# Ground state solutions of Nehari–Pohožaev type for a kind of nonlinear problem with general nonlinearity and nonlocal convolution term

## Abstract

In this paper, we consider the following nonlinear problem with general nonlinearity and nonlocal convolution term:

$$\textstyle\begin{cases} -\Delta u+V(x)u+(I_{\alpha }\ast \vert u \vert ^{q}) \vert u \vert ^{q-2}u=f(u), \quad x\in {\mathbb{R}}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}), \quad \end{cases}$$

where $$a\in (0,3)$$, $$q\in [1+\frac{\alpha }{3},3+\alpha )$$, $$I_{\alpha }:\mathbb{R}^{3}\rightarrow \mathbb{R}$$ is the Riesz potential, $$V\in \mathcal{C}(\mathbb{R}^{3},[0,\infty ))$$, $$f\in \mathcal{C}(\mathbb{R},\mathbb{R})$$ and $$F(t)=\int _{0}^{t}f(s)\,ds$$ satisfies $$\lim_{|t|\to \infty }F(t)/|t|^{\sigma }=\infty$$ with $$\sigma =\min \{2,\frac{2\beta +2}{\beta }\}$$ where $$\beta =\frac{ \alpha +2}{2(q-1)}$$. By using new analytic techniques and new inequalities, we prove the above system admits a ground state solution under mild assumptions on V and f.

## 1 Introduction

In this paper we are concerned with the existence of ground state solutions for the nonlinear problem:

$$\textstyle\begin{cases} -\Delta u+V(x)u+(I_{\alpha }\ast \vert u \vert ^{q}) \vert u \vert ^{q-2}u=f(u), & x\in {\mathbb{R} }^{3}, \\ u\in H^{1}(\mathbb{R}^{3}), \end{cases}$$
(1.1)

where $$\alpha \in (0,3)$$, $$q\in [1+\frac{\alpha }{3},3+\alpha )$$, $$V\in \mathcal{C}(\mathbb{R}^{3},[0,\infty ))$$, $$f\in \mathcal{C}( \mathbb{R},\mathbb{R})$$ and $$I_{\alpha }:\mathbb{R}^{3}\rightarrow \mathbb{R}$$ is the Riesz potential of order $$\alpha \in (0,3)$$, given by

$$I_{\alpha }(x)=\frac{A_{\alpha }}{ \vert x \vert ^{N-\alpha }} \quad \mbox{with } A_{\alpha }= \frac{\varGamma (\frac{N-\alpha }{2})}{\varGamma (\frac{\alpha }{2})\pi ^{N/2}2^{\alpha }}, x\in \mathbb{R}^{3}\setminus \{0\}.$$

When $$q=2$$ and $$\alpha =2$$, the convolution term of (1.1) can be considered as analogous to the internal potential ϕ in Schrödinger–Poisson system like the following equation:

$$\textstyle\begin{cases} -\Delta u +V(x)u +\phi u=f(u), & x\in \mathbb{R}^{3}, \\ -\Delta \phi =u^{2}, & x\in \mathbb{R}^{3}. \end{cases}$$
(1.2)

System (1.2) was first introduced in [1] as a model describing solitary waves for the nonlinear stationary Schrödinger equation interacting with the electrostatic field. We note that system (1.2) is also called a Schrödinger–Maxwell equation system, for more details on the physical aspects of this problem, we refer to [1] and the references therein.

In recent years, the existence, multiplicity and concentration of nontrivial solutions of (1.2) have been the subject of extensive mathematical studies, for example, [2,3,4,5,6,7,8]. Problem (1.2) with $$V(x)\equiv 1$$ or being radially symmetric, has been widely studied under various conditions on f; see for example [9,10,11,12,13,14,15,16,17]. When $$V=1$$ and $$f(u)=|u|^{p-2}u$$, by introducing a new manifold that is defined by a condition which is a combination of the Nehari equation and the Pohožaev equality, Ruiz [16] showed that (1.2) admits a positive radial solution if $$3< p<6$$, but does not have a nontrivial solution for $$2< p\leq 3$$. Under the same assumptions, based on Ruiz’s approach in [16], Azzollini and Pomponio [3] obtained the existence of ground state solutions for (1.2) by using a concentration-compactness argument. When $$f(u)=|u|^{p-2}u$$ and V satisfies the following assumptions:

(V1):

$$V\in \mathcal{C}(\mathbb{R}^{3},[0,\infty ))$$ and $$V_{\infty }:=\lim_{|y|\rightarrow \infty }V(y)\geq V(x)$$ for $$x\in \mathbb{R}^{3}$$;

(V2′):

$$V(x)$$ is weakly differentiable, and satisfies $$\nabla V(x) \cdot x \in L^{\infty }(\mathbb{R}^{3})\cup L^{3/2}( \mathbb{R}^{3})$$, and

$$2V(x)+\nabla V(x) \cdot x \geq 0 \quad \mbox{a.e. } x\in \mathbb{R}^{3},$$

Zhao and Zhao [8] established the existence of ground state solutions for (1.2) by using the Jeanjean’s monotonicity trick [18]. In a recent paper [19], Tang and Chen introduced some new tricks to generalize and improve the results in [3, 8, 16] to the more general case where V satisfies (V1) and (V2′) and f satisfies the following assumptions:

1. (F1)

$$f\in \mathcal{C}(\mathbb{R},\mathbb{R})$$, and there exist constants $$C>0$$ and $$q\in (2,6)$$ such that

$$\bigl\vert f(t) \bigr\vert \leq C\bigl(1+ \vert t \vert ^{q-1} \bigr), \quad \forall t\in \mathbb{R};$$
2. (F2)

$$f(t)=o(t)$$ as $$t\rightarrow 0$$;

3. (F3)

$$\lim_{|t|\rightarrow \infty }\frac{F(t)}{|t|^{3}}=\infty$$, where $$F(t)=\int _{0}^{t}f(s)\,ds$$;

4. (F4)

$$[2f(t)t-3F(t)]/t^{3}$$ is nondecreasing on $$(-\infty ,0) \cup (0,+\infty )$$.

There is also other work about ground state solutions for (1.2); we refer to [20, 21]. Motivated by the above work and [22,23,24,25,26,27,28,29,30], in the present paper, we shall extend the results concerning the existence of ground state solutions for (1.2) in [23] to (1.1). Compared with (1.2), it is more difficult to deal with (1.1) for the reason that $$q \in [1+\frac{ \alpha }{3},3+\alpha )$$. Because of the changing of q, the competing effect of $$(I_{\alpha }\ast |u|^{q})|u|^{q-2}u$$ and $$f(u)$$ is also changing.

For any $$\varepsilon >0$$, it follows from (F1) and (F2) that there exists $$C_{\varepsilon } >0$$ such that

$$\bigl\vert f(t) \bigr\vert \leq \varepsilon \vert t \vert +C_{\varepsilon } \vert t \vert ^{p-1}, \quad \forall t \in \mathbb{R}.$$
(1.3)

Under assumptions (V1), (F1), (F2) and (1.3), the functional

$$\varPhi (u)=\frac{1}{2} \int _{\mathbb{R}^{3}}\bigl[ \vert \nabla u \vert ^{2}+V(x)u^{2} \bigr]\,dx+ \frac{1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx- \int _{\mathbb{R}^{3}}F(u)\,dx$$
(1.4)

is well defined in $$H^{1}(\mathbb{R}^{3})$$ and $$\varPhi \in \mathcal{C} ^{1}(H^{1}(\mathbb{R}^{3}),\mathbb{R})$$, where $$F(t)=\int _{0}^{t}f(s) \,ds$$. Moreover, for any $$u,\upsilon \in H^{1}(\mathbb{R}^{3})$$,

\begin{aligned} \bigl\langle \varPhi ^{\prime }(u),v\bigr\rangle =& \int _{\mathbb{R}^{3}}\bigl[\nabla u\cdot \nabla v+V(x)uv\bigr]\,dx \\ &{}+ \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q-2}uv\,dx- \int _{\mathbb{R}^{3}}f(u)v\,dx. \end{aligned}
(1.5)

Hence, the solution of (1.1) are critical points of $$\varPhi (u)$$. A solution is called a ground state solution if its energy is minimal among all nontrivial solutions.

In this paper, let $$\beta =\frac{\alpha +2}{2(q-1)}$$, and in addition to (V1), (F1) and (F2), we also need to introduce the following assumptions:

(V2):

$$V\in \mathcal{C}^{1}(\mathbb{R}^{3})$$, the set $$\{x\in \mathbb{R}^{3}:|\nabla V(x)\cdot x|\geq \epsilon \}$$ has finite Lebesgue measure for every $$\epsilon >0$$, and the function $$t\mapsto t^{2}[(2\beta -3)V(tx)-\nabla V(tx)\cdot (tx)]$$ is increasing on $$(0,+\infty )$$ for every $$x\in \mathbb{R}^{3}$$;

(V3):

$$V\in \mathcal{C}^{1}(\mathbb{R}^{3})$$, $$\nabla V(x) \cdot x \in L^{\infty }(\mathbb{R}^{3})$$ and there exists $$\varrho >0$$ such that

$$2V(x)+\nabla V(x)\cdot x\geq \varrho , \quad \forall x\in \mathbb{R}^{3};$$
(V3′):

$$V\in \mathcal{C}^{1}(\mathbb{R}^{3})$$, $$\nabla V(x) \cdot x \in L^{\infty }(\mathbb{R}^{3})$$, $$2V(x)+\nabla V(x)\cdot x \geq \varrho$$, $$\forall \ x\in \mathbb{R}^{3}$$ and there exists $$\mu > \frac{2\beta +2}{\beta }$$ such that

$$f(t)t-\mu F(t)\geq 0,\quad \forall t\in \mathbb{R} ;$$
(F5):

$$\lim_{|t|\rightarrow \infty } \frac{F(t)}{|t|^{\frac{2 \beta +2}{\beta }}}=\infty$$;

(F6):

$$[\beta f(t)t-3F(t)]/t|t|^{\frac{\beta +2}{\beta }}$$ is nondecreasing on both $$(-\infty ,0)$$ and $$(0,+\infty )$$.

