Next, we will consider the a priori estimates for the strong solution U to the system (2.4). Using definition of the fluctuation á¹¼ in [17], we can give the equations of the fluctuation á¹¼ as follows:
$$\begin{aligned} &\frac{\partial \overline{V}}{\partial t}+ \int _{0}^{1} \biggl(\nabla _{V^{*}}V - \biggl(\frac{1}{\widetilde{p_{s}}} \int _{0}^{\zeta }\nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr)+\zeta \frac{\partial \widetilde{p_{s}}}{\partial t} \biggr) \frac{\partial V}{\partial \zeta } \biggr)\,d\zeta +2\omega \cos \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \overline{V} \\ &\qquad{}+R \int _{0}^{1} \int _{\zeta }^{1}\frac{\nabla T'(s)}{s}\,ds\,d\zeta +R \frac{\nabla \widetilde{p_{s}}}{\widetilde{p_{s}}} \int _{0}^{1}T'd \zeta -\nabla \biggl( \frac{R\widetilde{T_{s}}}{\widetilde{p_{s}}} \int _{0}^{t} \nabla \cdot (\widetilde{p_{s}} \overline{V})\,d\tau \biggr) \\ &\quad=\frac{\mu _{1}}{\widetilde{p_{s}}}\Delta \overline{V}-k_{s1} \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}f \bigl( \vert V \vert \bigr) V \biggr)\bigg|_{\zeta =1}, \end{aligned}$$
(4.1)
where
$$ \nabla _{V^{*}}V= \frac{1}{a} \left (a^{2}V^{*} \cdot \nabla V^{*}+v_{\lambda } \cot \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}V \right ). $$
(4.2)
We let
$$ \widetilde{V}=V-\overline{V}, $$
(4.3)
which also implies
$$ \widetilde{V}^{*}=V^{*}-\overline{V^{*}}=V- \overline{V}=\widetilde{V},\qquad \overline{V^{*}}=\overline{V}^{*}. $$
(4.4)
Note that
$$ \overline{\widetilde{V}}=0, \overline{\widetilde{V}^{*}}=0,\qquad \nabla \cdot \bigl(\widetilde{p_{s}}\overline{V^{*}} \bigr)=- \frac{\partial \widetilde{p_{s}}}{\partial t}, $$
(4.5)
and we have
$$\begin{aligned} &{ -} \int _{0}^{1} \biggl( \int _{0}^{\zeta }\nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr)\,ds \biggr)\frac{\partial V}{\partial \zeta } \,d\zeta \\ &\quad =\frac{\partial \widetilde{p_{s}}}{\partial t}V\bigg|_{ \zeta =1}+ \int _{0}^{1} V \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \,d \zeta \\ &\quad=\frac{\partial \widetilde{p_{s}}}{\partial t}V\bigg|_{\zeta =1}- \frac{\partial \widetilde{p_{s}}}{\partial t}\overline{V}+ \int _{0}^{1} \widetilde{V} \nabla \cdot \bigl( \widetilde{p_{s}}\widetilde{V}^{*} \bigr) \,d \zeta, \end{aligned}$$
(4.6)
$$\begin{aligned} & {-}\frac{\partial \widetilde{p_{s}}}{\partial t} \int _{0}^{1}\zeta \frac{\partial V}{\partial \zeta } \,d\zeta =- \frac{\partial \widetilde{p_{s}}}{\partial t}V\bigg|_{\zeta =1}+ \frac{\partial \widetilde{p_{s}}}{\partial t}\overline{V}, \end{aligned}$$
(4.7)
and
$$ \int _{0}^{1}\nabla _{V^{*}}V \,d\zeta = \int _{0}^{1}\nabla _{ \widetilde{V}^{*}}\widetilde{V} \,d \zeta +\nabla _{\overline{V^{*}}} \overline{V}, $$
(4.8)
where
$$\begin{aligned} & \nabla _{\widetilde{V}^{*}}\widetilde{V}= \frac{1}{a} \left (a^{2} \widetilde{V}^{*}\cdot \nabla \widetilde{V}^{*}+\widetilde{v}_{\lambda }\cot \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\widetilde{V} \right ), \end{aligned}$$
(4.9)
$$\begin{aligned} & \nabla _{\overline{V}^{*}}\overline{V}= \frac{1}{a} \left (a^{2} \overline{V}^{*}\cdot \nabla \overline{V}^{*}+ \overline{v}_{\lambda }\cot \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\overline{V} \right ). \end{aligned}$$
(4.10)
From (4.1), (4.6) and (4.7), we get
$$\begin{aligned} &\frac{\partial \overline{V}}{\partial t}+\nabla _{\overline{V^{*}}} \overline{V}+ \overline{\frac{1}{\widetilde{p_{s}}} \widetilde{V} \nabla \cdot \bigl( \widetilde{p_{s}}\widetilde{V}^{*} \bigr)+\nabla _{\widetilde{V}^{*}}\widetilde{V} } +2\omega \cos \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \overline{V} \\ &\qquad{}+R \int _{0}^{1} \int _{\zeta }^{1}\frac{\nabla T'(s)}{s}\,ds\,d\zeta +R\frac{\nabla \widetilde{p_{s}}}{\widetilde{p_{s}}} \int _{0}^{1}T'd \zeta -\nabla \biggl( \frac{R\widetilde{T_{s}}}{\widetilde{p_{s}}} \int _{0}^{t} \nabla \cdot (\widetilde{p_{s}} \overline{V})\,d\tau \biggr) \\ &\quad=\frac{\mu _{1}}{\widetilde{p_{s}}}\Delta \overline{V}-k_{s1} \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}f \bigl( \vert V \vert \bigr) V \biggr)\bigg|_{\zeta =1}. \end{aligned}$$
(4.11)
Subtracting (4.11) from (2.4)1, we also find that the fluctuation á¹¼ satisfies the following equation:
$$\begin{aligned} &\frac{\partial \widetilde{V}}{\partial t}+\nabla _{\widetilde{V}^{*}} \widetilde{V} - \biggl(\frac{1}{\widetilde{p_{s}}} \int _{0}^{\zeta }\nabla \cdot \bigl( \widetilde{p_{s}}\widetilde{V}^{*} \bigr)\,ds \biggr) \frac{\partial \widetilde{V}}{\partial \zeta } +\nabla _{ \overline{V^{*}}}\widetilde{V}+\nabla _{\widetilde{V}^{*}} \overline{V} \\ &\quad{}- \overline{\frac{1}{\widetilde{p_{s}}} \widetilde{V} \nabla \cdot \bigl( \widetilde{p_{s}}\widetilde{V}^{*} \bigr)+\nabla _{\widetilde{V}^{*}}\widetilde{V} }+2 \omega \cos \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \widetilde{V} +R \int _{\zeta }^{1} \frac{\nabla T'(s)}{s}\,ds \\ &\quad{}-R \int _{0}^{1} \int _{\zeta }^{1}\frac{\nabla T'(s)}{s}\,ds\,d\zeta +R \frac{\nabla \widetilde{p_{s}}}{\widetilde{p_{s}}}T' -R \frac{\nabla \widetilde{p_{s}}}{\widetilde{p_{s}}} \int _{0}^{1}T'd \zeta \\ &\quad{}-k_{s1} \biggl( \biggl(\frac{g\zeta }{R\widetilde{T}} \biggr)^{2}f \bigl( \vert V \vert \bigr) V \biggr)\bigg|_{ \zeta =1} =\frac{\mu _{1}}{\widetilde{p_{s}}} \Delta \widetilde{V}+ \nu _{1}\frac{\partial }{\partial \zeta } \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \frac{\partial \widetilde{V}}{\partial \zeta } \biggr), \end{aligned}$$
(4.12)
with the boundary conditions
$$ \frac{\partial \widetilde{V}}{\partial \zeta }\bigg|_{\zeta =0}= 0, \qquad \biggl(\nu _{1} \frac{\partial \widetilde{V}}{\partial \zeta }+k_{s1}f \bigl( \vert V \vert \bigr)V \biggr)\bigg|_{\zeta =1}=0, $$
(4.13)
where
$$\begin{aligned} &\nabla _{\overline{V}^{*}}\widetilde{V}= \frac{1}{a} \left (a^{2} \overline{V}^{*}\cdot \nabla \widetilde{V}^{*}+ \overline{v}_{\lambda }\cot \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\widetilde{V} \right ), \end{aligned}$$
(4.14)
$$\begin{aligned} & \nabla _{\widetilde{V}^{*}}\overline{V}=\frac{1}{a} \left (a^{2} \widetilde{V}^{*}\cdot \nabla \overline{V}^{*}+\widetilde{v}_{\lambda }\cot \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\overline{V} \right ). \end{aligned}$$
(4.15)
Then we have the usual energy inequality as follows.
Lemma 4.1
Under the assumptions of Theorem 2.1, for any\(M>0\)given, the strong solutionUto the system (2.4) satisfies
$$\begin{aligned} & \Vert V \Vert _{L^{2}(\varOmega )}^{2}+ \bigl\Vert T' \bigr\Vert _{L^{2}(\varOmega )}^{2}+ \Vert q \Vert _{L^{2}( \varOmega )}^{2}+ \Vert m_{w} \Vert _{L^{2}(\varOmega )}^{2} + \biggl\Vert \int _{0}^{t}\nabla \cdot (\widetilde{p_{s}} \overline{V})\,d\tau \biggr\Vert _{L^{2}(\varOmega )}^{2} \\ &\quad{}+ \int _{0}^{t} \Vert U \Vert _{H^{1}(\varOmega )}^{2} \,d\tau + \int _{0}^{t} \bigl\Vert T' \bigr\Vert _{L^{2}( \varOmega )}^{2} \,d\tau + \int _{0}^{t} \int _{S^{2}} f \bigl( \vert V \vert \bigr) \vert V \vert ^{2}|_{ \zeta =1}\,d\sigma \,d\tau \\ &\quad{}+ \int _{0}^{t} \int _{S^{2}}T^{\prime 2}|_{\zeta =1}\,d\sigma \,d\tau + \int _{0}^{t} \int _{S^{2}}f \bigl( \vert {V_{10}} \vert \bigr)q^{2}\big|_{\zeta =1}\,d\sigma \,d\tau \leq C(M),\quad t\in [0,M], \end{aligned}$$
(4.16)
where\(C(M)>0\)denotes a constant dependent of timeM.
