$$\begin{aligned}& {}^{\frac{2}{3}}_{0}D^{{\frac{1}{2}}}\bigl(\phi _{3} \bigl({}^{\frac{1}{2}}_{0}D^{ \frac{1}{2}}h_{0}(t) \bigr)\bigr)=0\leq \frac{1}{2}t=f\bigl(t, h_{0}(t),{}^{ \frac{1}{2}}_{0}D^{\frac{1}{2}}h_{0}(t) \bigr), \quad t\in (0,1], \\& t^{\frac{1}{12}} {{}^{\frac{1}{2}}_{0}D^{\frac{1}{2}}h_{0}(t)}|_{t=0}=0, \qquad g\bigl(\tilde{h}_{0}(0),\tilde{h}_{0}(1) \bigr)=0, \\& \begin{aligned} {}^{\frac{2}{3}}_{0}D^{{\frac{1}{2}}}\bigl(\phi _{3} \bigl({}^{\frac{1}{2}}_{0}D^{ \frac{1}{2}}l_{0}(t) \bigr)\bigr)&={{}^{\frac{2}{3}}_{0}D^{{\frac{1}{2}}} \bigl(2t^{ \frac{1}{2}}\bigr)} =\frac{3\cdot 2^{\frac{1}{3}}}{\varGamma (\frac{1}{3})}t ^{\frac{1}{6}} \geq \frac{1}{2}t+\varGamma \biggl(\frac{1}{2}\biggr)t^{\frac{1}{2}}-2^{ \frac{3}{2}}t^{\frac{1}{4}}\\ &=f \bigl(t, l_{0}(t),{}^{\frac{1}{2}}_{0}D^{ \frac{1}{2}}l_{0}(t) \bigr), \end{aligned} \\& t^{\frac{1}{12}} {{}^{\frac{1}{2}}_{0}D^{\frac{1}{2}}l_{0}(t)}|_{t=0}=0, \qquad g\bigl(\tilde{l}_{0}(0),\tilde{l}_{0}(1) \bigr)=0. \end{aligned}$$

Thus, \(h_{0}\) and \(l_{0}\) are lower and upper solutions of (4.1), respectively, and \(h_{0}\leq l_{0}\) on \([0,1]\).

In addition, for \(h_{0}\leq h\leq l\leq l_{0}\), we have

$$ \begin{aligned} &f\bigl(t,h(t),{}^{\frac{1}{2}}_{0}D^{\frac{1}{2}}h(t) \bigr)-f\bigl(t,l(t),{}^{ \frac{1}{2}}_{0}D^{\frac{1}{2}}l(t) \bigr) \\ &\quad =h(t)-l(t)-2{{}^{\frac{1}{2}}_{0}D^{\frac{1}{2}}h(t)}+2{{}^{\frac{1}{2}} _{0}D^{\frac{1}{2}}l(t)} \\ &\quad \leq 2\bigl[^{\frac{1}{2}}_{0}D^{\frac{1}{2}}l(t)-{{}^{\frac{1}{2}}_{0}D ^{\frac{1}{2}}h(t)\bigr]} \\ &\quad \leq M(t)\bigl[\phi _{3}\bigl({}^{\frac{1}{2}}_{0}D^{\frac{1}{2}}l(t) \bigr)-\phi _{3}\bigl({}^{ \frac{1}{2}}_{0}D^{\frac{1}{2}}h(t) \bigr)\bigr], \end{aligned} $$

where \(M(t)=2\).

For \(\tilde{h}_{0}(0)\leq m_{2}\leq m_{1}\leq \tilde{l}_{0}(0)\), \(\tilde{h}_{0}(1)\leq n_{2}\leq n_{1}\leq \tilde{l}_{0}(1)\), we have

$$ \begin{aligned} g(m_{1},n_{1})-g(m_{2},n_{2})&= \frac{1}{2}m_{1}-3m_{1}n_{1}- \frac{1}{2}m_{2}+3m_{2}n_{2} \\ &\leq \frac{1}{2}(m_{1}-m_{2}) \leq m_{1}-m_{2}. \end{aligned} $$

Hence, assumptions \((L_{1})\), \((L_{2})\), and \((L_{3})\) hold. According to Theorem 3.1, there exist monotone iterative sequences \(\{h_{n}\}\), \(\{l_{n}\}\) such that \(\lim_{n\rightarrow \infty }h_{n}=m\), \(\lim_{n\rightarrow \infty }l_{n}=n\) on \((0,1]\) and m, n are the extremal solutions on \([h_{0},l_{0}]\) of (4.1).