To state our results, we define the Nehari–Pohožaev manifold as follows:

$$\mathcal{M}:=\bigl\{ {u\in H^{1}\bigl( \mathbb{R}^{3}\bigr)\setminus \{0\}}:J(u):= \beta \bigl\langle \varPhi '(u),u\bigr\rangle -\mathcal{P}(u)=0\bigr\} ,$$
(1.6)

where

\begin{aligned} \mathcal{P}(u) = &\frac{1}{2} \Vert \nabla u \Vert _{2}^{2}+\frac{1}{2} \int _{\mathbb{R}^{3}}\bigl[3V(x)+\nabla V(x)\cdot x\bigr]u^{2} \,dx +\frac{3+ \alpha }{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx \\ &{}-3 \int _{\mathbb{R}^{3}}F(u)\,dx \end{aligned}
(1.7)

which is associated with the Pohožaev identity $$\mathcal{P}(u)=0$$ of (1.1) that can be obtained by the same argument as in [13, 31]. And

\begin{aligned} J(u) = &\frac{2\beta -1}{2} \Vert \nabla u \Vert _{2}^{2}+\frac{1}{2} \int _{\mathbb{R}^{3}}\bigl[(2\beta -3)V(x)-\nabla V(x)\cdot x \bigr]u^{2}\,dx \\ &{}+\frac{2\beta -1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx - \int _{\mathbb{R}^{3}}\bigl[\beta f(u)u-3F(u)\bigr]\,dx. \end{aligned}
(1.8)

Throughout the paper we use the following notations:

• $$H^{1}(\mathbb{R}^{3})$$ denotes the usual Sobolev space equipped with the inner product and norm

$$(u,v)= \int _{\mathbb{R}^{3}}(\nabla u\cdot \nabla v+uv)\,dx, \quad \Vert u \Vert =(u,u)^{\frac{1}{2}},\quad \forall u,v\in H^{1}\bigl( \mathbb{R}^{3}\bigr).$$
• $$L^{s}(\mathbb{R}^{3})(1\leq s <\infty )$$ denotes the Lebesgue space with the norm $$\|u\|_{s}=(\int _{\mathbb{R}^{3}}|u|^{s}\,dx)^{1/s}$$;

• for any $$u\in H^{1}(\mathbb{R}^{3}) \setminus \{0\}$$, $$u_{t}(x):=u(tx)$$ for $$t > 0$$;

• for any $$x\in \mathbb{R}^{3}$$ and $$r > 0$$, $$B_{r}(x):=\{y\in \mathbb{R}^{3}:|y-x| < r\}$$;

• $$C_{1},C_{2},\ldots$$ denotes positive constants possibly different in different places.

Next,we state the main results of this paper.

### Theorem 1.1

Assume that V and f satisfy (V1), (V2), (F1), (F2), (F5) and (F6) hold. Then problem (1.1) has a ground state solution $$u_{0}\in H^{1}(\mathbb{R}^{3})$$ such that $$\varPhi (u_{0})= \inf_{\mathcal{M}}\varPhi =\inf_{u\in H^{1}(\mathbb{R}^{3})\setminus \{0\}}\max_{t > 0} \varPhi (t^{\beta }u_{t}) > 0$$.

### Theorem 1.2

Assume that V and f satisfy (V1), (V3), (F1), (F2), (F5) and (F6) hold. Then problem (1.1) has a positive ground state solution.

### Theorem 1.3

Assume that V and f satisfy (V1), (V3′), (F1), (F2), (F5) and (F6) hold. Then problem (1.1) has a positive ground state solution.

Inspired by [19, 32], we shall prove Theorem 1.1 following this scheme:

1. Step (i)

we verify $$\mathcal{M}\neq \emptyset$$ and establish the minimax characterization of $$m=\inf_{\mathcal{M}} \varPhi >0$$;

2. Step (ii)

we prove that m can be obtained;

3. Step (iii)

we show that the minimizer of Φ on $$\mathcal{M}$$ is a critical point.

Although we mainly follow the procedure of [19, 32], we have to face many new difficulties due to the mutual competing effect between $$f(u)$$ and $$(I_{\alpha }\ast |u|^{q})|u|^{q-2}u$$. More precisely, in Step (i), we first establish a key inequality in Lemma 2.2 by using some properties about nonlinearity term, and also we use Nehari–Pohožaev manifold to remove the influence of the term $$(I_{\alpha }\ast |u|^{q})|u|^{q-2}u$$ which needs a kind of computational technique; it is worth mentioning that [23, Proposition 2.7] gives us an excellent numerical property as regards $$V(x)$$ which is convenient for us to eliminate the potential term $$V(x)$$ in some inequalities. Then we construct a saddle point structure with respect to the fibre $$\{t^{\beta }u_{t}:t>0\} \subset H^{1}(\mathbb{R}^{3})$$ for $$u\in H^{1}(\mathbb{R}^{3}) \setminus \{0\}$$; see Lemma 2.6, finally based on these constructions we obtain the minimax characterization of m; see Lemma 2.8. In Step (ii), we first choose a minimizing sequence $$\{u_{n}\}$$ of Φ on $$\mathcal{M}$$, and show that $$\{u_{n}\}$$ is bounded in $$H^{1}(\mathbb{R}^{3})$$, then with the help of the key inequality established in Lemma 2.2 and a concentration-compactness argument, we prove that there exist $$\hat{u} \in H^{1}(\mathbb{R}^{3})$$ and $$\hat{t} >0$$ such that $$u_{n}\rightharpoonup \hat{u}$$ in $$H^{1}(\mathbb{R}^{3})$$ up to translations and extraction of a subsequence, and $$\hat{t}^{\beta }\hat{u}_{\hat{t}} \in \mathcal{M}$$ is a minimizer of $$\inf_{\mathcal{M}} \varPhi$$; see Lemma 2.13 and Lemma 2.14. Step (iii) is similar to [19, Lemma 2.10].

Motivated by [8, 19], we use the Jeanjean’s monotonicity trick [18] to prove Theorems 1.2 and 1.3, which can helps us to construct a bounded (PS) sequence. The difficulty in the proof is to overcome the lack of compactness, and a more careful analysis is needed to consider the relationship between the mountain pass level for Φ and the least energy of the functional associated “limit problem” of (1.1) which is used to recover the compactness; see Lemma 3.4. By using Theorem 1.1 and applying the global compactness lemma and (V1) and (V3) (or (V3′)), we can prove Theorems 1.2 and 1.3; see Lemma 3.5 and Lemma 3.6.

## 2 Proof of Theorem 1.1

First, by a simple calculation, we establish some key inequalities.

### Lemma 2.1

Assume that (F1) and (F6) hold, Then

\begin{aligned} \frac{1}{t^{3}}F\bigl(t^{\beta }\tau \bigr)-F(\tau )+ \frac{1-t^{2\beta -1}}{2 \beta -1}\bigl[\beta f(\tau )\tau -3F(\tau )\bigr] \geq 0, \quad \forall t\geq 0, \tau \in \mathbb{R}. \end{aligned}
(2.1)

### Proof

It is evident that (2.1) holds for $$\tau =0$$. For $$\tau \neq 0$$, let

$$g(t)=\frac{1}{t^{3}}F\bigl(t^{\beta }\tau \bigr)-F(\tau )+\frac{1-t^{2\beta -1}}{2 \beta -1}\bigl[\beta f(\tau )\tau -3F(\tau )\bigr] \geq 0.$$
(2.2)

Then from (F4), one has

\begin{aligned} {g}'(t) =&-\frac{3}{t^{4}}F \bigl(t^{\beta }\tau \bigr)+\frac{\beta }{t^{4}} {f\bigl(t^{\beta }\tau \bigr)}t^{\beta }\tau -t^{2\beta -2}\bigl[\beta f(\tau )\tau -3F(\tau ) \bigr] \\ =&t^{2\beta -2} \biggl[\frac{\beta f(t^{\beta }\tau )t^{\beta }\tau -3F(t ^{\beta }\tau )}{t^{2\beta +2}}-\beta f(\tau )\tau +3F(\tau ) \biggr] \\ & \textstyle\begin{cases} \geq 0, & t\geq 1, \\ \leq 0, & 0< t < 1. \end{cases}\displaystyle \end{aligned}
(2.3)

It follows that $$g(t)\geq g(1)=0$$ for $$t \geq 0$$. This, together with (2.2) implies (2.1) holds. □

Define

\begin{aligned} \kappa (x,t) = &2V(x)-(2\beta -1)t^{2\beta -3}V \bigl(t^{-1}x\bigr)+(2\beta -3)t ^{2\beta -1}V(x) \\ &{}+\bigl[1-t^{2\beta -1}\nabla V(x)\cdot x\bigr], \quad \forall x\in \mathbb{R}^{3}, \forall t>0. \end{aligned}
(2.4)

It is easy to check that (V2) implies

\begin{aligned} \kappa (x,t)>0, \quad \forall x\in \mathbb{R}^{3}, \forall t\in (0,1)\cup (1,\infty ). \end{aligned}
(2.5)

### Lemma 2.2

Assume that (V1), (V4), (F1), (F2) and (F6) hold, Then

\begin{aligned} \begin{aligned}[b] &\varPhi (u) \geq \varPhi \bigl(t^{\beta }u_{t}\bigr)+ \frac{1-t^{2\beta -1}}{2\beta -1}J(u)+ \frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\kappa (x,t)u^{2}, \\ &\quad \forall u\in H^{1}\bigl(\mathbb{R}^{3}\bigr),\forall t>0. \end{aligned} \end{aligned}
(2.6)

### Proof

Note that

\begin{aligned}[b] \varPhi \bigl(t^{\beta }u_{t} \bigr)= {}&\frac{t^{2\beta -1}}{2} \Vert \nabla u \Vert _{2}^{2}+ \frac{t ^{2\beta -3}}{2} \int _{\mathbb{R}^{3}}V\bigl(t^{-1}x\bigr)u^{2}\,dx\\ &{}+ \frac{t^{2 \beta -1}}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx -\frac{1}{t^{3}} \int _{\mathbb{R}^{3}}F\bigl(t^{\beta }u\bigr)\,dx. \end{aligned}
(2.7)