Proof
Multiplying (2.4) by \(\widetilde{p_{s}}U\) and using the boundary conditions, we obtain
$$\begin{aligned} &\frac{1}{2}\frac{d}{dt} \int _{\varOmega }\widetilde{p_{s}} \biggl(V^{2}+ \frac{R}{c_{0}^{2}}T^{\prime 2}+q^{2}+m_{w}^{2} \biggr)\,d\sigma \,d\zeta + \frac{d}{dt} \int _{S^{2}}\frac{R\widetilde{T_{s}}}{\widetilde{p_{s}}} \biggl( \int _{0}^{t}\nabla \cdot (\widetilde{p_{s}} \overline{V})\,d\tau \biggr)^{2}\,d\sigma \\ &\qquad{}+\mu _{1} \int _{\varOmega } \vert \nabla V \vert ^{2}\,d\sigma \,d \zeta + \frac{\mu _{2}R}{c_{p}c_{0}^{2}} \int _{\varOmega } \bigl\vert \nabla T' \bigr\vert ^{2}\,d \sigma \,d\zeta \\ &\qquad{}+\mu _{3} \int _{\varOmega } \vert \nabla q \vert ^{2}\,d\sigma \,d \zeta + \mu _{4} \int _{\varOmega } \vert \nabla m_{w} \vert ^{2}\,d\sigma \,d\zeta \\ &\qquad{}+\nu _{1} \int _{\varOmega } \widetilde{p_{s}} \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggl( \frac{\partial V}{\partial \zeta } \biggr)^{2}\,d\sigma \,d\zeta + \frac{\nu _{2}R}{c_{p}c_{0}^{2}} \int _{\varOmega } \widetilde{p_{s}} \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggl( \frac{\partial T'}{\partial \zeta } \biggr)^{2}\,d\sigma \,d\zeta \\ &\qquad{}+\nu _{3} \int _{\varOmega } \widetilde{p_{s}} \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggl( \frac{\partial q}{\partial \zeta } \biggr)^{2}\,d\sigma \,d\zeta +\nu _{4} \int _{\varOmega } \widetilde{p_{s}} \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggl(\frac{\partial m_{w}}{\partial \zeta } \biggr)^{2}\,d\sigma \,d\zeta \\ &\qquad{}+k_{s1} \int _{S^{2}} \widetilde{p_{s}} \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}f \bigl( \vert V \vert \bigr) \vert V \vert ^{2}|_{\zeta =1}\,d\sigma + \frac{k_{s2}R}{c_{p}c_{0}^{2}} \int _{S^{2}} \widetilde{p_{s}} \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}T^{\prime 2}|_{\zeta =1}\,d\sigma \\ &\qquad{}+k_{s3} \int _{S^{2}}f \bigl( \vert {V_{10}} \vert \bigr) \biggl(\frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \bigl(q-q^{*}_{m} \bigr)q|_{ \zeta =1}\,d\sigma + \int _{\varOmega } \frac{R\widetilde{p}_{s}}{c_{p}c_{0}^{2}}{\kappa _{a}} {T^{\prime 2}}\,d \sigma \,d\zeta \\ &\quad=\frac{1}{2} \int _{\varOmega }\frac{d\widetilde{p_{s}}}{dt} \biggl(V^{2}+ \frac{R}{c_{0}^{2}}T^{\prime 2}+q^{2}+m_{w}^{2} \biggr)\,d\sigma \,d\zeta - \int _{ \varOmega }\frac{R\widetilde{p}_{s}}{c_{p}c_{0}^{2}}{\delta _{21}} { \delta _{22}} {\dot{\zeta }} {\frac{W(T)}{\zeta }}T' \,d\sigma \,d \zeta \\ &\qquad{}+ \int _{\varOmega }\widetilde{p}_{s}q{\delta _{21}} {\delta _{22}} { \dot{\zeta }} {\frac{W(T)}{\zeta }} \,d\sigma \,d\zeta - \int _{\varOmega } \widetilde{p}_{s}{m_{w}} { \delta _{21}} {\delta _{22}} {\dot{\zeta }} { \frac{W(T)}{\zeta }} \,d\sigma \,d\zeta \\ &\qquad{}+ \int _{\varOmega }\widetilde{p}_{s}{m_{w}}h_{1} \biggl({ \delta _{21}} {\delta _{22}} {\dot{\zeta }} { \frac{W(T)}{\zeta }} \biggr) \,d \sigma \,d\zeta. \end{aligned}$$
(4.17)
Thanks to the Young inequality, the Hardy inequality and the Hölder inequality, we get
$$\begin{aligned} & \biggl\vert \int _{\varOmega }{\delta _{21}} {\delta _{22}} { \dot{\zeta }} { \frac{W(T)}{\zeta }}T' \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \int _{\varOmega }{T^{\prime 2}}\,d\sigma \,d\zeta + \varepsilon \int _{ \varOmega } \bigl\vert \nabla \cdot (\widetilde{p_{s}} \overline{V}) \bigr\vert ^{2}\,d\sigma \,d \zeta + \varepsilon \int _{\varOmega } \biggl(\frac{1}{\zeta } \int ^{\zeta }_{0} \nabla \cdot (\widetilde{p}_{s}{V}) \,ds \biggr)^{2}\,d\sigma \,d\zeta \\ &\quad\leq C \int _{\varOmega }{T^{\prime 2}}\,d\sigma \,d\zeta + C \int _{\varOmega } \vert V \vert ^{2}\,d \sigma \,d\zeta + \varepsilon C \int _{\varOmega } \vert \nabla V \vert ^{2}\,d\sigma \,d \zeta, \end{aligned}$$
(4.18)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\widetilde{p}_{s}q{\delta _{21}} {\delta _{22}} { \dot{\zeta }} {\frac{W(T)}{\zeta }} \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \int _{\varOmega }{q^{2}}\,d\sigma \,d\zeta + \varepsilon \int _{ \varOmega } \bigl\vert \nabla \cdot (\widetilde{p_{s}} \overline{V}) \bigr\vert ^{2}\,d\sigma \,d \zeta + \varepsilon \int _{\varOmega } \biggl(\frac{1}{\zeta } \int ^{\zeta }_{0} \nabla \cdot (\widetilde{p}_{s}{V}) \,ds \biggr)^{2}\,d\sigma \,d\zeta \\ &\quad\leq C \int _{\varOmega }{q^{2}}\,d\sigma \,d\zeta + C \int _{\varOmega } \vert V \vert ^{2}\,d \sigma \,d\zeta + \varepsilon C \int _{\varOmega } \vert \nabla V \vert ^{2}\,d\sigma \,d \zeta, \end{aligned}$$
(4.19)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\widetilde{p}_{s} m_{w}{\delta _{21}} {\delta _{22}} { \dot{\zeta }} {\frac{W(T)}{\zeta }} \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \int _{\varOmega }{m_{w}^{2}}\,d\sigma \,d\zeta + \varepsilon \int _{ \varOmega } \bigl\vert \nabla \cdot (\widetilde{p_{s}} \overline{V}) \bigr\vert ^{2}\,d\sigma \,d \zeta + \varepsilon \int _{\varOmega } \biggl(\frac{1}{\zeta } \int ^{\zeta }_{0} \nabla \cdot (\widetilde{p}_{s}{V}) \,ds \biggr)^{2}\,d\sigma \,d\zeta \\ &\quad\leq C \int _{\varOmega }{m_{w}^{2}}\,d\sigma \,d\zeta + C \int _{\varOmega } \vert V \vert ^{2}\,d \sigma \,d\zeta + \varepsilon C \int _{\varOmega } \vert \nabla V \vert ^{2}\,d\sigma \,d \zeta, \end{aligned}$$
(4.20)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\widetilde{p}_{s} m_{w} h_{1} \biggl({\delta _{21}} { \delta _{22}} {\dot{ \zeta }} {\frac{W(T)}{\zeta }} \biggr) \,d\sigma \,d\zeta\biggr\vert \\ &\quad \leq C \int _{\varOmega }{m_{w}^{2}}\,d\sigma \,d\zeta + \varepsilon \int _{ \varOmega } \bigl\vert \nabla \cdot (\widetilde{p_{s}} \overline{V}) \bigr\vert ^{2}\,d\sigma \,d \zeta + \varepsilon \int _{\varOmega } \biggl(\frac{1}{\zeta } \int ^{\zeta }_{0} \nabla \cdot (\widetilde{p}_{s}{V}) \,ds \biggr)^{2}\,d\sigma \,d\zeta \\ &\quad\leq C \int _{\varOmega }{m_{w}^{2}}\,d\sigma \,d\zeta + C \int _{\varOmega } \vert V \vert ^{2}\,d \sigma \,d\zeta + \varepsilon C \int _{\varOmega } \vert \nabla V \vert ^{2}\,d\sigma \,d \zeta, \end{aligned}$$
(4.21)
$$\begin{aligned} & \biggl\vert \int _{S^{2}}\widetilde{p}_{s} \biggl(f \bigl( \vert {V_{10}} \vert \bigr) \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} q_{m}^{*}q \biggr)\bigg|_{\zeta =1}\,d \sigma \biggr\vert \leq C +\varepsilon \int _{S^{2}}f \bigl( \vert {V_{10}} \vert \bigr)q^{2}\big|_{ \zeta =1}\,d\sigma, \end{aligned}$$
(4.22)
where \(C>0\) denotes a constant independent of time M.