References

  1. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  4. Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. Springer, Cham (2017)

    Book  Google Scholar 

  5. Khodabakhshi, N., Vaezpour, S.M.: Existence and uniqueness of positive solution for a class of boundary value problems with fractional q-differences. J. Nonlinear Convex Anal. 16, 375–384 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Zhang, X., Liu, L., Zou, Y.: Fixed-point theorems for systems of operator equations and their applications to the fractional differential equations. J. Funct. Spaces 2018, 1–9 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Trigeassou, J.C., Maamri, N.: Initial conditions and initialization of linear fractional differential equations. Signal Process. 91(3), 427–436 (2011)

    Article  Google Scholar 

  8. Ege, S.M., Topal, F.S.: Existence of positive solutions for fractional boundary value problems. J. Appl. Anal. Comput. 7(2), 702–712 (2017)

    MathSciNet  Google Scholar 

  9. Wang, G., Pei, K., Chen, Y.: Stability analysis of nonlinear Hadamard fractional differential system. J. Franklin Inst. 356(12), 6538–6546 (2019). https://doi.org/10.1016/j.jfranklin.2018.12.033

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, G., Ren, X., Bai, Z., Hou, W.: Radial symmetry of standing waves for nonlinear fractional Hardy–Schrödinger equation. Appl. Math. Lett. 96, 131–137 (2019)

    Article  MathSciNet  Google Scholar 

  11. Jankowski, T.: Boundary problems for fractional differential equations. Appl. Math. Lett. 28(2), 14–19 (2014)

    Article  MathSciNet  Google Scholar 

  12. Zhang, X., Liu, L., Wu, Y., Lu, Y.: The iterative solutions of nonlinear fractional differential equations. Appl. Math. Comput. 219, 4680–4691 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Zhang, L., Ahmad, B., Wang, G.: Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line. Bull. Aust. Math. Soc. 91, 116–128 (2015)

    Article  MathSciNet  Google Scholar 

  14. Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)

    Article  MathSciNet  Google Scholar 

  15. Wei, Y., Song, Q., Bai, Z.: Existence and iterative method for some fourth order nonlinear boundary value problems. Appl. Math. Lett. 87, 101–107 (2019)

    Article  MathSciNet  Google Scholar 

  16. Ding, Y., Wei, Z., Xu, J., et al.: Extremal solutions for nonlinear fractional boundary value problems with p-Laplacian. J. Comput. Appl. Math. 288, 151–158 (2015)

    Article  MathSciNet  Google Scholar 

  17. Zhang, X., Liu, L., Wu, Y.: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26–33 (2014)

    Article  MathSciNet  Google Scholar 

  18. Chen, T., Liu, W., Hu, Z.: A boundary value problem for fractional differential equation with p-Laplacian operator at resonance. Nonlinear Anal. 75, 3210–3217 (2012)

    Article  MathSciNet  Google Scholar 

  19. Liu, X., Jia, M., Ge, W.: The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator. Appl. Math. Lett. 65, 56–62 (2017)

    Article  MathSciNet  Google Scholar 

  20. Tian, Y., Wei, Y., Sun, S.: Multiplicity for fractional differential equations with p-Laplacian. Bound. Value Probl. 2018, 127, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  21. Sheng, K., Zhang, W., Bai, Z.: Positive solutions to fractional boundary value problems with p-Laplacian on time scales. Bound. Value Probl. 2018, 70 (2018)

    Article  MathSciNet  Google Scholar 

  22. Tian, Y., Sun, S., Bai, Z.: Positive solutions of fractional differential equations with p-Laplacian. J. Funct. Spaces 2017, 1–9 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Wang, T., Wang, G., Yang, X.: On a Hadamard-type fractional turbulent flow model with deviating arguments in a porous medium. Nonlinear Anal., Model. Control 22, 765–784 (2017)