Thus, by (1.4), (1.8), (2.1), (2.5) and (2.7), one has

\begin{aligned} &\varPhi (u)-\varPhi \bigl(t^{\beta }u_{t}\bigr) \\ &\quad =\frac{1-t^{2\beta -1}}{2} \Vert \nabla u \Vert _{2}^{2}+ \frac{1}{2} \int _{\mathbb{R}^{3}}\bigl[V(x)-t^{2\beta -3}V\bigl(t^{-1}x \bigr)\bigr]u^{2}(x)\,dx \\ &\qquad {}+\frac{1-t^{2\beta -1}}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx + \int _{\mathbb{R}^{3}}\bigl[t^{-3}F\bigl(t^{\beta }u \bigr)-F(u)\bigr]\,dx \\ &\quad =\frac{1-t^{2\beta -1}}{2\beta -1} \biggl\{ \frac{2\beta -1}{2} \Vert \nabla u \Vert _{2}^{2}+\frac{1}{2} \int _{\mathbb{R}^{3}}\bigl[(2\beta -3)V(x)- \nabla V(x)\cdot x \bigr]u^{2}\,dx \biggr\} \\ &\qquad {}+\frac{1-t^{2\beta -1}}{2\beta -1} \biggl\{ \frac{2\beta -1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}- \int _{\mathbb{R}^{3}}\bigl[\beta f(u)u-3F (u)\bigr] \biggr\} \\ &\qquad {}+ \int _{\mathbb{R}^{3}} \biggl\{ \frac{1}{t^{3}}F\bigl(t^{\beta }u \bigr)-F(u)+\frac{1-t ^{2\beta -1}}{2\beta -1}\bigl[\beta f(u)u-3F(u)\bigr] \biggr\} \,dx \\ &\qquad {}+\frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\kappa (x,t)u^{2}\,dx \\ &\quad \geq \frac{1-t^{2\beta -1}}{2\beta -1}J(u)+\frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\kappa (x,t)u^{2}\,dx. \end{aligned}
(2.8)

This shows that (2.6) holds. □

Remark that (2.6) with $$t\rightarrow 0$$ implies

\begin{aligned} \varPhi (u)\geq \frac{1}{2\beta -1}J(u)+\frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\bigl[2V(x)+\nabla V(x)\cdot x\bigr]u^{2} \,dx,\quad \forall u \in H^{1}\bigl(\mathbb{R}^{3}\bigr). \end{aligned}
(2.9)

To overcome the lack of compactness of Sobolev space embedding in $$\mathbb{R}^{3}$$, we define the following energy functional:

\begin{aligned} \begin{aligned}[b] \varPhi ^{\infty }(u)={} & \frac{1}{2} \int _{\mathbb{R}^{3}}\bigl( \vert \nabla u \vert ^{2}+V _{\infty }u^{2}\bigr)\,dx+\frac{1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha } \ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx \\ &{}- \int _{\mathbb{R}^{3}}F(u)\,dx. \end{aligned} \end{aligned}
(2.10)

Corresponding to (1.6) and (1.8), we define

\begin{aligned} \mathcal{M}^{\infty }:=\bigl\{ u\in H^{1}\bigl( \mathbb{R}^{3}\bigr)\setminus \{0\}:J ^{\infty }(u)=0\bigr\} \end{aligned}
(2.11)

and

\begin{aligned} \begin{aligned}[b] J^{\infty }(u):= {}& \frac{2\beta -1}{2} \Vert \nabla u \Vert _{2}^{2}+ \frac{2 \beta -3}{2}V_{\infty } \Vert u \Vert _{2}^{2}+ \frac{2\beta -1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx \\ &{}- \int _{\mathbb{R}^{3}}\bigl[\beta f(u)u-3F(u)\bigr]\,dx. \end{aligned} \end{aligned}
(2.12)

From Lemma 2.2, we have the following two corollaries.

### Corollary 2.3

Assume that (F1), (F2) and (F6) hold. Then

\begin{aligned}[b] &\varPhi ^{\infty }(u) \geq \varPhi ^{\infty }\bigl(t^{\beta }u_{t}\bigr) + \frac{1-t ^{2\beta -1}}{2\beta -1}J^{\infty }(u) \\ &\hphantom{\varPhi ^{\infty }(u) \geq}{}+\frac{(2\beta -1)(1-t^{2\beta -3})-(2\beta -3)(1-t^{2\beta -1})}{2(2 \beta -1)}V_{\infty } \Vert u \Vert _{2}^{2}, \\ &\quad \forall u\in H^{1}\bigl(\mathbb{R}^{3}\bigr),\forall t\geq 0. \end{aligned}
(2.13)

### Corollary 2.4

Assume that (V1), (V2), (F1) and (F6) hold. Then for $$u\in \mathcal{M}$$

$$\varPhi (u)=\max_{t>0} \varPhi \bigl(t^{\beta }u_{t}\bigr) .$$
(2.14)

From [23, Proposition 2.7], we can obtain the following lemma.

### Lemma 2.5

Assume that (V1) and (V2) hold. Then there exist two constants $$\rho _{1}$$, $$\rho _{2} > 0$$ such that

$$2V(x)+\nabla V(x)\cdot x\geq \rho _{1}$$
(2.15)

and

$$(2\beta -3)V(x)-\nabla V(x)\cdot x\geq \rho _{2}.$$
(2.16)

### Lemma 2.6

Assume that (V1), (V2), (F1), (F2) and (F6) hold. Then, for any $$u\in H^{1}(\mathbb{R}^{3})\setminus \{0\}$$, there exists a unique $$t_{u}>0$$ such that $$t_{u}^{\beta }u_{t_{u}}\in \mathcal{M}$$.

### Proof

Let $$u\in H^{1}(\mathbb{R}^{3})\setminus \{0\}$$ be fixed and define a function $$\zeta (t):=\varPhi (t^{\beta }u_{t})$$ on $$(0,\infty )$$. Clearly, by (1.8) and (2.5), we have

\begin{aligned}[b] \zeta '(t)=0 \quad \Leftrightarrow \quad &\frac{2\beta -1}{2}t^{2\beta -2} \Vert \nabla u \Vert _{2}^{2} \\ &\qquad {}+\frac{t^{2\beta -4}}{2} \int _{\mathbb{R}^{3}}\bigl[(2\beta -3)V\bigl(t^{-1}x\bigr)- \nabla V\bigl(t^{-1}x\bigr)\cdot \bigl(t^{-1}x\bigr) \bigr]u^{2}\,dx \\ &\qquad {} +\frac{2\beta -1}{2q}t^{2\beta -2} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx \\ &\qquad {}- \int _{\mathbb{R}^{3}}\bigl[\beta f\bigl(t^{\beta }u\bigr)ut ^{\beta -4}-3F\bigl(t^{\beta }u\bigr)t^{-4}\bigr]\,dx \\ &\quad =0 \quad \Leftrightarrow \quad J\bigl(t^{\beta }u_{t} \bigr)=0\quad \Leftrightarrow\quad t^{\beta }u _{t} \in \mathcal{M}. \end{aligned}
(2.17)

By (V1), (F1) and (F5), we have $$\lim_{t\rightarrow 0^{+}}\zeta '(t)=0$$, $$\zeta '(t)>0$$ for $$t>0$$ small and $$\zeta '(t)<0$$ for t large. Therefore $$\max_{t\in [0,+\infty )}\zeta (t)$$ is obtained at $$t_{u}>0$$ so that $$\zeta '(t_{u})=0$$ and $$t_{u}^{\beta }u_{t_{u}}\in \mathcal{M}$$.

Next we claim that $$t_{u}$$ is unique for any $$u\in H^{1}(\mathbb{R} ^{3})\setminus \{0\}$$. In fact, for any given $$u\in H^{1}(\mathbb{R} ^{3})\setminus \{0\}$$, let $$t_{1},t_{2}>0$$ such that $$t_{1}^{\beta }u _{t_{1}},t_{2}^{\beta }u_{t_{2}}\in \mathcal{M}$$. Then $$J(t_{1}^{ \beta }u_{t_{1}})=J(t_{2}^{\beta }u_{t_{2}})=0$$. Jointly with (2.9), we have

\begin{aligned}& \begin{aligned}[b] \varPhi \bigl(t_{1}^{\beta }u_{t_{1}} \bigr)\geq{}& \varPhi \bigl(t_{2}^{\beta }u_{t_{2}}\bigr)\\ &{}+ \frac{1}{2 \beta -1} \frac{t_{2}^{2\beta -1}-t_{1}^{2\beta -1}}{t_{2}^{2\beta -1}}J\bigl(t_{1} ^{\beta }u_{t_{1}} \bigr)+\frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\kappa \biggl(x,\frac{t_{2}}{t_{1}} \biggr)u^{2}\,dx \\ \geq{}& \varPhi \bigl(t_{2}^{\beta }u_{t_{2}}\bigr)+ \frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\kappa \biggl(x,\frac{t_{2}}{t_{1}} \biggr)u^{2}\,dx, \end{aligned} \end{aligned}
(2.18)
\begin{aligned}& \begin{aligned}[b] \varPhi \bigl(t_{2}^{\beta }u_{t_{2}} \bigr) &\geq \varPhi \bigl(t_{1}^{\beta }u_{t_{1}}\bigr)+ \frac{1}{2 \beta -1} \frac{t_{1}^{2\beta -1}-t_{2}^{2\beta -1}}{t_{1}^{2\beta -1}}J\bigl(t_{2} ^{\beta }u_{t_{2}} \bigr)\\ &{}+\frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\kappa \biggl(x,\frac{t_{1}}{t_{2}} \biggr)u^{2}\,dx \\ &\geq \varPhi \bigl(t_{1}^{\beta }u_{t_{1}}\bigr)+ \frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\kappa \biggl(x,\frac{t_{1}}{t_{2}} \biggr)u^{2}\,dx. \end{aligned} \end{aligned}
(2.19)

Combining (2.18) and (2.19), we have $$t_{1}=t_{2}$$. Therefore, $$t_{u}>0$$ is unique for any $$u\in H^{1}(\mathbb{R}^{3})\setminus \{0 \}$$. □

### Corollary 2.7

Assume that (F1), (F5) and (F6) hold. Then, for any $$u\in H^{1}(\mathbb{R}^{3})\setminus \{0\}$$, there exists a unique $$t_{u}>0$$ such that $$t_{u}^{\beta }u_{t_{u}}\in \mathcal{M}^{\infty }$$.

Combining Corollary 2.4 with Lemma 2.6, we have the following lemma.

### Lemma 2.8

Assume that (V1), (V2), (F1), (F2), (F5) and (F6) hold. Then

$$\inf_{u\in \mathcal{M}}\varPhi (u) =m= \inf_{u\in H^{1}(\mathbb{R}^{3})\setminus \{0\}}\max _{t> 0}\varPhi \bigl(t ^{\beta }u_{t}\bigr).$$

### Lemma 2.9

Assume that (F1) and (F2) hold. If $$u_{n}\rightharpoonup \bar{u}$$ in $$H^{1}(\mathbb{R}^{3})$$, then along a subsequence of $$\{u_{n}\}$$

$$\lim_{n\rightarrow \infty } \sup_{\varphi \in H^{1}(\mathbb{R}^{3}), \Vert \varphi \Vert \leq 1} \biggl\vert \int _{\mathbb{R}^{3}}\bigl[f(u_{n})-f(u_{n}- \bar{u})-f(\bar{u})\bigr]\varphi \,dx \biggr\vert =0.$$
(2.20)

From [33, Proposition 4.3], we can obtain the following Lemma.