Using (4.18)–(4.22) and the Young inequality, we deduce
$$\begin{aligned} &\frac{d}{dt} \int _{\varOmega }\widetilde{p_{s}} \biggl(V^{2}+ \frac{R}{c_{0}^{2}}T^{\prime 2}+q^{2}+{m_{w}^{2}} \biggr)\,d\sigma \,d\zeta \\ &\qquad{} + \frac{d}{dt} \int _{S^{2}}\frac{R\widetilde{T_{s}}}{\widetilde{p_{s}}} \biggl( \int _{0}^{t}\nabla \cdot (\widetilde{p_{s}} \overline{V})\,d\tau \biggr)^{2}\,d\sigma +C \Vert U \Vert ^{2}_{H^{1}(\varOmega )} \\ &\qquad{}+C \bigl\Vert T' \bigr\Vert _{L^{2}(\varOmega )}^{2} +C \int _{S^{2}} f \bigl( \vert V \vert \bigr) \vert V \vert ^{2}|_{\zeta =1}\,d \sigma \\ &\qquad{}+C \int _{S^{2}}T^{\prime 2}|_{\zeta =1}\,d\sigma +C \int _{S^{2}}f \bigl( \vert {V_{10}} \vert \bigr)q^{2}\big|_{ \zeta =1}\,d\sigma \\ &\quad \leq C+ \int _{\varOmega }\widetilde{p_{s}} \biggl(V^{2}+ \frac{R}{c_{0}^{2}}T^{\prime 2}+q^{2}+{m_{w}^{2}} \biggr)\,d \sigma \,d\zeta, \end{aligned}$$
(4.23)
by applying Gronwall inequality, we can prove (4.16). □
Remark 4.2
Note that, from [17], for the strong solution \(V,T'\) to the system (2.4)1,2,
$$\begin{aligned} & \int _{\varOmega } \vert \widetilde{V} \vert ^{4}\,d \sigma \,d\zeta + \int _{0}^{t} \int _{\varOmega } \vert \nabla \widetilde{V} \vert ^{2} \vert \widetilde{V} \vert ^{2}\,d\sigma \,d\zeta \,d \tau + \int _{0}^{t} \int _{\varOmega } \biggl\vert \frac{\partial \widetilde{V}}{\partial \zeta } \biggr\vert ^{2} \vert \widetilde{V} \vert ^{2}\,d \sigma \,d\zeta \,d\tau \\ &\quad{}+ \int _{0}^{t} \int _{S^{2}} \vert \widetilde{V} \vert ^{4+\alpha }|_{\zeta =1} \,d \sigma \,d\tau \leq C(M), \end{aligned}$$
(4.24)
$$\begin{aligned} &\int _{S^{2}} \vert \nabla \overline{V} \vert ^{2} \,d\sigma + \int _{S^{2}} \biggl\vert \int _{0}^{t}\nabla \nabla \cdot ( \widetilde{p_{s}}\overline{V})\,d \tau \biggr\vert ^{2}\,d \sigma + \int _{0}^{t} \int _{S^{2}} \vert \Delta \overline{V} \vert ^{2} \,d\sigma \,d\tau \leq C(M), \end{aligned}$$
(4.25)
$$\begin{aligned} & \int _{\varOmega } \vert V_{\zeta } \vert ^{2}\,d \sigma \,d\zeta + \int _{0}^{t} \int _{\varOmega } \vert \nabla V_{\zeta } \vert ^{2} \,d\sigma \,d\zeta \,d\tau + \int _{0}^{t} \int _{\varOmega } \vert V_{\zeta \zeta } \vert ^{2} \,d \sigma \,d\zeta \,d\tau \\ &\quad{}+ \int _{S^{2}} \bigl(f \bigl( \vert V \vert \bigr) \vert \nabla V \vert ^{2} \bigr)|_{\zeta =1} \,d\sigma + \int _{S^{2}} \biggl(\frac{f'( \vert V \vert )}{ \vert V \vert } \vert V\cdot \nabla V \vert ^{2} \biggr)\bigg|_{ \zeta =1} \,d\sigma \leq C(M), \end{aligned}$$
(4.26)
$$\begin{aligned} & \int _{\varOmega }T_{\zeta }^{\prime 2}\,d\sigma \,d\zeta + \int _{S^{2}}T'|_{\zeta =1}^{2} \,d \sigma + \int _{0}^{t} \int _{\varOmega } \bigl\vert \nabla T'_{\zeta } \bigr\vert ^{2} \,d\sigma \,d \zeta \,d\tau + \int _{0}^{t} \int _{\varOmega }T_{\zeta \zeta }^{\prime 2} \,d\sigma \,d \zeta \,d\tau \\ &\quad{}+ \int _{0}^{t} \int _{S^{2}} \bigl\vert \nabla T' \bigr\vert ^{2}\big|_{\zeta =1}\,d\sigma \,d\tau \leq C(M), \end{aligned}$$
(4.27)
$$\begin{aligned} & \int _{\varOmega } \bigl\vert \nabla (\widetilde{p_{s}}V) \bigr\vert ^{2}\,d\sigma \,d\zeta + \int _{S^{2}} \biggl( \int _{0}^{t}\nabla \nabla \cdot ( \widetilde{p_{s}}\overline{V})\,d\tau \biggr)^{2}\,d\sigma + \int _{0}^{t} \int _{\varOmega } \vert \Delta V \vert ^{2} \,d\sigma \,d\zeta \,d\tau \\ &\quad{}+ \int _{0}^{t} \int _{\varOmega } \vert \nabla V_{\zeta } \vert ^{2} \,d\sigma \,d\zeta \,d\tau + \int _{S^{2}} \bigl( f \bigl( \vert V \vert \bigr) \bigl\vert \nabla (\widetilde{p_{s}}V) \bigr\vert ^{2} \bigr)|_{ \zeta =1}\,d\sigma \\ &\quad{} + \int _{S^{2}} \biggl( \frac{f'( \vert V \vert )}{ \vert V \vert } \bigl\vert V\cdot \nabla (\widetilde{p_{s}}V) \bigr\vert ^{2} \biggr)\bigg|_{\zeta =1}\,d\sigma \leq C(M), \end{aligned}$$
(4.28)
$$\begin{aligned} & \int _{\varOmega } \bigl\vert \nabla T' \bigr\vert ^{2}\,d\sigma \,d\zeta + \int _{0}^{t} \int _{ \varOmega } \bigl\vert \Delta T' \bigr\vert ^{2} \,d\sigma \,d\zeta \,d\tau + \int _{0}^{t} \int _{ \varOmega } \bigl\vert \nabla T'_{\zeta } \bigr\vert ^{2} \,d\sigma \,d\zeta \,d\tau \\ &\quad{}+ \int _{0}^{t} \int _{S^{2}} \bigl\vert \nabla T' \bigr\vert ^{2}\big|_{\zeta =1} \,d\sigma \,d \tau \leq C(M), \end{aligned}$$
(4.29)
and we omit the details of proof here.
Lemma 4.3
Under the assumptions of Theorem 2.1, for any\(M>0\)given, the specific humidityqto the system (2.4)3satisfies
$$\begin{aligned} & \int _{\varOmega } \vert q \vert ^{3}\,d\sigma \,d\zeta + \int _{0}^{t} \int _{\varOmega } \vert \nabla q \vert ^{2} \vert q \vert \,d\sigma \,d\xi \,d\tau + \int _{0}^{t} \int _{\varOmega } \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2} \vert q \vert \,d\sigma \,d\xi \,d\tau \\ &\quad{}+ \int _{0}^{t} \int _{S^{2}}f \bigl( \vert {V_{10}} \vert \bigr) \vert q \vert ^{3}|_{\zeta =1}\,d\sigma \,d \tau \leq C(M),\quad t \in [0,M], \end{aligned}$$
(4.30)
where\(C(M)>0\)denotes a constant dependent of timeM.
Proof
Multiplying (2.4)3 by \(\widetilde{p_{s}}|q|q\) and integrating the result over Ω, we get
$$\begin{aligned} &\frac{1}{3}\frac{d}{dt} \int _{\varOmega } \widetilde{p_{s}} \vert q \vert ^{3}\,d \sigma \,d\zeta +{2\mu _{3}} \int _{\varOmega } \vert \nabla q \vert ^{2} \vert q \vert \,d\sigma \,d \zeta +{2\nu _{3}} \int _{\varOmega }\widetilde{p_{s}} \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2} \vert q \vert \,d\sigma \,d \zeta \\ &\qquad{}+{k_{s3}} \int _{S^{2}}\widetilde{p_{s}} \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}f \bigl( \vert {V_{10}} \vert \bigr) \vert q \vert ^{3} \biggr)\bigg|_{\zeta =1}\,d \sigma \\ &\quad =\frac{1}{3} \int _{\varOmega } \frac{d\widetilde{p_{s}}}{dt} \vert q \vert ^{3} \,d \sigma \,d\zeta - \int _{\varOmega } \biggl( \bigl(V^{*}\cdot \nabla \bigr)q+ \dot{\zeta ^{*}}\frac{\partial q}{\partial \zeta } \biggr) \widetilde{p_{s}} \vert q \vert q\,d\sigma \,d\zeta \\ &\qquad{}+ \int _{S^{2}}\widetilde{p_{s}} \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}f \bigl( \vert {V_{10}} \vert \bigr)q_{m}^{*} \vert q \vert q \biggr)\bigg|_{\zeta =1} \,d\sigma \\ &\qquad{}+ \int _{\varOmega }\widetilde{p}_{s}{\delta _{21}} { \delta _{22}} {\dot{\zeta }} {\frac{W(T)}{\zeta }} \vert q|q \,d \sigma \,d\zeta. \end{aligned}$$
(4.31)
By virtue of (3.5) and (4.16), the Cauchy–Schwarz inequality, the Hardy inequality, the Gagliardo–Nirenberg–Sobolev inequality and the Young inequality, we find that
$$\begin{aligned} &\int _{\varOmega } \biggl( \bigl(V^{*}\cdot \nabla \bigr)q+ \dot{\zeta ^{*}} \frac{\partial q}{\partial \zeta } \biggr)\widetilde{p_{s}} \vert q \vert q\,d\sigma\,d \zeta =0, \end{aligned}$$
(4.32)
$$\begin{aligned} &\biggl\vert \int _{S^{2}}\widetilde{p_{s}} \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}f \bigl( \vert {V_{10}} \vert \bigr)q_{m}^{*} \vert q \vert q \biggr)\bigg\vert _{ \zeta =1}\,d\sigma \biggr\vert \leq C+\varepsilon \int _{S^{2}}f \bigl( \vert {V_{10}} \vert \bigr) \vert q \vert ^{3}|_{\zeta =1}\,d\sigma , \end{aligned}$$
(4.33)
$$\begin{aligned} &\biggl\vert \int _{\varOmega }\nabla \cdot (\widetilde{p_{s}} \overline{V}) \bigl({W(T)} \vert q \vert q \bigr) \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \Vert V \Vert ^{2}_{L^{2}(\varOmega )}+C \Vert \nabla V \Vert ^{2}_{L^{2}(\varOmega )}+ C \Vert q \Vert ^{4}_{L^{4}(\varOmega )} \\ &\quad \leq C(M)+C \bigl\Vert q^{\frac{3}{2}} \bigr\Vert _{L^{\frac{8}{3}}(\varOmega )}^{ \frac{8}{3}} \\ &\quad \leq C(M)+C \biggl( \bigl\Vert q^{\frac{3}{2}} \bigr\Vert _{L^{\frac{4}{3}}(\varOmega )}^{ \frac{5}{14}} \biggl( \bigl\Vert q^{\frac{3}{2}} \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \nabla \bigl(q^{ \frac{3}{2}} \bigr) \bigr\Vert _{L^{2}(\varOmega )}+ \biggl\Vert \frac{\partial (q^{\frac{3}{2}})}{\partial \zeta } \biggr\Vert _{L^{2}(\varOmega )} \biggr)^{\frac{9}{14}} \biggr)^{\frac{8}{3}} \\ &\quad \leq C(M)+C \biggl( \bigl\Vert q^{\frac{3}{2}} \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \nabla \bigl(q^{ \frac{3}{2}} \bigr) \bigr\Vert _{L^{2}(\varOmega )}+ \biggl\Vert \frac{\partial (q^{\frac{3}{2}})}{\partial \zeta } \biggr\Vert _{L^{2}(\varOmega )} \biggr)^{\frac{12}{7}} \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}} \vert q \vert ^{3}\,d\sigma \,d\zeta + \frac{2\varepsilon }{9} \biggl( \bigl\Vert \nabla \bigl(q^{\frac{3}{2}} \bigr) \bigr\Vert _{L^{2}( \varOmega )}+ \biggl\Vert \frac{\partial (q^{\frac{3}{2}})}{\partial \zeta } \biggr\Vert _{L^{2}( \varOmega )} \biggr)^{2} \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}} \vert q \vert ^{3}\,d\sigma \,d\zeta + \varepsilon \int _{\varOmega } \vert \nabla q \vert ^{2} \vert q \vert \,d\sigma \,d\zeta + \varepsilon \int _{\varOmega } \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2} \vert q \vert \,d\sigma \,d\zeta, \end{aligned}$$