    Article  MathSciNet  Google Scholar 

  24. Giampiero, P.: The Dirichlet problem for the p-fractional Laplace equation. Nonlinear Anal. 177, 699–732 (2018)

    Article  MathSciNet  Google Scholar 

  25. Li, A., Wei, C.: On fractional p-Laplacian problems with local conditions. Adv. Nonlinear Anal. 7, 485–496 (2018)

    Article  MathSciNet  Google Scholar 

  26. Yan, F., Zuo, M., Hao, X.: Positive solution for a fractional singular boundary value problem with p-Laplacian operator. Bound. Value Probl. 2018, 51, 1–10 (2018)

    Article  MathSciNet  Google Scholar 

  27. Goodrich, C.S.: Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 61(2), 191–202 (2011)

    Article  MathSciNet  Google Scholar 

  28. Zhang, L., Ahmad, B., Wang, G.: The existence of an extremal solution to a nonlinear system with the right-handed Riemann–Liouville fractional derivative. Appl. Math. Lett. 31(3), 1–6 (2014)

    Article  MathSciNet  Google Scholar 

  29. Liu, X., Jia, M.: Existence of solutions for the integral boundary value problems of fractional order impulsive differential equations. Math. Methods Appl. Sci. 39(3), 475–487 (2016)

    Article  MathSciNet  Google Scholar 

  30. Pei, K., Wang, G., Sun, Y.: Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain. Appl. Math. Comput. 312, 158–168 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Song, Q., Bai, Z.: Positive solutions of fractional differential equations involving the Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ. 2018, 183, 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wang, G., Pei, K., Agarwal, R., et al.: Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 343, 230–239 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zhang, S.: Monotone iterative method for initial value problem involving Riemann–Liouville fractional derivatives. Nonlinear Anal. 71, 2087–2093 (2009)

    Article  MathSciNet  Google Scholar 

  34. Wang, G.: Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments. J. Comput. Appl. Math. 236, 2425–2430 (2012)

    Article  MathSciNet  Google Scholar 

  35. Wang, G., Agarwal, R.P., Cabada, A.: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. Appl. Math. Lett. 25, 1019–1024 (2012)

    Article  MathSciNet  Google Scholar 

  36. Wang, G., Baleanu, D., Zhang, L.: Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 15, 244–252 (2012)

    Article  MathSciNet  Google Scholar 

  37. Wang, G., Sudsutad, W., Zhang, L., Tariboon, J.: Monotone iterative technique for a nonlinear fractional q-difference equation of Caputo type. Adv. Differ. Equ. 2016, 211, 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  38. Wang, G.: Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval. Appl. Math. Lett. 47, 1–7 (2015)

    Article  MathSciNet  Google Scholar 

  39. Wang, G.: Twin iterative positive solutions of fractional q-difference Schrödinger equations. Appl. Math. Lett. 76, 103–109 (2018)

    Article  MathSciNet  Google Scholar 

  40. Zhai, C., Jing, R.: The unique solution for a fractional q-difference equation with three-point boundary conditions. Indag. Math. 29, 948–961 (2018)

    Article  MathSciNet  Google Scholar 

  41. Zhang, W., Bai, Z., Sun, S.: Extremal solutions for some periodic fractional differential equations. Adv. Differ. Equ. 2016, 179, 1–8 (2016)

    Article  MathSciNet  Google Scholar 

  42. Zhang, L., Ahmad, B., Wang, G.: Existence and approximation of positive solutions for nonlinear fractional integro-differential boundary value problems on an unbounded domain. Appl. Comput. Math. 15, 149–158 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Bai, Z., Zhang, S., Sun, S., Yin, C.: Monotone iterative method for a class of fractional differential equations. Electron. J. Differ. Equ. 2016, 06, 1–8 (2016)

    Article  Google Scholar 

  44. Jarad, F., Uǧurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, 247, 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  45. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express all gratitude to the anonymous referees for their hard work, helpful comments, and suggestions.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Funding

The work is supported by NSFC (No. 11501342), NSF of Shanxi, China (No. 201701D221007), and STIP (Nos. 201802068 and 201802069).

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed this manuscript and approved the final version.

Corresponding author

Correspondence to Lihong Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Wang, G., Zhang, L. et al. Monotone iterative method for a p-Laplacian boundary value problem with fractional conformable derivatives. Bound Value Probl 2019, 145 (2019). https://doi.org/10.1186/s13661-019-1254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-019-1254-5

Keywords