### Lemma 2.10

Let $$\alpha \in (0,3)$$ and $$q \in [1,3+\alpha )$$ hold. If $$u_{n} \rightharpoonup \bar{u}$$ in $$H^{1}(\mathbb{R}^{3})$$, then along a subsequence of $$\{u_{n}\}$$

$$\lim_{n\rightarrow \infty } \int _{\mathbb{R}^{3}} \bigl\vert \bigl(I_{\alpha } \ast \vert u_{n} \vert ^{q}\bigr) \vert u_{n} \vert ^{q}-\bigl(I_{\alpha }\ast \vert u_{n}-u \vert ^{q}\bigr) \vert u_{n}-u \vert ^{q}-\bigl(I _{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q} \bigr\vert =0.$$
(2.21)

### Lemma 2.11

Assume that (V1), (V2), (F1), (F5) and (F6) hold. Then

1. (i)

there exists $$\rho > 0$$ such that $$\|u\| \geq \rho$$, $$\forall u\in \mathcal{M}$$;

2. (ii)

$$m=\inf_{\mathcal{M}} \varPhi >0$$.

### Proof

(i) Since $$J(u)=0$$, $$\forall u\in \mathcal{M}$$, by (F1), (F2), (1.8), (2.16) and due to the Sobolev embedding theorem, one has

\begin{aligned}[b] \frac{\min \{2\beta -1,\rho _{2}\}}{2} \Vert u \Vert ^{2} \leq {}& \frac{2\beta -1}{2} \Vert \nabla u \Vert _{2}^{2}+\frac{1}{2} \int _{\mathbb{R} ^{3}}\bigl[(2\beta -3)V(x)-\nabla V(x) \cdot x \bigr]u^{2}\,dx \\ &{}+\frac{2\beta -1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx \\ = {}& \int _{\mathbb{R}^{3}}\bigl[\beta f(u)u-3F(u)\bigr]\,dx \\ \leq {}& \frac{\min \{2\beta -1,\rho _{2}\}}{4} \Vert u \Vert ^{2}+ {C_{1}} \Vert u \Vert ^{p}, \end{aligned}
(2.22)

which implies

$$\Vert u \Vert \geq \rho :=\biggl(\frac{\min \{2\beta -1,\rho _{2}\}}{4 {C_{1}}} \biggr)^{\frac{1}{p-2}},\quad \forall u\in \mathcal{M}.$$
(2.23)

(ii) Let $$\{u_{n}\} \subset \mathcal{M}$$ be such that $$\varPhi (u_{n}) \rightarrow m$$. There are two possible cases:

1. (1)

$$\inf_{n\in \mathbb{N}}\|u_{n}\|_{2}>0$$ and

2. (2)

$$\inf_{n\in \mathbb{N}}\|u_{n}\| _{2}=0$$.

Case (1) $$\inf_{n\in \mathbb{N}}\|u_{n}\|_{2}:=\varrho _{1}>0$$. In this case, by (2.9) and (2.15), one has

$$m+o(1)=\varPhi (u_{n})=\varPhi (u_{n})- \frac{1}{2\beta -1}J(u_{n})\geq \frac{ {\rho _{1}}}{2(2\beta -1)}\varrho _{1}^{2}.$$
(2.24)

Case (2) $$\inf_{n\in \mathbb{N}}\|u_{n}\|_{2}:=0$$, by (2.23), passing to a subsequence, we have

$$\Vert u_{n} \Vert _{2}\rightarrow 0, \qquad \Vert \nabla u_{n} \Vert _{2}\geq \frac{1}{2}\rho .$$
(2.25)

Note that (F1) implies that, for any $$\varepsilon >0$$, there exists $$C_{\varepsilon }>0$$ such that

$$\bigl\vert F(t) \bigr\vert \leq C_{\varepsilon } \vert t \vert ^{2}+\varepsilon \vert t \vert ^{6}, \quad \forall t\in \mathbb{R}.$$
(2.26)

By (2.26) and the Sobolev embedding inequality, we have

$$\int _{\mathbb{R}^{3}}F(u)\,dx\leq C_{2} \Vert u \Vert _{2}^{2}+\frac{1}{2}S^{3} \Vert u \Vert _{6}^{6}\leq C_{2} \Vert u \Vert _{2}^{2}+\frac{1}{4} \Vert \nabla u \Vert _{2}^{6}.$$
(2.27)

Let $$t_{n}=\|\nabla u_{n}\|_{2}^{-\frac{2}{2\beta -1}}$$, then (2.25) implies that $$\{t_{n}\}$$ is bounded. Since $$J(u_{n})=0$$, it follows from (2.6), (2.7), (2.25) and (2.27) that

\begin{aligned} m+o(1) =&\varPhi (u_{n})\geq \varPhi \bigl(t_{n}^{\beta }(u_{n})_{t_{n}}\bigr) \\ =&\frac{t_{n}^{2\beta -1}}{2} \Vert \nabla u_{n} \Vert _{2}^{2}+\frac{t_{n} ^{2\beta -3}}{2} \int _{\mathbb{R}^{3}}V\bigl(t^{-1}x\bigr)u_{n}^{2} \,dx \\ &{}+\frac{t _{n}^{2\beta -1}}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u_{n} \vert ^{q}\bigr) \vert u _{n} \vert ^{q}\,dx \\ &{}-t_{n}^{3} \int _{\mathbb{R}^{3}}F\bigl(t_{n}^{\beta }u_{n} \bigr)\,dx \\ \geq &\frac{t_{n}^{2\beta -1}}{2} \Vert \nabla u \Vert _{2}^{2}- \frac{t_{n} ^{6\beta -3}}{4}C_{2} \Vert \nabla u \Vert _{2}^{6} \\ =&\frac{t_{n}^{2\beta -1}}{4} \Vert \nabla u \Vert _{2}^{2} \bigl[2-\bigl(t_{n}^{2 \beta -1} \Vert \nabla u \Vert _{2}^{2}\bigr)^{2} \bigr]=\frac{1}{4}+o(1). \end{aligned}
(2.28)

Case (1) and Case (2) show that $$m=\inf_{\mathcal{M}}\varPhi >0$$. □

### Lemma 2.12

Assume that (V1), (F1) and (F2) hold. If $$u_{n} \rightharpoonup \bar{u}$$ in $$H^{1}(\mathbb{R}^{3})$$, then along a subsequence

$$\begin{gathered} \varPhi (u_{n}) =\varPhi ( \bar{u})+\varPhi (u_{n}-\bar{u})+o(1), \quad J(u_{n}) =J( \bar{u})+J(u_{n}-\bar{u})+o(1), \quad \\ \varPhi '(u_{n}) =\varPhi '(\bar{u})+ \varPhi '(u_{n}-\bar{u})+o(1), \\ \bigl\langle \varPhi '(u_{n}),u_{n}\bigr\rangle =\bigl\langle \varPhi '(\bar{u}),\bar{u} \bigr\rangle +\bigl\langle \varPhi '(u_{n}-\bar{u}),(u_{n}- \bar{u})\bigr\rangle +o(1). \end{gathered}$$
(2.29)

### Lemma 2.13

Assume that (V1), (V2), (F1), (F2), (F5) and (F6) hold. Then $$m^{\infty }:=\inf_{\mathcal{M}^{\infty }}\varPhi ^{\infty } \geq m$$.

### Proof

In view of Lemma 2.2 and Corollary 2.4, we have $$\mathcal{M}^{\infty }\neq \emptyset$$. Arguing indirectly, we assume that $$m>m^{\infty }$$. Let $$\varepsilon :=m-m^{\infty }$$, then there exists $$u_{\varepsilon }^{\infty }$$ such that

\begin{aligned} u_{\varepsilon }^{\infty }\in \mathcal{M}^{\infty } \quad \mbox{and} \quad m^{\infty }+ \frac{\varepsilon }{2}>\varPhi ^{\infty }\bigl(u_{\varepsilon } ^{\infty } \bigr) \end{aligned} .
(2.30)

In view of Corollary 2.7, there exists $$t_{\varepsilon }>0$$ such that $$t_{\varepsilon }^{\beta }(u_{\varepsilon }^{\infty })_{t_{\varepsilon }}\in \mathcal{M}$$. Thus, it follows from (V1), (1.4), (2.10), (2.13) and (2.30) that

\begin{aligned} m^{\infty }+\frac{\varepsilon }{2}> \varPhi ^{\infty }\bigl(u_{\varepsilon } ^{\infty }\bigr)\geq \varPhi ^{\infty }\bigl(t_{\varepsilon }^{\beta }\bigl(u_{\varepsilon }^{\infty } \bigr)_{t_{\varepsilon }}\bigr)\geq \varPhi \bigl(t_{\varepsilon }^{\beta } \bigl(u _{\varepsilon }^{\infty }\bigr)_{t_{\varepsilon }}\bigr)\geq m. \end{aligned}
(2.31)

This contradiction shows that $$m^{\infty }>m$$. □

### Lemma 2.14

Assume that (V1), (V2), (F1), (F2), (F5) and (F6) hold. Then m is obtained.