(4.34)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\delta _{21}\delta _{22} \biggl( \frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr)\vert q \vert q\,d\sigma\,d \zeta \biggr\vert \\ &\quad \leq C \biggl\Vert \frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot ( \widetilde{p_{s}}V) \,ds \biggr\Vert ^{2}_{L^{2}(\varOmega )}+C \Vert q \Vert ^{4}_{L^{4}( \varOmega )} \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}} \vert q \vert ^{3}\,d\sigma \,d\zeta + \varepsilon \int _{\varOmega } \vert \nabla q \vert ^{2} \vert q \vert \,d\sigma \,d\zeta + \varepsilon \int _{\varOmega } \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2} \vert q \vert \,d\sigma \,d\zeta, \end{aligned}$$
(4.35)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\widetilde{p}_{s}{\delta _{21}} {\delta _{22}} { \dot{\zeta }} {\frac{W(T)}{\zeta }} \vert q \vert q \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \biggl\vert \int _{\varOmega }\nabla \cdot (\widetilde{p_{s}} \overline{V}){W(T)}\vert q \vert q \,d\sigma \,d\zeta\biggr\vert \\ &\qquad{}+C \biggl\vert \int _{\varOmega } \biggl(\frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr){W(T)}\vert q \vert q \,d\sigma \,d\zeta\biggr\vert \\ &\quad\leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}} \vert q \vert ^{3}\,d\sigma \,d\zeta + \varepsilon \int _{\varOmega } \vert \nabla q \vert ^{2} \vert q \vert \,d\sigma \,d\zeta + \varepsilon \int _{\varOmega } \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2} \vert q \vert \,d\sigma \,d\zeta, \end{aligned}$$
(4.36)
where \(C(M)>0\) denotes a constant dependent of time M and \(\varepsilon >0\) is a small constant such that
$$\begin{aligned} &\frac{d}{dt} \int _{\varOmega }\widetilde{p_{s}} \vert q \vert ^{3}\,d\sigma \,d\zeta +C \int _{\varOmega } \vert \nabla q \vert ^{2} \vert q \vert \,d\sigma \,d\zeta +C \int _{\varOmega } \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2} \vert q \vert \,d\sigma \,d\zeta \\ &\qquad{} +C \int _{S^{2}}f \bigl( \vert {V_{10}} \vert \bigr) \vert q \vert ^{3}|_{ \zeta =1}\,d\sigma \\ &\quad\leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}} \vert q \vert ^{3}\,d\sigma \,d\zeta, \end{aligned}$$
(4.37)
by applying the Gronwall inequality, we get (4.30). □
Lemma 4.4
Under the assumptions of Theorem 2.1, for any\(M>0\)given, the liquid water content\(m_{w}\)to the system (2.4)4satisfies
$$\begin{aligned} &\int _{\varOmega } \vert m_{w} \vert ^{3}\,d \sigma \,d\zeta + \int _{0}^{t} \int _{\varOmega } \vert \nabla m_{w} \vert ^{2} \vert m_{w} \vert \,d\sigma \,d\xi \,d\tau + \int _{0}^{t} \int _{\varOmega } \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2} \vert m_{w} \vert \,d \sigma \,d\xi \,d\tau \\ &\quad \leq C(M),\quad t\in [0,M], \end{aligned}$$
(4.38)
where\(C(M)>0\)denotes a constant dependent of timeM.
Proof
Multiplying (2.4)4 by \(\widetilde{p_{s}}|m_{w}|m_{w}\) and integrating the result over Ω, we have
$$\begin{aligned} &\frac{1}{3}\frac{d}{dt} \int _{\varOmega } \widetilde{p_{s}} \vert m_{w} \vert ^{3}\,d \sigma \,d\zeta +{2\mu _{3}} \int _{\varOmega } \vert \nabla m_{w} \vert ^{2} \vert m_{w} \vert \,d \sigma \,d\zeta +{2\nu _{4}} \int _{\varOmega }\widetilde{p_{s}} \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2} \vert m_{w} \vert \,d\sigma \,d \zeta \\ &\quad =\frac{1}{3} \int _{\varOmega } \frac{d\widetilde{p_{s}}}{dt} \vert m_{w} \vert ^{3}\,d \sigma \,d\zeta - \int _{\varOmega } \biggl( \bigl(V^{*}\cdot \nabla \bigr)m_{w}+ \dot{\zeta ^{*}}\frac{\partial m_{w}}{\partial \zeta } \biggr) \widetilde{p_{s}} \vert m_{w} \vert m_{w}\,d \sigma \,d\zeta \\ &\qquad{}+ \int _{\varOmega }\widetilde{p}_{s}{\delta _{21}} {\delta _{22}} { \dot{\zeta }} {\frac{W(T)}{\zeta }} \vert m_{w} \vert m_{w} \,d\sigma \,d\zeta \\ &\qquad{}+ \int _{ \varOmega }\widetilde{p}_{s}h_{1} \biggl({ \delta _{21}} {\delta _{22}} { \dot{\zeta }} { \frac{W(T)}{\zeta }} \biggr) \vert m_{w} \vert m_{w} \,d \sigma \,d\zeta. \end{aligned}$$
(4.39)
Thanks to (3.6), the Cauchy–Schwarz inequality, the Hardy inequality, the Gagliardo–Nirenberg–Sobolev inequality and the Young inequality, we know that
$$\begin{aligned} &\int _{\varOmega } \biggl( \bigl(V^{*}\cdot \nabla \bigr)m_{w}+\dot{\zeta ^{*}} \frac{\partial m_{w}}{\partial \zeta } \biggr) \widetilde{p_{s}} \vert m_{w} \vert m_{w}\,d \sigma \,d\zeta =0, \end{aligned}$$
(4.40)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\nabla \cdot (\widetilde{p_{s}} \overline{V}){W(T)}\vert m_{w} \vert m_{w} \,d \sigma \,d\zeta \biggr\vert \\ &\quad \leq C \bigl( \Vert V \Vert ^{2}_{L^{2}(\varOmega )}+ \Vert \nabla V \Vert ^{2}_{L^{2}(\varOmega )} \bigr)+C \Vert m_{w} \Vert ^{4}_{L^{4}(\varOmega )} \\ &\quad \leq C(M)+C \bigl\Vert m_{w}^{\frac{3}{2}} \bigr\Vert _{L^{\frac{8}{3}}(\varOmega )}^{ \frac{8}{3}} \\ &\quad \leq C(M)+C \biggl( \bigl\Vert m_{w}^{\frac{3}{2}} \bigr\Vert _{L^{\frac{4}{3}}(\varOmega )}^{ \frac{5}{14}} \biggl( \bigl\Vert m_{w}^{\frac{3}{2}} \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \nabla \bigl(m_{w}^{\frac{3}{2}} \bigr) \bigr\Vert _{L^{2}(\varOmega )}+ \biggl\Vert \frac{\partial (m_{w}^{\frac{3}{2}})}{\partial \zeta } \biggr\Vert _{L^{2}( \varOmega )} \biggr)^{\frac{9}{14}} \biggr)^{\frac{8}{3}} \\ &\quad \leq C(M)+C \biggl( \bigl\Vert m_{w}^{\frac{3}{2}} \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \nabla \bigl(m_{w}^{ \frac{3}{2}} \bigr) \bigr\Vert _{L^{2}(\varOmega )}+ \biggl\Vert \frac{\partial (m_{w}^{\frac{3}{2}})}{\partial \zeta } \biggr\Vert _{L^{2}( \varOmega )} \biggr)^{\frac{12}{7}} \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}} \vert m_{w} \vert ^{3}\,d\sigma \,d \zeta +\frac{2\varepsilon }{9} \biggl( \bigl\Vert \nabla \bigl(m_{w}^{\frac{3}{2}} \bigr) \bigr\Vert _{L^{2}( \varOmega )}+ \biggl\Vert \frac{\partial (m_{w}^{\frac{3}{2}})}{\partial \zeta } \biggr\Vert _{L^{2}( \varOmega )} \biggr)^{2} \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}} \vert m_{w} \vert ^{3}\,d\sigma \,d \zeta + \varepsilon \int _{\varOmega } \vert \nabla m_{w} \vert ^{2} \vert m_{w} \vert \,d\sigma \,d \zeta \\ &\qquad{}+ \varepsilon \int _{\varOmega } \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2} \vert m_{w} \vert \,d\sigma \,d \zeta, \end{aligned}$$
(4.41)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\delta _{21}\delta _{22} \biggl( \frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr)\vert m_{w} \vert m_{w}\,d \sigma \,d \zeta \biggr\vert \\ &\quad \leq C \biggl\Vert \frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot ( \widetilde{p_{s}}V) \,ds \biggr\Vert ^{2}_{L^{2}(\varOmega )}+C \Vert m_{w} \Vert ^{4}_{L^{4}( \varOmega )} \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}} \vert m_{w} \vert ^{3}\,d\sigma \,d \zeta + \varepsilon \int _{\varOmega } \vert \nabla m_{w} \vert ^{2} \vert m_{w} \vert \,d\sigma \,d \zeta \\ &\qquad{}+ \varepsilon \int _{\varOmega } \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2} \vert m_{w} \vert \,d\sigma \,d \zeta, \end{aligned}$$
(4.42)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\widetilde{p}_{s}{\delta _{21}} {\delta _{22}} { \dot{\zeta }} {\frac{W(T)}{\zeta }} \vert m_{w} \vert m_{w} \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \biggl\vert \int _{\varOmega }\nabla \cdot (\widetilde{p_{s}} \overline{V}) \bigl({W(T)} \vert m_{w} \vert m_{w} \bigr) \,d\sigma \,d\zeta \biggr\vert \\ &\qquad{}+C\biggr\vert \int _{ \varOmega } \biggl(\frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot ( \widetilde{p_{s}}V) \,ds \biggr){W(T)}|m_{w} \vert m_{w} \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}} \vert m_{w} \vert ^{3}\,d\sigma \,d \zeta +\varepsilon \int _{\varOmega } \vert \nabla m_{w} \vert ^{2} \vert m_{w} \vert \,d\sigma \,d \zeta \\ &\qquad{}+ \varepsilon \int _{\varOmega } \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2} \vert m_{w} \vert \,d\sigma \,d \zeta, \end{aligned}$$
(4.43)
where \(C(M)>0\) denotes a constant dependent of time M and \(\varepsilon >0\) is a small constant such that
$$\begin{aligned} &\frac{d}{dt} \int _{\varOmega }\widetilde{p_{s}} \vert m_{w} \vert ^{3}\,d\sigma \,d \zeta +C \int _{\varOmega } \vert \nabla m_{w} \vert ^{2} \vert m_{w} \vert \,d\sigma \,d\zeta +C \int _{\varOmega } \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2} \vert m_{w} \vert \,d \sigma \,d\zeta \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}} \vert m_{w} \vert ^{3}\,d\sigma \,d \zeta, \end{aligned}$$
(4.44)
using the Gronwall inequality, we can obtain (4.38). □
Lemma 4.5
Under the assumptions of Theorem 2.1, for any\(M>0\)given, the specific humidityqto the system (2.4)3satisfies
$$\begin{aligned} & \int _{\varOmega }q^{4}\,d\sigma \,d\zeta + \int _{0}^{t} \int _{\varOmega } \vert \nabla q \vert ^{2}q^{2} \,d\sigma \,d\xi \,d\tau + \int _{0}^{t} \int _{\varOmega } \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2}q^{2}\,d\sigma \,d\xi \,d\tau \\ &\quad{}+ \int _{0}^{t} \int _{S^{2}}f \bigl( \vert {V_{10}} \vert \bigr)q^{4}|_{\zeta =1}\,d\sigma \,d \tau \leq C(M),\quad t\in [0,M], \end{aligned}$$
(4.45)
where\(C(M)>0\)denotes a constant dependent of timeM.