### Proof

In view of Lemma 2.6 and Lemma 2.11, we have $$\mathcal{M}\neq \emptyset$$ and $$m>0$$. Let $$\{u_{n}\}\subset \mathcal{M}$$ be such that $$\varPhi (u_{n})\rightarrow m$$. Since $$J(u_{n})=0$$, if follows from (2.9) and (2.15) that

\begin{aligned}[b] m+o(1) &=\varPhi (u_{n})=\varPhi (u_{n})-\frac{1}{2(2\beta -1)}J(u_{n}) \\ & \geq \frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\bigl[2V(x)+\nabla V(x) \cdot x\bigr]u_{n}^{2} \,dx \\ &\geq \frac{\rho _{1}}{2(2\beta -1)} \Vert u_{n} \Vert _{2} ^{2}. \end{aligned}
(2.32)

This shows that $${\|u_{n}\|_{2}}$$ is bounded. Next, we prove that $${\|\nabla u_{n}\|_{2}}$$ is also bounded. Arguing by contradiction, suppose that $$\|\nabla u_{n}\|_{2}\rightarrow \infty$$. By (1.3) and the Sobolev embedding inequality, for $$u\in H^{1}(\mathbb{R}^{3})$$ one has

\begin{aligned} \int _{\mathbb{R}^{3}}F(u)\,dx\leq C_{3} \Vert u \Vert _{2}^{2}+ \frac{1}{2(8m)^{2}}S^{3} \Vert u \Vert _{6}^{6}\leq C_{3} \Vert u \Vert _{2}^{2}+ \frac{1}{4(8m)^{2}} \Vert \nabla u \Vert _{2}^{6}. \end{aligned}
(2.33)

Let $$t_{n}=(8m/\|\nabla u_{n}\|_{2}^{2})^{\frac{1}{2\beta -1}}$$. Since $$J(u_{n})=0$$, it follows from (1.4), (2.6) and (2.32) that

\begin{aligned} m+o(1) =&\varPhi (u_{n})\geq \varPhi \bigl(t_{n}^{\beta }(u_{n})_{t_{n}}\bigr) \\ =&\frac{t_{n}^{2\beta -1}}{2} \Vert \nabla u_{n} \Vert _{2}^{2}+\frac{t_{n} ^{2\beta -3}}{2} \int _{\mathbb{R}^{3}}V\bigl(t_{n}^{-1}x \bigr)u_{n}^{2}\,dx \\ &{}+\frac{t_{n}^{2\beta -1}}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha } \ast \vert u_{n} \vert ^{q}\bigr) \vert u_{n} \vert ^{q} \,dx-t_{n}^{-3} \int _{\mathbb{R}^{3}}F\bigl(t_{n} ^{\beta }u_{n} \bigr) \\ \geq& \frac{t_{n}^{2\beta -1}}{2} \Vert \nabla u_{n} \Vert _{2}^{2}-\frac{C _{3} t_{n}^{2\beta }}{t_{n}^{3}} \Vert u_{n} \Vert _{2}^{2}-\frac{1}{4(8m)^{2}}t _{n}^{6\beta -3} \Vert \nabla u_{n} \Vert _{2}^{6} \\ =&\frac{t_{n}^{2\beta -1}}{2} \Vert \nabla u_{n} \Vert _{2}^{2} \biggl[1- \frac{1}{2}\biggl( \frac{t_{n}^{2\beta -1} \Vert \nabla u_{n} \Vert _{2}^{2}}{8m}\biggr)^{2} \biggr]+o(1) \\ =&2m+o(1). \end{aligned}
(2.34)

This contradiction shows that $$\{\|\nabla u_{n}\|_{2}^{2}\}$$ is also bounded, and so $$\{u_{n}\}$$ is bounded in $$H^{1}(\mathbb{R}^{3})$$. Passing to a subsequence, we have $$u_{n}\rightharpoonup \bar{u}$$ in $$H^{1}(\mathbb{R}^{3})$$. Then $$u_{n}\rightarrow \bar{u}$$ in $$L_{\mathrm{loc}}^{s}(\mathbb{R}^{3})$$ for $$2 \leq s <6$$ and $$u_{n}\rightarrow \bar{u}$$ a.e. in $$\mathbb{R}^{3}$$. There are two possible cases: (i) $$\bar{u}=0$$ and (ii) $$\bar{u}\neq 0$$.

Case (i) $$\bar{u}=0$$. i.e. $$u_{n}\rightharpoonup 0$$ in $$H^{1}( \mathbb{R}^{3})$$. Then $$u_{n}\rightarrow 0$$ in $$L_{\mathrm{loc}}^{s}( \mathbb{R}^{3})$$ for $$2 \leq s <2^{*}$$ and $$u_{n}\rightarrow 0$$ a.e. in $$\mathbb{R}^{3}$$. Using (V1) and (V2), it is easy to show that

\begin{aligned} \lim_{n\rightarrow \infty } \int _{\mathbb{R}^{3}}\bigl[V_{\infty }-V(x)\bigr]u _{n}^{2}\,dx = \lim_{n\rightarrow \infty } \int _{\mathbb{R}^{3}} \nabla V(x) \cdot x u_{n}^{2} \,dx =0 \end{aligned}
(2.35)

From (1.4), (1.8), (2.10), (2.12) and (2.35), one can get

\begin{aligned} \varPhi ^{\infty }(u_{n}) \rightarrow m , \qquad J^{\infty }(u_{n})\rightarrow 0. \end{aligned}
(2.36)

Note that (F1) and (F2) imply that, for any $$\varepsilon >0$$, there exists $$C_{\varepsilon }>0$$ such that

\begin{aligned} \bigl\vert F(t) \bigr\vert \leq \varepsilon \vert t \vert ^{2}+C_{\varepsilon } \vert t \vert ^{p}, \quad \forall t\in \mathbb{R}. \end{aligned}
(2.37)

By (1.3), (1.8), (2.10), (2.37) and Lemma 2.11(i), one has

\begin{aligned}[b] \frac{\min \{\rho _{2},3\}}{2}\rho ^{2} \leq {}&\frac{2\beta -1}{2} \Vert \nabla u_{n} \Vert _{2}^{2}+ \int _{\mathbb{R}^{3}} \biggl[\frac{2\beta -3}{2}V(x)- \frac{1}{2} \nabla V(x) \cdot x \biggr]u_{n}^{2}\,dx \\ &{}+\frac{2\beta -1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u_{n} \vert ^{q}\bigr) \vert u _{n} \vert ^{q}\,dx \\ ={}& \int _{\mathbb{R}^{3}}\bigl[\beta f(u_{n})u_{n}-3F(u) \bigr]\,dx \\ \leq {}&C_{4}\bigl(\varepsilon \vert u_{n} \vert _{2}^{2}+C_{\varepsilon } \vert u_{n} \vert _{p} ^{p}\bigr). \end{aligned}
(2.38)

Using (2.38) and Lion’s concentration compactness principle [34, Lemma 1.21], we can prove that there exists $$\delta >0$$ and $$y_{n}\in \mathbb{R}^{3}$$, such that $$\int _{B_{1}(y_{n})}|u_{n}|^{2}\,dx> \delta$$. Let $$\hat{u}_{n}(x)=u_{n}(x+y_{n})$$. Then we have $$\|\hat{u}_{n}\|=\|u_{n}\|$$ and

\begin{aligned} J^{\infty }(\hat{u}_{n})=o(1), \qquad \varPhi ^{\infty }(\hat{u}_{n})\rightarrow m, \qquad \int _{B_{1}(0)} \vert \hat{u}_{n} \vert ^{2}\,dx >\delta . \end{aligned}
(2.39)

Therefore, there exists $$\hat{u} \in H^{1}(\mathbb{R}^{3})\setminus \{0\}$$ such that, passing to a subsequence,

$$\textstyle\begin{cases} \hat{u}_{n} \rightharpoonup \hat{u}, & \mbox{in } H^{1}(\mathbb{R}^{3}); \\ \hat{u}_{n} \rightarrow \hat{u}, & \mbox{in } L_{loc}^{s}(\mathbb{R}^{3}), \forall \ s\in [1,6); \\ \hat{u}_{n} \rightarrow \hat{u}, &\mbox{a.e. on } \mathbb{R}^{3}. \end{cases}$$
(2.40)

Let $$w_{n}=\hat{u}_{n}-\hat{u}$$. then (2.40) and Lemma 2.12 yield

$$\varPhi ^{\infty }(\hat{u}_{n})=\varPhi ^{\infty }(\hat{u})+\varPhi ^{\infty }(w_{n})+o(1), \qquad J^{\infty }(\hat{u}_{n})=J^{\infty }(\hat{u})+J^{\infty }(w_{n})+o(1).$$
(2.41)

We define the functional $$\varPsi _{\infty }:H^{1}(\mathbb{R}^{3})\rightarrow \mathbb{R}$$ for $$u\in H^{1}(\mathbb{R}^{3})$$ by

\begin{aligned}[b] \varPsi ^{\infty }(u)&= \varPhi ^{\infty }(u)-\frac{1}{2\beta -1}J^{\infty }(u)\\ &=\frac{V _{\infty }}{2\beta -1} \Vert u \Vert _{2}^{2} +\frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\bigl[2\beta f(u)u-(4\beta +4)F(u)\bigr]\,dx. \end{aligned}
(2.42)

From (2.5), (2.7), (2.39), (2.41) and (2.42), one has

$$\varPsi ^{\infty }(w_{n})=m-\varPsi ^{\infty }(\hat{u})+o(1), \qquad J^{\infty }(w_{n})=-J^{\infty }( \hat{u})+o(1).$$
(2.43)

If there exists a subsequence $$\{w_{n_{i}}\}$$ of $$w_{n}$$ such that $$w_{n_{i}}=0$$, then we have

$$\varPhi ^{\infty }(\hat{u}) =m, \qquad J^{\infty }( \hat{u})=0.$$
(2.44)

Next, we assume that $$w_{n}\neq 0$$, we claim that $$J^{\infty }(w_{n}) \leq 0$$. Otherwise, if $$J^{\infty }(\hat{u})>0$$, then (2.43) implies $$J^{\infty }(w_{n})< 0$$ for large n. In view of Corollary 2.7, there exists $$t_{n}>0$$ such that $$t_{n}^{\beta }(w_{n})_{t_{n}}\in \mathcal{M}^{\infty }$$ for large n. From (2.5), (2.12), (2.13), (2.43) and Lemma 2.13, we obtain

\begin{aligned} m-\varPsi ^{\infty }(\hat{u})+o(1) =&\varPsi ^{\infty }(w_{n}) \\ =&\varPhi ^{\infty }(w_{n})-\frac{1}{2\beta -1}J^{\infty }(w_{n}) \\ \geq& \varPhi ^{\infty }\bigl(t_{n}^{\beta }(w_{n})_{t_{n}} \bigr)-\frac{t^{2\beta -1}}{2\beta -1}J^{\infty }(w_{n}) \\ &{} + \biggl[\frac{(2\beta -1)(1-t^{2\beta -3})-(2\beta -3)(1-t^{2\beta -3})V _{\infty }}{2(2\beta -1)} \biggr] \Vert \nabla w_{n} \Vert _{2}^{2} \\ \geq& m^{\infty }-\frac{t^{2\beta -1}}{2\beta -1}J^{\infty }(w_{n}) \\ & + \biggl[\frac{(2\beta -1)(1-t^{2\beta -3})-(2\beta -3)(1-t^{2\beta -3})V _{\infty }}{2(2\beta -1)} \biggr] \Vert \nabla w_{n} \Vert _{2}^{2} \\ \geq &m, \end{aligned}
(2.45)

which is a contradiction due to $$\varPsi ^{\infty }(\hat{u})> 0$$. This shows that $$J^{\infty }(\hat{u})\leq 0$$. In view of Lemma 2.6, there exists $$t_{\infty }>0$$ such that $$t_{\infty }^{\beta }\hat{u}_{t_{\infty }} \in \mathcal{M}^{\infty }$$. By (2.5), (2.7), (2.36), (2.39), (2.42), Fatou’s lemma and Lemma 2.13, we have

\begin{aligned} m =&\lim_{n\rightarrow \infty } \biggl[\varPhi ^{\infty }( \hat{u}_{n})-\frac{1}{2 \beta -1}J^{\infty }(\hat{u}_{n}) \biggr] \\ \geq& \varPsi ^{\infty }(\hat{u}_{n})\geq \varPsi ^{\infty }(\hat{u}) = \varPhi ^{\infty }(\hat{u})-\frac{1}{2\beta -1}J^{\infty }( \hat{u}) \\ \geq &\varPhi ^{\infty }\bigl(t_{\infty }^{\beta } \hat{u}_{t_{\infty }}\bigr)-\frac{t ^{2\beta -1}}{2\beta -1}J^{\infty }(\hat{u}) \\ &{} + \biggl[\frac{(2\beta -1)(1-t^{2\beta -3})-(2\beta -3)(1-t^{2\beta -3})V _{\infty }}{2(2\beta -1)} \biggr] \Vert \hat{u} \Vert _{2}^{2} \\ \geq& m^{\infty }-\frac{t^{2\beta -1}}{2\beta -1}J^{\infty }(\hat{u})+ \biggl[ \frac{(2\beta -1)(1-t^{2\beta -3})-(2\beta -3)(1-t^{2\beta -3})V _{\infty }}{2(2\beta -1)} \biggr] \Vert \hat{u} \Vert _{2}^{2} \\ \geq& m, \end{aligned}
(2.46)

which implies (2.44) holds also. In view of Lemma 2.6, there exists $$\hat{t}>0$$ such that $$\hat{t}^{\beta }\hat{u}_{\hat{t}} \in \mathcal{M}$$, moreover, it follows from (V1), (1.3), (2.7), (2.44) and Corollary 2.4 that

$$m \leq \varPhi \bigl(\hat{t}^{\beta }\hat{u}_{\hat{t}} \bigr) \leq \varPhi ^{\infty }\bigl( \hat{t}^{\beta } \hat{u}_{\hat{t}}\bigr)\leq \varPhi ^{\infty }(\hat{u})=m.$$
(2.47)

This shows that m is obtained at $$\hat{t}^{\beta }\hat{u}_{\hat{t}} \in \mathcal{M}$$.

Case (ii) $$\bar{u}\neq 0$$. In this case, analogous to the proof of (2.44), by using Φ and J instead of $$\varPhi ^{\infty }$$ and $$J^{\infty }$$, we can deduce that $$\varPhi (\bar{u})=m$$ and $$J(\bar{u})=0$$. □

In the same way as [19] or [35], we can obtain the following lemma.

### Lemma 2.15

Assume that (V1), (V2), (F1), (F2), (F5) and (F6) hold. If $$\bar{u}\in \mathcal{M}$$ and $$\varPhi (\bar{u})=m$$, then ū is a critical point of Φ.

### Proof of Theorem 1.1

In view of Lemma 2.14 and 2.15, there exists $$\bar{u}\in \mathcal{M}$$ such that

\begin{aligned} \varPhi (\bar{u})=m=\inf _{u\in H^{1}(\mathbb{R}^{3})\setminus \{0\}} \max_{t>0}\varPhi \bigl(t^{\beta }u_{t} \bigr), \qquad \varPhi '(\bar{u})=0. \end{aligned}
(2.48)

This shows that ū is a ground state solution of (1.1) such that $$\varPhi (\bar{u})=m=\inf_{\mathcal{M}}\varPhi$$. □

## 3 Proofs of Theorem 1.2 and 1.3

Since we are looking for positive solutions to (1.1), without loss of generality, we suppose that $$f(t)=0$$ for $$t<0$$ in this section.

To use the Jeanjean’s monotonicity trick [18, Theorem 1.1], for $$\lambda \in [1/2,1]$$ we introduce two families of $$\mathcal{C}^{1}$$-functions on $$H^{1}(\mathbb{R}^{3})$$ defined by

\begin{aligned} \varPhi _{\lambda }(u)= \frac{1}{2} \int _{\mathbb{R}^{3}}\bigl( \vert \nabla u \vert ^{2}+V(x)u ^{2}\bigr)\,dx+\frac{1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx- \lambda \int _{\mathbb{R}^{3}} F(u)\,dx \end{aligned}
(3.1)

and

\begin{aligned} \varPhi _{\lambda }^{\infty }(u)= \frac{1}{2} \int _{\mathbb{R}^{3}}\bigl( \vert \nabla u \vert ^{2}+V_{\infty }u^{2} \bigr)\,dx+\frac{1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{ \alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx- \lambda \int _{\mathbb{R}^{3}} F(u)\,dx. \end{aligned}
(3.2)

In the same way as [13, 31], we can obtain the following lemma.

### Lemma 3.1

Assume that (V1), (V3) (or(V3′)), (F1), (F2), (F5) and (F6) hold. Let u be a critical point of $$\varPhi _{\lambda }$$ in $$H^{1}(\mathbb{R}^{3})$$, then we have the following Pohožaev type identity:

\begin{aligned}[b] P_{\lambda }(u):= {}& \frac{1}{2} \Vert \nabla u \Vert _{2}^{2}+ \frac{1}{2} \int _{\mathbb{R}^{3}}\bigl[3V(x)+\nabla V(x)\cdot x\bigr]u^{2} \,dx+\frac{3+\alpha }{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx \\ &{}- 3\lambda \int _{\mathbb{R}^{3}} F(u)\,dx. \end{aligned}
(3.3)

We set $$J_{\lambda }(u):= \beta \langle \varPhi _{\lambda }^{\prime }(u),u \rangle -P_{\lambda }(u)$$, then, for $$\lambda \in [1/2,1]$$,

\begin{aligned}[b] J_{\lambda }(u) ={} & \frac{2\beta -1}{2} \Vert \nabla u \Vert _{2}^{2} + \frac{1}{2} \int _{\mathbb{R}^{3}}\bigl[(2\beta -3)V(x)-\nabla V(x)\cdot x\bigr]u ^{2}\,dx \\ &{}+\frac{2\beta -1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx \\ &{}-\lambda \int _{\mathbb{R}^{3}}\bigl[\beta f(u)u-3F(u)\bigr]\,dx. \end{aligned}
(3.4)

Correspondingly, for $$\lambda \in [1/2,1]$$ we also let

\begin{aligned}[b] J_{\lambda }^{\infty }(u) ={} &\frac{2\beta -1}{2} \Vert \nabla u \Vert _{2}^{2} + \frac{(2 \beta -3)V_{\infty }}{2} \Vert u \Vert _{2}^{2}+ \frac{2\beta -1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u \vert ^{q}\bigr) \vert u \vert ^{q}\,dx \\ &{}-\lambda \int _{\mathbb{R}^{3}}\bigl[\beta f(u)u-3F(u)\bigr]\,dx. \end{aligned}
(3.5)

Set

\begin{aligned} \mathcal{M}_{\lambda }^{\infty } := \bigl\{ u\in H^{1}\bigl(\mathbb{R}^{3}\bigr) \setminus \{0 \} :J_{\lambda }^{\infty }(u)=0 \bigr\} , \qquad m_{\lambda }^{\infty }:= \inf_{\mathcal{M}_{\lambda }^{\infty }} \varPhi _{\lambda }^{\infty }. \end{aligned}
(3.6)

By Corollary 2.3, we have the following lemma.

### Lemma 3.2

Assume that (F1), (F5) and (F6) hold. Then

\begin{aligned}[b] &\varPhi _{\lambda }^{\infty }(u) \geq \varPhi _{\lambda }^{\infty }\bigl(t^{ \beta }u_{t} \bigr)+\frac{1-t^{2\beta -1}}{2\beta -1}J_{\lambda }^{\infty }(u) \\ &\hphantom{\varPhi _{\lambda }^{\infty }(u) \geq}{}+\frac{(2\beta -1)(1-t^{2\beta -3})-(2\beta -3)(1-t^{2\beta -1})}{2(2 \beta -1)}V_{\infty } \Vert u \Vert _{2}^{2}, \\ &\quad \forall v\in H^{1}\bigl(\mathbb{R} ^{3}\bigr), t> 0. \end{aligned}
(3.7)

Since $$f(t)=0$$ for $$t<0$$, from Theorem 1.1, the strong maximum principle and standard arguments, we can deduce that $$\varPhi _{1}^{\infty }$$ has a minimizer $$u_{1}^{\infty }>0$$ on $$\mathcal{M}_{1}^{\infty }$$, i.e.

\begin{aligned} u_{1}^{\infty }\in \mathcal{M}_{1}^{\infty }, \qquad \bigl(\varPhi _{1}^{\infty }\bigr)'\bigl(u_{1}^{\infty } \bigr)=0 \quad \mbox{and} \quad m_{1}^{\infty } = \varPhi _{1}^{\infty }\bigl(u_{1}^{\infty }\bigr). \end{aligned}
(3.8)

### Lemma 3.3

Under the assumptions of Theorem 1.2 or Theorem 1.3, we have

1. (i)

There exists $$T>0$$ independent of λ such that $$\varPhi _{\lambda }(T^{\beta }(u_{1}^{\infty })_{T})<0$$ for all $$\lambda \in [1/2,1]$$;

2. (ii)

there exists a positive constant $$\kappa _{0}$$ independent of λ such that, for all $$\lambda \in [1/2,1]$$,

$$c_{\lambda }=\inf_{\gamma \in \tau }\max _{t\in [0,1]} \varPhi _{\lambda }\bigl( \gamma (t)\bigr) \geq \kappa _{0} > \max \bigl\{ \varPhi _{\lambda }(0),\varPhi _{\lambda }\bigl(T^{\beta }\bigl(u_{1}^{\infty } \bigr)_{T}\bigr)\bigr\} ,$$
(3.9)

where $$\tau =\{\gamma \in \mathcal{C}([0,1],H^{1}(\mathbb{R}^{3})): \gamma (0)=0,\gamma (1)=T^{\beta }(u_{1}^{\infty })_{T}\}$$;

3. (iii)

$$c_{\lambda }$$ and $$m_{\lambda }^{\infty }$$ are non-increasing on $$\lambda \in [1/2,1]$$.

The proof of Lemma 3.3 is standard, so we omit it.

### Lemma 3.4

Under the assumptions of Theorem 1.2 or Theorem 1.3, there exists $$\bar{\lambda }\in [1/2,1)$$ such that $$c_{\lambda }< m_{\lambda }^{ \infty }$$ for $$\lambda \in (\bar{\lambda },1]$$.