Proof
Taking the inner product of the (2.4)3 with \(\widetilde{p_{s}}q^{3}\) and integrating the result over Ω, we get
$$\begin{aligned} &\frac{1}{4}\frac{d}{dt} \int _{\varOmega }\widetilde{p_{s}}q^{4}\,d\sigma \,d \zeta +{3\mu _{3}} \int _{\varOmega } \vert \nabla q \vert ^{2}q^{2} \,d\sigma \,d\zeta +{3 \nu _{3}} \int _{\varOmega }\widetilde{p_{s}} \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2}q^{2}\,d\sigma \,d\zeta \\ &\qquad{}+ \int _{S^{2}}\widetilde{p_{s}} \biggl(f \bigl( \vert {V_{10}} \vert \bigr) \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} q^{4} \biggr)\bigg|_{\zeta =1}\,d\sigma \\ &\quad =\frac{1}{4} \int _{\varOmega }\frac{d\widetilde{p_{s}}}{dt}q^{4}\,d \sigma \,d\zeta - \int _{\varOmega } \biggl( \bigl(V^{*}\cdot \nabla \bigr)q+ \dot{\zeta ^{*}}\frac{\partial q}{\partial \zeta } \biggr) \widetilde{p_{s}}q^{3} \,d\sigma \,d\zeta \\ &\qquad{}+ \int _{S^{2}}\widetilde{p_{s}} \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}f \bigl( \vert {V_{10}} \vert \bigr)q_{m}^{*}q^{3} \biggr)\bigg|_{\zeta =1} \,d \sigma + \int _{\varOmega }\widetilde{p}_{s}{\delta _{21}} { \delta _{22}} {\dot{\zeta }} {\frac{W(T)}{\zeta }}q^{3} \,d \sigma \,d\zeta. \end{aligned}$$
(4.46)
Using (3.5), the Cauchy–Schwarz inequality, the Hardy inequality, the Gagliardo–Nirenberg–Sobolev inequality and the Young inequality, we know that
$$\begin{aligned} &\int _{\varOmega } \biggl( \bigl(V^{*}\cdot \nabla \bigr)q+ \dot{\zeta ^{*}} \frac{\partial q}{\partial \zeta } \biggr)\widetilde{p_{s}}q^{3} \,d \sigma \,d\zeta =0, \end{aligned}$$
(4.47)
$$\begin{aligned} &\biggl\vert \int _{S^{2}}\widetilde{p_{s}} \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}f \bigl( \vert {V_{10}} \vert \bigr) q_{m}^{*}q^{3} \vert _{\zeta =1}\,d \sigma \biggr\vert \leq C+\varepsilon \int _{S^{2}}f \bigl( \vert {V_{10}} \vert \bigr)q^{4}|_{ \zeta =1}\,d\sigma, \end{aligned}$$
(4.48)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\nabla \cdot (\widetilde{p_{s}} \overline{V}){W(T)}q^{3} \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \bigl( \Vert V \Vert _{L^{2}(\varOmega )}+ \Vert \nabla V \Vert _{L^{2}(\varOmega )} \bigr) \Vert q \Vert ^{3}_{L^{6}( \varOmega )} \\ &\quad \leq C(M) \biggl( \bigl\Vert q^{2} \bigr\Vert _{L^{\frac{3}{2}}(\varOmega )}^{\frac{1}{3}} \biggl( \bigl\Vert q^{2} \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \nabla \bigl(q^{2} \bigr) \bigr\Vert _{L^{2}(\varOmega )}+ \biggl\Vert \frac{\partial q^{2}}{\partial \zeta } \biggr\Vert _{L^{2}(\varOmega )} \biggr)^{\frac{2}{3}} \biggr)^{\frac{3}{2}} \\ &\quad \leq C(M) \biggl( \bigl\Vert q^{2} \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \nabla \bigl(q^{2} \bigr) \bigr\Vert _{L^{2}( \varOmega )}+ \biggl\Vert \frac{\partial q^{2}}{\partial \zeta } \biggr\Vert _{L^{2}(\varOmega )} \biggr) \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}}q^{4}\,d\sigma \,d\zeta + \varepsilon \int _{\varOmega } \vert \nabla q \vert ^{2}q^{2} \,d\sigma \,d\zeta + \varepsilon \int _{\varOmega } \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2}q^{2}\,d \sigma \,d\zeta, \end{aligned}$$
(4.49)
$$\begin{aligned} & \biggl\vert \int _{\varOmega } \biggl(\frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr) W(T)q^{3}\,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \biggl( \int _{\varOmega } \biggl(\frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr)^{2} \,d\sigma \,d\zeta \biggr)^{\frac{1}{2}} \biggl( \int _{\varOmega }q^{6}\,d\sigma \,d\zeta \biggr)^{\frac{1}{2}} \\ &\quad \leq C(M) \biggl( \int _{\varOmega } \bigl\vert \nabla \cdot (\widetilde{p_{s}}V) \bigr\vert ^{2} \,d \sigma \,d\zeta \biggr)^{\frac{1}{2}} \biggl( \bigl\Vert q^{2} \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \nabla \bigl(q^{2} \bigr) \bigr\Vert _{L^{2}(\varOmega )}+ \biggl\Vert \frac{\partial q^{2}}{\partial \zeta } \biggr\Vert _{L^{2}(\varOmega )} \biggr) \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}}q^{4}\,d\sigma \,d\zeta + \varepsilon \int _{\varOmega } \vert \nabla q \vert ^{2}q^{2} \,d\sigma \,d\zeta \\ &\qquad{}+ \varepsilon \int _{\varOmega } \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2}q^{2}\,d \sigma \,d\zeta, \end{aligned}$$
(4.50)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\widetilde{p}_{s}{\delta _{21}} {\delta _{22}} { \dot{\zeta }} {\frac{W(T)}{\zeta }}q^{3} \,d \sigma \,d\zeta \biggr\vert \\ &\quad\leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}}q^{4}\,d\sigma \,d\zeta + \varepsilon \int _{\varOmega } \vert \nabla q \vert ^{2}q^{2} \,d\sigma \,d\zeta \\ &\qquad{}+ \varepsilon \int _{\varOmega } \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2}q^{2}\,d \sigma \,d\zeta, \end{aligned}$$
(4.51)
where \(C(M)>0\) denotes a constant dependent of time M and \(\varepsilon >0\) is a small constant such that
$$\begin{aligned} &\frac{d}{dt} \int _{\varOmega }\widetilde{p_{s}}q^{4}\,d\sigma \,d\zeta +C \int _{\varOmega } \vert \nabla q \vert ^{2}q^{2} \,d\sigma \,d\zeta +C \int _{\varOmega } \biggl\vert \frac{\partial q}{\partial \zeta } \biggr\vert ^{2}q^{2} \,d\sigma \,d\zeta \\ &\qquad{} +C \int _{S^{2}}f \bigl( \vert {V_{10}} \vert \bigr)q^{4}|_{\zeta =1}\,d\sigma \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}}q^{4}\,d\sigma \,d\zeta, \end{aligned}$$
(4.52)
applying the Gronwall inequality, we deduce (4.45). □
Lemma 4.6
Under the assumptions of Theorem 2.1, for any\(M>0\)given, the liquid water content\(m_{w}\)to the system (2.4)4satisfies
$$\begin{aligned} & \int _{\varOmega }m_{w}^{4}\,d\sigma \,d\zeta + \int _{0}^{t} \int _{\varOmega } \vert \nabla m_{w} \vert ^{2}m_{w}^{2}\,d\sigma \,d\xi \,d\tau + \int _{0}^{t} \int _{\varOmega } \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2}m_{w}^{2}\,d \sigma \,d\xi \,d\tau \\ &\quad\leq C(M),\quad t\in [0,M], \end{aligned}$$
(4.53)
where\(C(M)>0\)denotes a constant dependent of timeM.