### Proof

It is easy to see that $$\varPhi _{\lambda }(t^{\beta }(u_{1}^{\infty })_{t})$$ is continuous on $$t\in (0,\infty )$$. Hence for any $$\lambda \in [1/2,1)$$, we can choose $$t_{\lambda }\in (0,T)$$ such that $$\varPhi _{\lambda }(t_{\lambda }^{ \beta }((u_{1}^{\infty })_{t_{\lambda }}))$$. Let $$\beta _{0}= \inf_{\lambda \in [1/2,1]}t_{\lambda }$$. If $$\beta _{0}=0$$, then there exists a sequence $$\{\lambda _{n}\}\subset [1/2,1]$$ such that $$\lambda _{n}\rightarrow \lambda _{0} \in [1/2,1]$$ and $$t_{\lambda _{n}} \rightarrow 0$$, and so by (3.1) and Lemma 3.3(iii), one has

\begin{aligned} 0< c_{1}\leq c_{\lambda _{n}} \leq \varPhi _{\lambda _{n}}\bigl(t_{\lambda _{n}} ^{\beta } \bigl(u_{1}^{\infty }\bigr)_{t_{\lambda _{n}}}\bigr)=o(1). \end{aligned}
(3.10)

This contradiction shows $$\beta _{0}>0$$. Thus $$0<\beta _{0}\leq t_{ \lambda }<T$$ for all $$\lambda \in [1/2,1]$$. Let

\begin{aligned} \bar{\lambda } :=\max \biggl\{ \frac{1}{2},1-\frac{\beta _{0}^{2\beta -3}T^{3}\min_{\beta _{0}\leq s\leq T}\int _{\mathbb{R}^{3}}[V _{\infty }-V(sx)] \vert u_{1}^{\infty } \vert ^{2}\,dx}{2\int _{\mathbb{R}^{3}}F(T ^{\beta }u_{1}^{\infty })\,dx} \biggr\} . \end{aligned}
(3.11)

Then $$1/2 \leq \bar{\lambda } <1$$. From (3.1), (3.2), (3.7), (3.11) and Lemma 3.3(iii), we derive

\begin{aligned} m_{\lambda }^{\infty } \geq &m_{1}^{\infty }= \varPhi _{1}^{\infty }\bigl(u _{1}^{\infty }\bigr) \geq \varPhi _{1}^{\infty }\bigl(t_{\lambda }^{\beta } \bigl(u_{1} ^{\infty }\bigr)_{t_{\lambda }}\bigr) \\ =&\varPhi _{\lambda }\bigl(t_{\lambda }^{\beta } \bigl(u_{1}^{\infty }\bigr)_{t_{\lambda }}\bigr)- \frac{(1-\lambda )}{t_{\lambda }^{3}} \int _{\mathbb{R}^{3}}F\bigl(t_{ \lambda }^{\beta } u_{1}^{\infty }\bigr)\,dx + \frac{t_{\lambda }^{2\beta -3}}{2} \int _{\mathbb{R}^{3}}\bigl[V_{\infty }-V(t _{\lambda }x)\bigr] \bigl\vert u_{1}^{\infty } \bigr\vert ^{2}\,dx \\ \geq &c_{\lambda }-\frac{(1-\lambda )}{T^{3}} \int _{\mathbb{R}^{3}}F\bigl(T ^{\beta }u_{1}^{\infty } \bigr)\,dx+\frac{\beta _{0}^{2\beta -3}}{2} \min_{\beta _{0}\leq s \leq T} \int _{\mathbb{R}^{3}}\bigl[V_{\infty }-V(sx)\bigr] \bigl\vert u_{1}^{\infty } \bigr\vert ^{2}\,dx \\ >&c_{\lambda } , \quad \forall \lambda \in (\bar{\lambda },1]. \end{aligned}
(3.12)

□

### Lemma 3.5

Under the assumptions of Theorem 1.2 or Theorem 1.3, for almost every $$\lambda \in (\bar{\lambda },1]$$, there exists $$u_{\lambda }\in H^{1}( \mathbb{R}^{3})\setminus \{0\}$$ such that.

$$\varPhi _{\lambda }'(u_{\lambda })= 0, \qquad \varPhi _{\lambda }(u_{\lambda })=c_{\lambda }.$$
(3.13)

### Proof

In view of the Jeanjean’s monotonicity trick [36, Theorem 1.1] and Lemma 3.3, for almost every $$\lambda \in [1/2,1]$$, there exists a bounded sequence $$\{u_{n}(\lambda )\}\subset H^{1}(\mathbb{R}^{3})$$, for simplicity, we denote it by $$\{u_{n}\}$$ instead of $$\{u_{n}(\lambda ) \}$$ such that

\begin{aligned} \varPhi _{\lambda }(u_{n}) \rightarrow c_{\lambda }, \qquad \bigl\Vert \varPhi _{\lambda }'(u_{n}) \bigr\Vert \rightarrow 0. \end{aligned}
(3.14)

Using Lemma 2.12, we can deduce that there exists $$u_{\lambda }\in H ^{1}(\mathbb{R}^{3})$$, an integer $$l\in \mathbb{N} \cup \{0\}$$, a sequence $$\{y_{n}^{k}\} \subset \mathbb{R}^{3}$$ and $$w^{k}\in H^{1}( \mathbb{R}^{3})$$ for $$1\leq k \leq l$$ such that $$u_{n}\rightharpoonup u_{\lambda }$$ in $$H^{1}(\mathbb{R}^{3})$$, $$\varPhi _{\lambda }^{\prime }(u_{ \lambda })=0$$, $$(\varPhi _{\lambda }^{\infty })^{\prime }(w^{k})=0$$ and $$\varPhi _{\lambda }^{\infty }(w^{k})\geq m_{\lambda }^{\infty }$$ for $$1 \leq k \leq l$$,

\begin{aligned} \Biggl\Vert u_{n}-u_{\lambda }- \sum_{k=1}^{l}w^{k}\bigl(\cdot + y_{n}^{k}\bigr) \Biggr\Vert \rightarrow 0 \quad \mbox{and} \quad \varPhi _{\lambda }(u_{n})\rightarrow \varPhi _{\lambda }(u_{\lambda })+\sum_{k=1}^{l} \varPhi _{\lambda }^{\infty }\bigl(w^{i}\bigr). \end{aligned}
(3.15)

Since $$\varPhi _{\lambda }^{\prime }(u_{\lambda })=0$$, $$J_{\lambda }(u_{\lambda })=0$$. It follows from (3.1) and (3.4) that

\begin{aligned}[b] \varPhi _{\lambda }(u_{\lambda }) ={}& \varPhi _{\lambda }(u_{\lambda })-\frac{1}{2 \beta -1}J_{\lambda }(u_{\lambda }) \\ ={}&\frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\bigl[2V(x)+\nabla V(x) \cdot x\bigr]u_{\lambda }^{2} \,dx \\ &{}+\frac{\lambda }{2\beta -1} \int _{\mathbb{R}^{3}}\bigl[\beta f(u_{\lambda })u_{\lambda }-(2 \beta +2)F(u_{\lambda })\bigr]\,dx \geq 0. \end{aligned}
(3.16)

If $$l\neq 0$$, then

\begin{aligned} c_{\lambda } =\lim _{n\rightarrow \infty }\varPhi _{\lambda }(u_{n})= \varPhi _{\lambda }(u_{\lambda })+\sum_{i=1}^{l} \varPhi _{\lambda }^{\infty }\bigl(w ^{i}\bigr)\geq m_{\lambda }^{\infty }, \quad \forall \lambda \in (\bar{\lambda },1], \end{aligned}
(3.17)

which is a contradiction by Lemma 3.4. Thus $$l=0$$, and (3.15) implies that $$u_{n}\rightarrow u_{\lambda }$$ in $$H^{1}(\mathbb{R}^{3})$$ and $$\varPhi _{\lambda }(u_{\lambda })=c_{\lambda }$$ for almost every $$\lambda \in (\bar{\lambda },1]$$. □

### Lemma 3.6

Under the assumptions of Theorem 1.2 or Theorem 1.3, there exists $$\bar{u}>0$$ such that

$$\varPhi '(\bar{u})= 0, \qquad \varPhi ( \bar{u})=c_{1}>0.$$
(3.18)

### Proof

Under the assumptions of Theorem 1.2 or 1.3, in view of Lemma 3.5, there exists two sequences of $$\{\lambda _{n}\} \subset (\bar{\lambda },1]$$ and $$\{u_{\lambda _{n}}\} \subset H^{1}(\mathbb{R}^{3})$$, denoted $$\{u_{n}\}$$, such that

\begin{aligned} \lambda _{n}\rightarrow 1, \qquad \varPhi _{\lambda _{n}}'(u_{n})=0, \qquad \varPhi _{\lambda _{n}}(u_{n})=c_{\lambda _{n}}. \end{aligned}
(3.19)

By (3.1), (3.4), (3.19) and Lemma 3.3(iii), one has

\begin{aligned}[b] c_{1/2} \geq c_{\lambda _{n}} ={}&\varPhi _{\lambda _{n}}(u_{n})- \frac{1}{2 \beta -1}J_{\lambda _{n}}(u_{n}) \\ ={}&\frac{1}{2(2\beta -1)} \int _{\mathbb{R}^{3}}\bigl[2V(x)+\nabla V(x) \cdot x\bigr]u_{n}^{2} \,dx \\ &{}+\frac{\lambda _{n}}{2\beta -1} \int _{\mathbb{R}^{3}}\bigl[\beta f(u_{n})u _{n}-(2 \beta +2)F(u_{n})\bigr]\,dx. \end{aligned}
(3.20)

To prove the boundedness of $$\{\|u_{n}\|\}$$, we distinguish two cases: (1) (V3) holds; (2) (V3′) holds.

Case (1) (V3) holds. In this case, by (F6) and (3.20), one has

$$c_{1/2} \geq \frac{\rho _{1}}{2(2\beta -1)} \Vert u_{n} \Vert _{2}^{2},$$
(3.21)

which implies that $$\{\|u_{n}\|_{2}\}$$ is bounded. Next, we prove that $$\{\|\nabla u_{n}\|_{2}\}$$ is also bounded. Arguing by contradiction, suppose that $$\|\nabla u_{n}\|_{2} \rightarrow \infty$$. By (V1), (V3), (3.21) and Lemma 3.3(iii), one has

$$c_{\lambda _{n}} + \int _{\mathbb{R}^{3}}\bigl[(2\beta -2)V_{\infty }-(2 \beta -2)V(x)- \bigl\vert \nabla V(x)\cdot x \bigr\vert \bigr]u_{n}^{2} \leq M_{0},$$
(3.22)

for some constant $$M_{0}$$. Let $$t_{n}=\min \{1,2(M_{0}/\|\nabla u_{n} \|_{2}^{2})^{1/{2\beta -1}}\}$$, then $$t_{n}\rightarrow 0$$. Thus, it follows from (3.1), (3.2), (3.4), (3.5) and (3.22) that

\begin{aligned} \varPhi _{\lambda _{n}}^{\infty }\bigl(t_{n}^{\beta }(u_{n})_{t_{n}} \bigr) \leq& \varPhi _{\lambda _{n}}^{\infty }(u_{n}) - \frac{1-t^{2\beta -1}}{2\beta -1}J_{\lambda _{n}}^{\infty }(u_{n}) \\ =& \varPhi _{\lambda _{n}}(u_{n}) +\frac{1}{2} \int _{\mathbb{R}^{3}}\bigl[V_{\infty }-V(x)\bigr]u_{n}^{2} \,dx \\ &{}- \frac{1-t^{2\beta -1}}{2\beta -1} \biggl\{ J_{\lambda _{n}}(u_{n})+ \frac{1}{2} \int _{\mathbb{R}^{3}}\bigl[(2\beta -3)V_{\infty } \\ &{}-(2\beta -3)V(x)- \bigl\vert \nabla V(x)\cdot x \bigr\vert \bigr]u_{n}^{2} \,dx \biggr\} \\ \leq& c_{\lambda _{n}} + \int _{\mathbb{R}^{3}}\bigl[(2\beta -2)V_{\infty }-(2 \beta -2)V(x)- \bigl\vert \nabla V(x)\cdot x \bigr\vert \bigr]u_{n}^{2} \leq M_{0}. \end{aligned}
(3.23)

Analogous to the proof of (2.34), we can deduce a contradiction by using (3.23). Hence, $$\{u_{n}\}$$ is bounded in $$H^{1}(\mathbb{R} ^{3})$$ under the assumptions of Theorem 1.2.

Case (2) (V3′) holds. In this case, (V3′) and (3.20) imply

\begin{aligned}[b] c_{1/2} &\geq \frac{\lambda _{n}}{2\beta -1} \int _{\mathbb{R}^{3}}\bigl[ \beta f(u_{n})u_{n}-(2 \beta +2)F(u_{n})\bigr]\,dx \\ &\geq C_{5}\biggl(\mu -\frac{2\beta +2}{\beta }\biggr) \int _{\mathbb{R}^{3}}F(u_{n})\,dx. \end{aligned}
(3.24)

Then it follows from (V1), (3.1), and (3.24) that

\begin{aligned}[b] \frac{\gamma _{0}}{2} \Vert u_{n} \Vert ^{2} & \leq \frac{1}{2} \int _{\mathbb{R} ^{3}} \bigl[ \vert \nabla u_{n} \vert ^{2}+V(x)u_{n}^{2} \bigr]\,dx+\frac{1}{2q} \int _{\mathbb{R}^{3}}\bigl(I_{\alpha }\ast \vert u_{n} \vert ^{q}\bigr) \vert u_{n} \vert ^{q}\,dx \\ &=\lambda \int _{\mathbb{R}^{3}} F(u_{n})\,dx \leq C_{6}, \end{aligned}
(3.25)

where $$\gamma _{0}$$ is a positive constant. Hence, $$\{u_{n}\}$$ is bounded in $$H^{1}(\mathbb{R}^{3})$$ under the assumptions of Theorem 1.3. Similar to the proof of Lemma 3.5, there exists $$\bar{u}\in H^{1}(\mathbb{R} ^{3})\setminus \{0\}$$ such that (3.18) holds. Moreover, by the strong maximum principle and a standard argument, we can conclude that $$\bar{u}>0$$. □

Proofs of Theorem 1.2 and Theorem 1.3 . Let

\begin{aligned} K:= \bigl\{ u\in H^{1}\bigl( \mathbb{R}^{3}\bigr)\setminus \{0\}: \varPhi '(u)=0\bigr\} , \qquad \hat{m}:=\inf_{u\in K}\varPhi (u). \end{aligned}
(3.26)

Then Lemma 3.6 shows that $$K \neq \emptyset$$ and $$\hat{m} \leq c_{1}$$. For any $$u\in K$$, (1.8), (3.4) and Lemma 3.1 imply $$J(u)=J_{1}(u)=\beta \langle \varPhi '(u),u\rangle -\mathcal{P}(u)=0$$. As in (3.16), we have $$\varPhi (u)=\varPhi _{1}(u)\geq 0$$ for any $$u\in K$$, and so $$\hat{m}\geq 0$$. Let $$\{u_{n}\} \subset K$$ such that $$\varPhi '(u_{n})=0$$ and $$\varPhi (u_{n})\rightarrow \hat{m}$$. In view of Lemma 3.4, $$\hat{m}\leq c_{1}\leq m_{1}^{\infty }$$. Similar to the proof of Lemma 3.6, we can deduce that there exists $$\hat{u}>0$$ such that $$\varPhi '(\hat{u})=0$$ and $$\varPhi (\hat{u})=\hat{m}$$. This shows that $$\hat{u}\in H^{1}(\mathbb{R}^{3})$$ is a positive ground state solution of (1.1).

## References

1. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

2. Azzollini, A.: Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity. J. Differ. Equ. 249, 1746–1763 (2010)

3. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

4. Cerami, G., Vaira, J.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

5. Chen, S., Tang, X.: Improved results for Klein–Gordon–Maxwell systems with general nonlinearity. Discrete Contin. Dyn. Syst., Ser. A 38, 2333–2348 (2018)

6. Chen, S., Tang, X.: Infinitely many solutions and least energy solutions for Klein–Gordon–Maxwell systems with general superlinear nonlinearity. Comput. Math. Appl. 75, 3358–3366 (2018)

7. Sun, J., Ma, S.: Ground state solutions for some Schrödinger–Poisson systems with periodic potentials. J. Differ. Equ. 260, 2119–2149 (2016)

8. Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

9. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger–Poisson equation. Commun. Contemp. Math. 10, 1–14 (2008)

10. D’Avenia, P.: Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud. 2, 177–192 (2002)

11. D’Aprile, T., Wei, J.: On bound states concentrating on spheres for the Maxwell–Schrödinger equation. SIAM J. Math. Anal. 37, 321–342 (2005)

12. Coclite, G.: A multiplicity result for the nonlinear Schrödinger–Maxwell equations. Commun. Appl. Anal. 7, 417–423 (2003)

13. D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein–Gordon–Maxwell equations. Adv. Nonlinear Stud. 4, 307–332 (2008)

14. D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinb., Sect. A 134, 1–14 (2004)

15. Kikuchi, H.: On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations. Nonlinear Anal. 67, 1445–1456 (2007)

16. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

17. Ruiz, D.: Existence of groundstate for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 15, 141–164 (2005)

18. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on $$\mathbb {R}^{N}$$. Proc. R. Soc. Edinb., Sect. A 129, 787–809 (1999)

19. Tang, X., Chen, S.: Ground state solutions of Nehari–Pohoz̆aev type for Schrödinger–Poisson problems with general potentials. Discrete Contin. Dyn. Syst. 37, 4973–5002 (2017)

20. Shen, L.: Ground state solutions for a class of generalized quasilinear Schrödinger–Poisson systems. Bound. Value Probl. 2018, 44 (2018)

21. Wen, L., Chen, S.: Ground state solutions for asymptotically periodic Schrödinger–Poisson systems involving Hartree-type nonlinearities. Bound. Value Probl. 2018, 110 (2018)

22. Chen, S., Tang, X.: Nehari type ground state solutions for asymptotically periodic Schrödinger–Poisson systems. Taiwan. J. Math. 21, 363–383 (2017)

23. Chen, S., Tang, X.: Ground state solutions of Schrödinger–Poisson systems with variable potential and convolution nonlinearity. J. Math. Anal. Appl. 473, 7–111 (2019)

24. Chen, J., Gao, Z.: Ground state solutions for fractional Schrödinger equation with variable potential and Berestycki–Lions type nonlinearity. Bound. Value Probl. 2019, 148 (2019)

25. Chen, S., Shi, J., Tang, X.: Ground state solutions of Nehari–Pohozaev type for the planar Schrödinger–Poisson system with general nonlinearity. Discrete Contin. Dyn. Syst., Ser. A 39, 5867–5889 (2019)

26. Chen, S., Tang, X.: Berestycki–Lions conditions on ground state solutions for a nonlinear Schrödinger equation with variable potentials. Adv. Nonlinear Anal. 9, 496–515 (2020)

27. Chen, S., Zhang, B., Tang, X.: Existence and concentration of semiclassical ground state solutions for the generalized Chern–Simons–Schrödinger system in $$H^{1}(\mathbb{R} ^{2})$$. Nonlinear Anal. 185, 68–96 (2019)

28. Tang, X., Chen, S.: Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki–Lions assumptions. Adv. Nonlinear Anal. 9, 413–437 (2020)

29. Goubet, O., Hamraoui, E.: Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: the radial case. Adv. Nonlinear Anal. 6, 183–197 (2017)

30. Papageorgiou, N., Radulescu, V., Repovs, D.: Nonlinear Analysis—Theory and Methods. Springer, Berlin (2019)

31. Moroz, V., Schaftingen, J.: Existence of groundstate for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

32. Tang, X., Chen, S.: Ground state solutions of Nehari–Pohožaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differ. Equ. 56, 110–134 (2017)

33. Moroz, V., Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

34. Willem, M.: Minimax theorems. Prog. Nonlinear Differ. Equ. Appl. 50(1), 139–141 (1996)

35. Chen, S., Tang, X.: Ground state solutions for generalized quasilinear Schrödinger equations with variable potentials and Berestycki–Lions nonlinearities. J. Math. Phys. 59, 081508 (2018)

36. Jeanjean, L., Tanka, K.: A positive solution for a nonlinear Schrödinger equation on $$\mathbb{R}^{3}$$. Indiana Univ. Math. J. 54, 443–464 (2005)

## Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

## Funding

This work was supported by the NNSF (11701487, 11626202), Hunan Provincial Natural Science Foundation of China (2016JJ6137), Scientific Research Fund of Hunan Provincial Education Department (15B223).

## Author information

Authors

### Contributions

All authors read and approved the final manuscript.

### Corresponding author

Correspondence to Fangfang Liao.

## Ethics declarations

### Competing interests

The authors declare that there are no competing interests regarding the publication of this article.

### Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

Reprints and permissions

Yuan, S., Liao, F. Ground state solutions of Nehari–Pohožaev type for a kind of nonlinear problem with general nonlinearity and nonlocal convolution term. Bound Value Probl 2019, 150 (2019). https://doi.org/10.1186/s13661-019-1264-3