Proof
Multiplying (2.4)4 by \(\widetilde{p_{s}}m_{w}^{3}\) and integrating the result over Ω, we know
$$\begin{aligned} &\frac{1}{4}\frac{d}{dt} \int _{\varOmega }\widetilde{p_{s}}m_{w}^{4} \,d \sigma \,d\zeta +{3\mu _{4}} \int _{\varOmega } \vert \nabla m_{w} \vert ^{2}m_{w}^{2}\,d \sigma \,d\zeta \\ &\qquad{}+{3\nu _{4}} \int _{\varOmega }\widetilde{p_{s}} \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2}m_{w}^{2}\,d \sigma \,d \zeta + \int _{S^{2}}\widetilde{p_{s}} \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} m_{w}^{4} \biggr)\bigg|_{\zeta =1}\,d \sigma \\ &\quad =\frac{1}{4} \int _{\varOmega }\frac{d\widetilde{p_{s}}}{dt}m_{w}^{4}\,d \sigma \,d\zeta - \int _{\varOmega } \biggl( \bigl(V^{*}\cdot \nabla \bigr)m_{w}+ \dot{\zeta ^{*}}\frac{\partial m_{w}}{\partial \zeta } \biggr) \widetilde{p_{s}}m_{w}^{3}\,d\sigma \,d\zeta \\ &\qquad{}+ \int _{\varOmega }\widetilde{p}_{s}{\delta _{21}} {\delta _{22}} { \dot{\zeta }} {\frac{W(T)}{\zeta }}m_{w}^{3} \,d\sigma \,d\zeta + \int _{ \varOmega }\widetilde{p}_{s}h_{1} \biggl({ \delta _{21}} {\delta _{22}} { \dot{\zeta }} { \frac{W(T)}{\zeta }} \biggr)m_{w}^{3} \,d\sigma \,d\zeta. \end{aligned}$$
(4.54)
Thanks to (3.6), the Cauchy–Schwarz inequality, the Hardy inequality, the Gagliardo–Nirenberg–Sobolev inequality and the Young inequality, we get
$$\begin{aligned} &\int _{\varOmega } \biggl( \bigl(V^{*}\cdot \nabla \bigr)m_{w}+\dot{\zeta ^{*}} \frac{\partial m_{w}}{\partial \zeta } \biggr) \widetilde{p_{s}}m_{w}^{3}\,d \sigma \,d\zeta =0, \end{aligned}$$
(4.55)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\nabla \cdot (\widetilde{p_{s}} \overline{V}){W(T)}m_{w}^{3} \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \bigl( \Vert V \Vert _{L^{2}(\varOmega )}+ \Vert \nabla V \Vert _{L^{2}(\varOmega )} \bigr) \Vert m_{w} \Vert ^{3}_{L^{6}(\varOmega )} \\ &\quad \leq C(M) \biggl( \bigl\Vert m_{w}^{2} \bigr\Vert _{L^{\frac{3}{2}}(\varOmega )}^{\frac{1}{3}} \biggl( \bigl\Vert m_{w}^{2} \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \nabla \bigl(m_{w}^{2} \bigr) \bigr\Vert _{L^{2}( \varOmega )}+ \biggl\Vert \frac{\partial m_{w}^{2}}{\partial \zeta } \biggr\Vert _{L^{2}( \varOmega )} \biggr)^{\frac{2}{3}} \biggr)^{\frac{3}{2}} \\ &\quad \leq C(M) \biggl( \bigl\Vert m_{w}^{2} \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \nabla \bigl(m_{w}^{2} \bigr) \bigr\Vert _{L^{2}( \varOmega )}+ \biggl\Vert \frac{\partial m_{w}^{2}}{\partial \zeta } \biggr\Vert _{L^{2}( \varOmega )} \biggr) \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}}m_{w}^{4} \,d\sigma \,d\zeta + \varepsilon \int _{\varOmega } \vert \nabla m_{w} \vert ^{2}m_{w}^{2}\,d\sigma \,d\zeta \\ &\qquad{}+ \varepsilon \int _{\varOmega } \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2}m_{w}^{2}\,d\sigma \,d\zeta, \end{aligned}$$
(4.56)
$$\begin{aligned} & \biggl\vert \int _{\varOmega } \biggl(\frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr) W(T)m_{w}^{3}\,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \biggl\Vert \frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot ( \widetilde{p_{s}}V) \,ds \biggr\Vert _{L^{2}(\varOmega )} \biggl( \int _{\varOmega }m_{w}^{6}\,d \sigma \,d\zeta \biggr)^{\frac{1}{2}} \\ &\quad\leq C(M) \biggl( \bigl\Vert m_{w}^{2} \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \nabla m_{w}^{2} \bigr\Vert _{L^{2}( \varOmega )}+ \biggl\Vert \frac{\partial m_{w}^{2}}{\partial \zeta } \biggr\Vert _{L^{2}( \varOmega )} \biggr) \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}}m_{w}^{4} \,d\sigma \,d \zeta + \varepsilon \int _{\varOmega } \vert \nabla m_{w} \vert ^{2}m_{w}^{2}\,d\sigma \,d \zeta \\ &\qquad{}+\varepsilon \int _{\varOmega } \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2}m_{w}^{2}\,d\sigma \,d \zeta, \end{aligned}$$
(4.57)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\widetilde{p}_{s}{\delta _{21}} {\delta _{22}} { \dot{\zeta }} {\frac{W(T)}{\zeta }}m_{w}^{3} \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C(M)+ C \int _{\varOmega }\widetilde{p_{s}}m_{w}^{4} \,d\sigma \,d \zeta + \varepsilon \int _{\varOmega } \vert \nabla m_{w} \vert ^{2}m_{w}^{2}\,d\sigma \,d \zeta \\ &\qquad{} +\varepsilon \int _{\varOmega } \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2}m_{w}^{2}\,d\sigma \,d \zeta, \end{aligned}$$
(4.58)
where \(C(M)>0\) denotes a constant dependent of time M and \(\varepsilon >0\) is a small constant such that
$$\begin{aligned} &\frac{d}{dt} \int _{\varOmega }\widetilde{p_{s}}m_{w}^{4} \,d\sigma \,d\zeta +C \int _{\varOmega } \vert \nabla m_{w} \vert ^{2}m_{w}^{2} \,d\sigma \,d\zeta +C \int _{\varOmega } \biggl\vert \frac{\partial m_{w}}{\partial \zeta } \biggr\vert ^{2}m_{w}^{2} \,d \sigma \,d\zeta \\ &\quad\leq C(M)+C \int _{\varOmega }\widetilde{p_{s}}m_{w}^{4} \,d\sigma \,d\zeta, \end{aligned}$$
(4.59)
by applying the Gronwall inequality, we infer (4.53). □
Lemma 4.7
Under the assumptions of Theorem 2.1, for any\(M>0\)given, the specific humidityqto the system (2.4)3satisfies
$$\begin{aligned} & \int _{\varOmega }q_{\zeta }^{2}\,d\sigma \,d\zeta + \int _{0}^{t} \int _{\varOmega } \vert \nabla q_{\zeta } \vert ^{2} \,d\sigma \,d\zeta \,d\tau + \int _{0}^{t} \int _{\varOmega }q_{ \zeta \zeta }^{2} \,d\sigma \,d\zeta \,d \tau + \int _{S^{2}}q^{2}|_{\zeta =1} \,d\sigma \\ &\quad{}+ \int _{0}^{t} \int _{S^{2}} \vert \nabla q \vert ^{2}|_{\zeta =1} \,d\sigma \,d\tau \leq C(M),\quad t\in [0,M], \end{aligned}$$
(4.60)
where\(C(M)>0\)denotes a constant dependent of timeM.
Proof
Taking the derivative with respect to ζ of (2.4)3, we find that
$$\begin{aligned} &\frac{\partial q_{\zeta }}{\partial t}-{\mu _{3}} \frac{1}{\widetilde{p_{s}}} \Delta q_{\zeta }-{\nu _{3}} \frac{\partial }{\partial \zeta } \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}q_{ \zeta \zeta } \biggr) \\ &\qquad{}+ \bigl( \bigl(V^{*}\cdot \nabla \bigr)q_{\zeta }+\dot{\zeta ^{*}}q_{\zeta \zeta } \bigr) + \biggl( \bigl(V^{*}_{\zeta } \cdot \nabla \bigr)q - \frac{1}{\widetilde{p_{s}}}\nabla \cdot \bigl(\widetilde{p_{s}}V^{*} \bigr)q_{\zeta } \biggr) \\ &\quad ={\nu _{3}}\frac{\partial }{\partial \zeta } \biggl( \frac{\partial }{\partial \zeta } \biggl( \biggl(\frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggr)q_{\zeta } \biggr) + \frac{\partial }{\partial \zeta } \biggl({\delta _{21}} { \delta _{22}} { \dot{ \zeta }} {\frac{W(T)}{\zeta }} \biggr). \end{aligned}$$
(4.61)
Multiplying (4.61) by \(\widetilde{p_{s}}q_{\zeta }\), we have
$$\begin{aligned} &\frac{1}{2}\frac{d}{dt} \int _{\varOmega }\widetilde{p_{s}} q^{2}_{\zeta } \,d \sigma \,d\zeta +{\mu _{3}} \int _{\varOmega } \vert \nabla q_{\zeta } \vert ^{2}\,d\sigma \,d \zeta +{\nu _{3}} \int _{\varOmega }\widetilde{p_{s}} \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}q^{2}_{\zeta \zeta }\,d\sigma \,d \zeta \\ &\quad = \int _{\varOmega }\frac{d\widetilde{p_{s}}}{dt} q^{2}_{\zeta }\,d \sigma \,d \zeta - \int _{\varOmega } \bigl( \bigl(V^{*}\cdot \nabla \bigr)q_{\zeta }+ \dot{\zeta ^{*}}q_{\zeta \zeta } \bigr) \widetilde{p_{s}}q_{\zeta }\,d \sigma \,d\zeta \\ &\qquad{}- \int _{\varOmega } \biggl( \bigl(V^{*}_{\zeta }\cdot \nabla \bigr)q - \frac{1}{\widetilde{p_{s}}}\nabla \cdot \bigl(\widetilde{p_{s}}V^{*} \bigr)q_{\zeta }-\frac{1}{\widetilde{p_{s}}} \frac{\partial \widetilde{p_{s}}}{\partial t}\zeta q_{\zeta } \biggr) \widetilde{p_{s}}q_{\zeta }\,d\sigma \,d\zeta \\ &\qquad{}+{\nu _{3}} \int _{\varOmega }\frac{\partial }{\partial \zeta } \biggl( \frac{\partial }{\partial \zeta } \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggr)q_{\zeta } \biggr) \widetilde{p_{s}}q_{\zeta }\,d\sigma \,d\zeta \\ &\qquad{}+{\nu _{3}} \int _{S^{2}} \widetilde{p_{s}} q_{\zeta }|_{\zeta =1} \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}q_{\zeta \zeta } \biggr)\bigg|_{\zeta =1}\,d \sigma \\ &\qquad{}+ \int _{\varOmega }\frac{\partial }{\partial \zeta } \biggl({\delta _{21}} { \delta _{22}} {\dot{\zeta }} {\frac{W(T)}{\zeta }} \biggr) \widetilde{p_{s}}q_{ \zeta }\,d\sigma \,d\zeta. \end{aligned}$$
(4.62)
Similarly to (4.32), we know
$$\begin{aligned} - \int _{\varOmega } \bigl( \bigl(V^{*}\cdot \nabla \bigr)q_{\zeta }+\dot{\zeta ^{*}}q_{ \zeta \zeta } \bigr) \widetilde{p_{s}}q_{\zeta }\,d\sigma \,d\zeta =0. \end{aligned}$$
(4.63)
By (4.16), (4.24)–(4.26), (4.45), the Gagliardo–Nirenberg–Sobolev inequality, the Young inequality and the fact that \(V^{*}_{\zeta }=V_{\zeta }\), we know that
$$\begin{aligned} & \biggl\vert - \int _{\varOmega } \biggl( \bigl(V^{*}_{\zeta }\cdot \nabla \bigr)q - \frac{1}{\widetilde{p_{s}}}\nabla \cdot \bigl(\widetilde{p_{s}}V^{*} \bigr)q_{\zeta }-\frac{1}{\widetilde{p_{s}}} \frac{\partial \widetilde{p_{s}}}{\partial t}\zeta q_{\zeta } \biggr) \widetilde{p_{s}}q_{\zeta }\,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \int _{\varOmega } \bigl( \bigl( \vert V_{\zeta } \vert + \vert \nabla V_{\zeta } \vert \bigr) \vert q \vert \vert q_{\zeta } \vert + \vert V_{\zeta } \vert \vert q \vert \vert \nabla q_{\zeta } \vert + \vert V \vert \bigl\vert T'_{\zeta } \bigr\vert \vert \nabla q_{\zeta } \vert \bigr)\,d \sigma \,d\zeta \\ &\qquad{} +C(M) \Vert q_{\zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C \Vert V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2}+C \Vert \nabla V_{\zeta } \Vert _{L^{2}( \varOmega )}^{2} +C \Vert q \Vert _{L^{4}(\varOmega )}^{2} \Vert q_{\zeta } \Vert _{L^{4}(\varOmega )}^{2} \\ &\qquad{}+C \Vert V_{\zeta } \Vert _{L^{4}(\varOmega )}^{2} \Vert q \Vert _{L^{4}(\varOmega )}^{2} +C(M) \Vert q_{\zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\qquad{}+C \Vert V \Vert _{L^{4}(\varOmega )}^{2} \Vert q_{\zeta } \Vert _{L^{4}(\varOmega )}^{2}+ \varepsilon \bigl\Vert \nabla T'_{\zeta } \bigr\Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C \Vert V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2}+C \Vert \nabla V_{\zeta } \Vert _{L^{2}( \varOmega )}^{2} \\ &\qquad{}+C \Vert q \Vert _{L^{4}(\varOmega )}^{2} \Vert q_{\zeta } \Vert _{L^{2}(\varOmega )}^{ \frac{1}{2}} \bigl( \Vert q_{\zeta } \Vert _{L^{2}(\varOmega )}+ \Vert \nabla q_{\zeta } \Vert _{L^{2}( \varOmega )}+ \Vert q_{\zeta \zeta } \Vert _{L^{2}(\varOmega )} \bigr)^{\frac{3}{2}} \\ &\qquad{}+C \Vert V_{\zeta } \Vert _{L^{2}(\varOmega )}^{\frac{1}{2}} \bigl( \Vert V_{\zeta } \Vert _{L^{2}( \varOmega )}+ \Vert \nabla V_{\zeta } \Vert _{L^{2}(\varOmega )}+ \Vert V_{\zeta \zeta } \Vert _{L^{2}( \varOmega )} \bigr)^{\frac{3}{2}} \Vert q \Vert _{L^{4}(\varOmega )}^{2} \\ &\qquad{}+C \Vert V \Vert _{L^{4}(\varOmega )}^{2} \Vert q_{\zeta } \Vert _{L^{2}(\varOmega )}^{ \frac{1}{2}} \bigl( \Vert q_{\zeta } \Vert _{L^{2}(\varOmega )}+ \Vert \nabla q_{\zeta } \Vert _{L^{2}( \varOmega )}+ \Vert q_{\zeta \zeta } \Vert _{L^{2}(\varOmega )} \bigr)^{\frac{3}{2}}+ \varepsilon \Vert \nabla q_{\zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\qquad{}+C(M) \Vert q_{\zeta } \Vert _{L^{2}( \varOmega )}^{2} \\ &\quad \leq C \Vert V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2}+C \Vert \nabla V_{\zeta } \Vert _{L^{2}( \varOmega )}^{2} +C \Vert V_{\zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\qquad{}+C \bigl(1+ \Vert q \Vert _{L^{4}( \varOmega )}^{8}+ \Vert V \Vert _{L^{4}(\varOmega )}^{8} \bigr) \Vert q_{\zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\qquad{} +C \Vert q \Vert _{L^{4}(\varOmega )}^{8} \Vert V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2} + \varepsilon C \bigl( \Vert \nabla q_{\zeta } \Vert _{L^{2}(\varOmega )}^{2}+ \Vert q_{\zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \bigr)+C(M) \Vert q_{\zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C(M)+C(M) \Vert q_{\zeta } \Vert _{L^{2}(\varOmega )}^{2}+C \Vert \nabla V_{\zeta } \Vert _{L^{2}( \varOmega )}^{2} +C \Vert V_{\zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\qquad{}+ \varepsilon C \bigl( \Vert \nabla q_{\zeta } \Vert _{L^{2}(\varOmega )}^{2}+ \Vert q_{\zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \bigr), \end{aligned}$$
(4.64)
where \(\varepsilon >0\) is a small constant.
By applying the Hardy inequality, we find that
$$\begin{aligned} & \biggl\vert - \int _{\varOmega }\frac{\partial }{\partial \zeta } \biggl( \frac{1}{\widetilde{p_{s}}\zeta } \int _{0}^{\zeta }\nabla \cdot ( \widetilde{p_{s}}V) \,ds \biggr)\widetilde{p_{s}}q_{\zeta }\,d\sigma \,d\zeta \biggr\vert \\ &\quad = \biggl\vert \frac{k_{s2}}{R\nu _{2}} \int _{S^{2}} \biggl( \int _{0}^{1} \nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr)q\bigg|_{\zeta =1} \,d\sigma +R \int _{\varOmega } \biggl(\frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot ( \widetilde{p_{s}}V) \,ds \biggr)q_{\zeta \zeta } \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C(M)+C \Vert q|_{\zeta =1} \Vert _{L^{2}(S^{2})}^{2} +C \biggl\Vert \frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr\Vert _{L^{2}(\varOmega )}^{2} +\varepsilon \Vert q_{\zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C(M)+C \Vert q|_{\zeta =1} \Vert _{L^{2}(S^{2})}^{2} + \varepsilon \Vert q_{ \zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2}, \end{aligned}$$
(4.65)
where \(\varepsilon >0\) is a small constant, by (4.65),
$$\begin{aligned} &\biggl\vert \int _{\varOmega }\frac{\partial }{\partial \zeta } \biggl({\delta _{21}} { \delta _{22}} {\dot{\zeta }} {\frac{W(T)}{\zeta }} \biggr) \widetilde{p_{s}}q_{ \zeta }\,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C(M)+C \Vert q|_{\zeta =1} \Vert _{L^{2}(S^{2})}^{2} + \varepsilon \Vert q_{ \zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2}. \end{aligned}$$
(4.66)
Thanks to (2.4)3 and by the boundary conditions, we know that
$$\begin{aligned} &\nu _{3} \int _{S^{2}}\widetilde{p_{s}}q_{\zeta }|_{\zeta =1} \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}q_{\zeta \zeta } \biggr)\bigg|_{\zeta =1}\,d \sigma \\ &\quad =\frac{k_{s3}}{\nu _{3}} \int _{S^{2}}\widetilde{p_{s}}f \bigl( \vert {V_{10}} \vert \bigr) \bigl(q^{*}_{m}-q \bigr)|_{\zeta =1} \biggl( \frac{\partial q|_{\zeta =1}}{\partial t}+ \bigl(V^{*}\cdot \nabla \bigr)q|_{ \zeta =1}- \frac{\mu _{3}}{\widetilde{p_{s}}}\Delta q|_{\zeta =1} \\ &\qquad{}- \nu _{3}\frac{\partial }{\partial \zeta } \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggr)\bigg|_{\zeta =1} q_{\zeta }|_{ \zeta =1} \biggr)\,d\sigma \\ &\quad =-\frac{k_{s3}}{2\nu _{3}}\frac{d}{dt} \int _{S^{2}}\widetilde{p_{s}}f \bigl( \vert {V_{10}} \vert \bigr)q^{2}\big|_{\zeta =1} \,d\sigma + \frac{k_{s3}}{2\nu _{3}} \int _{S^{2}}\frac{d\widetilde{p_{s}}}{dt}f \bigl( \vert {V_{10}} \vert \bigr)q^{2}\big|_{\zeta =1} \,d\sigma \\ &\qquad{} - \frac{k_{s3}\mu _{3}}{\nu _{3}} \int _{S^{2}} \vert \nabla q \vert ^{2}|_{\zeta =1} \,d\sigma \\ &\qquad{}-\frac{k_{s3}}{\nu _{3}} \int _{S^{2}}\widetilde{p_{s}}f \bigl( \vert {V_{10}} \vert \bigr)|_{\zeta =1} \bigl(V^{*}\cdot \nabla \bigr)q|_{\zeta =1}\,d\sigma \\ &\qquad{}- \frac{k_{s3}^{2}}{\nu _{3}} \int _{S^{2}}\widetilde{p_{s}} \frac{\partial }{\partial \zeta } \biggl( \biggl(\frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggr)\bigg|_{\zeta =1}f \bigl( \vert {V_{10}} \vert \bigr)q^{2}\big|_{\zeta =1}\,d \sigma \\ &\qquad{}+\frac{k_{s3}}{\nu _{3}} \int _{S^{2}}\widetilde{p_{s}}f \bigl( \vert {V_{10}} \vert \bigr)q^{*}_{m} \biggl( \frac{\partial q|_{\zeta =1}}{\partial t}+ \bigl(V^{*} \cdot \nabla \bigr)q|_{\zeta =1}- \frac{\mu _{3}}{\widetilde{p_{s}}} \Delta q|_{\zeta =1} \\ &\qquad{}-\nu _{3}\frac{\partial }{\partial \zeta } \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggr)\bigg|_{\zeta =1} q_{\zeta }|_{ \zeta =1} \biggr)\,d\sigma. \end{aligned}$$
(4.67)
By virtue of (4.16) and (4.26), we obtain
$$\begin{aligned} & \biggl\vert \frac{k_{s3}}{2\nu _{3}} \int _{S^{2}} \frac{d\widetilde{p_{s}}}{dt}f \bigl( \vert {V_{10}} \vert \bigr)q^{2}\big|_{\zeta =1} \,d \sigma \biggr\vert \leq C \Vert q|_{\zeta =1} \Vert _{L^{2}(S^{2})}^{2}, \end{aligned}$$
(4.68)
$$\begin{aligned} & \biggl\vert \frac{k_{s3}}{\nu _{3}} \int _{S^{2}}\widetilde{p_{s}}f \bigl( \vert {V_{10}} \vert \bigr)q \bigg\vert _{ \zeta =1} \bigl(V^{*}\cdot \nabla \bigr)q|_{\zeta =1}\,d\sigma \biggr\vert \\ &\quad = \biggl\vert \frac{k_{s3}}{\nu _{3}} \int _{S^{2}}f \bigl( \vert {V_{10}} \vert \bigr)q^{2}\bigg\vert _{\zeta =1} \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr)|_{\zeta =1}\,d\sigma \biggr\vert \\ &\quad \leq C \int _{S^{2}}q^{2}|_{\zeta =1} \biggl( \int _{0}^{1} \bigl\vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \bigr\vert \,d\zeta + \int _{0}^{1} \bigl\vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*}_{\zeta } \bigr) \bigr\vert \,d \zeta \biggr) \,d\sigma \\ &\quad \leq C(M)+C \Vert q|_{\zeta =1} \Vert _{L^{4}(S^{2})}^{4} +C \Vert V_{\zeta } \Vert _{L^{2}( \varOmega )}^{2}+C \Vert \nabla V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C(M)+C \Vert q|_{\zeta =1} \Vert _{L^{4}(S^{2})}^{4} +C \Vert \nabla V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2}, \end{aligned}$$
(4.69)
$$\begin{aligned} & \biggl\vert -\frac{k_{s3}^{2}}{\nu _{3}} \int _{S^{2}}\widetilde{p_{s}} \frac{\partial }{\partial \zeta } \biggl( \biggl(\frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggr) \big\vert _{\zeta =1}f \bigl( \vert {V_{10}} \vert \bigr)q^{2}\big|_{\zeta =1} \,d\sigma\biggr\vert \leq C \Vert q|_{\zeta =1} \Vert _{L^{2}(S^{2})}^{2}, \end{aligned}$$
(4.70)
$$\begin{aligned} & \biggl\vert \frac{k_{s3}}{\nu _{3}} \int _{S^{2}}\widetilde{p_{s}}f \bigl( \vert {V_{10}} \vert \bigr)q^{*}_{m} \biggl( \bigl(V^{*}\cdot \nabla \bigr)q|_{\zeta =1}- \frac{\mu _{3}}{\widetilde{p_{s}}} \Delta q|_{\zeta =1}-\nu _{3} \frac{\partial }{\partial \zeta } \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggr)\bigg|_{\zeta =1} q_{\zeta }|_{\zeta =1} \biggr)\,d\sigma \biggr\vert \\ &\quad \leq C(M)+\varepsilon \Vert \nabla q|_{\zeta =1} \Vert _{L^{2}(S^{2})}^{2}+C \Vert q|_{\zeta =1} \Vert _{L^{2}(S^{2})}^{2}. \end{aligned}$$
(4.71)
Using (4.63)–(4.71), we have
$$\begin{aligned} &\frac{1}{2}\frac{d}{dt} \biggl( \int _{\varOmega }\widetilde{p_{s}} q^{2}_{\zeta } \,d\sigma \,d\zeta + \frac{k_{s3}}{\nu _{3}} \int _{S^{2}} \widetilde{p_{s}}q^{2}|_{\zeta =1} \,d\sigma \biggr) \\ &\qquad{}+C \int _{\varOmega } \vert \nabla q_{\zeta } \vert ^{2}\,d\sigma \,d\zeta + C \int _{\varOmega }q^{2}_{ \zeta \zeta }\,d\sigma \,d\zeta +C \int _{S^{2}} \vert \nabla q \vert ^{2}|_{\zeta =1} \,d \sigma \\ &\quad \leq C(M)+C(M) \biggl( \int _{\varOmega }\widetilde{p_{s}} q^{2}_{\zeta } \,d \sigma \,d\zeta +\frac{k_{s3}}{\nu _{3}} \int _{S^{2}}\widetilde{p_{s}}q^{2}|_{ \zeta =1} \,d\sigma \biggr) \\ &\qquad{}+\frac{k_{s3}}{\nu _{3}} \int _{S^{2}}\widetilde{p_{s}}f \bigl( \vert {V_{10}} \vert \bigr)q^{*}_{m} \frac{\partial q|_{\zeta =1}}{\partial t}\,d\sigma +C \Vert \nabla V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2}+C \Vert q|_{\zeta =1} \Vert _{L^{4}(S^{2})}^{4}, \end{aligned}$$
(4.72)
which combining with (4.16), (4.26), (4.45) and the Gronwall inequality shows (4.60), where we use the fact that
$$\begin{aligned} & \biggl\vert \frac{k_{s3}}{\nu _{3}} \int _{0}^{t} \int _{S^{2}} \widetilde{p_{s}}f \bigl( \vert {V_{10}} \vert \bigr)q^{*}_{m} \frac{\partial q|_{\zeta =1}}{\partial t}\,d\sigma \,d\tau \biggr\vert \\ &\quad = \biggl\vert \frac{k_{s3}}{\nu _{3}} \int _{S^{2}}\widetilde{p_{s}}f \bigl( \vert {V_{10}} \vert \bigr)q^{*}_{m} q \biggr\vert _{\zeta =1}\,d\sigma -\frac{k_{s3}}{\nu _{3}} \int _{S^{2}} \widetilde{p_{s0}}f \bigl( \vert {V_{10}} \vert \bigr)q^{*}_{m} q_{0}|_{\zeta =1}\,d\sigma \\ &\qquad{}-\frac{k_{s3}}{\nu _{3}} \int _{0}^{t} \int _{S^{2}} \frac{\partial \widetilde{p_{s}}}{\partial t}f \bigl( \vert {V_{10}} \vert \bigr)q^{*}_{m} q|_{ \zeta =1} \,d\sigma \,d\tau \biggr\vert \\ &\quad\leq C(M)+\varepsilon \Vert q|_{\zeta =1} \Vert _{L^{2}(S^{2})}^{2}. \end{aligned}$$
(4.73)
 □
Lemma 4.8
Under the assumptions of Theorem 2.1, for any\(M>0\)given, the liquid water content\(m_{w}\)to the system (2.4)4satisfies
$$\begin{aligned} &\int _{\varOmega }m_{w\zeta }^{2}\,d\sigma \,d\zeta + \int _{0}^{t} \int _{\varOmega } \vert \nabla m_{w\zeta } \vert ^{2} \,d\sigma \,d\zeta \,d\tau + \int _{0}^{t} \int _{\varOmega }m_{w\zeta \zeta }^{2} \,d\sigma \,d\zeta \,d\tau \\ &\quad \leq C(M),\quad t\in [0,M], \end{aligned}$$
(4.74)
where\(C(M)>0\)denotes a constant dependent of timeM.
Proof
Taking the derivative with respect to ζ of (2.4)4, we find that
$$\begin{aligned} &\frac{\partial m_{w\zeta }}{\partial t}-{\mu _{4}} \frac{1}{\widetilde{p_{s}}} \Delta m_{w\zeta }-{\nu _{4}} \frac{\partial }{\partial \zeta } \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}m_{w \zeta \zeta } \biggr) \\ &\qquad{}+ \bigl( \bigl(V^{*}\cdot \nabla \bigr)m_{w\zeta }+\dot{\zeta ^{*}}m_{w\zeta \zeta } \bigr) + \biggl( \bigl(V^{*}_{\zeta } \cdot \nabla \bigr)m_{w} - \frac{1}{\widetilde{p_{s}}}\nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr)m_{w \zeta } \biggr) \\ &\quad ={\nu _{4}}\frac{\partial }{\partial \zeta } \biggl( \frac{\partial }{\partial \zeta } \biggl( \biggl(\frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggr)m_{w\zeta } \biggr) - \frac{\partial }{\partial \zeta } \biggl({\delta _{21}} { \delta _{22}} { \dot{ \zeta }} {\frac{W(T)}{\zeta }} \biggr) \\ &\qquad{}+ \frac{\partial }{\partial \zeta } \biggl(h_{1} \biggl({\delta _{21}} {\delta _{22}} { \dot{\zeta }} { \frac{W(T)}{\zeta }} \biggr) \biggr). \end{aligned}$$
(4.75)
Multiplying (4.75) by \(\widetilde{p_{s}}m_{w\zeta }\), we find that
$$\begin{aligned} &\frac{1}{2}\frac{d}{dt} \int _{\varOmega }\widetilde{p_{s}} m_{w\zeta }^{2} \,d \sigma \,d\zeta +{\mu _{4}} \int _{\varOmega } \vert \nabla m_{w\zeta } \vert ^{2}\,d \sigma \,d\zeta +{\nu _{4}} \int _{\varOmega }\widetilde{p_{s}} \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2}m_{w\zeta \zeta }^{2}\,d\sigma \,d \zeta \\ &\quad= \int _{\varOmega }\frac{d\widetilde{p_{s}} }{dt} m_{w\zeta }^{2}\,d \sigma \,d \zeta - \int _{\varOmega } \bigl( \bigl(V^{*}\cdot \nabla \bigr)m_{w\zeta }+ \dot{\zeta ^{*}}m_{w\zeta \zeta } \bigr) \widetilde{p_{s}}m_{w\zeta } \,d \sigma \,d\zeta \\ &\qquad{}- \int _{\varOmega } \biggl( \bigl(V^{*}_{\zeta }\cdot \nabla \bigr)m_{w} - \frac{1}{\widetilde{p_{s}}}\nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr)m_{w \zeta } \biggr) \widetilde{p_{s}}m_{w\zeta } \,d\sigma \,d\zeta \\ &\qquad{}+{\nu _{4}} \int _{\varOmega }\frac{\partial }{\partial \zeta } \biggl( \frac{\partial }{\partial \zeta } \biggl( \biggl( \frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \biggr)m_{w\zeta } \biggr) \widetilde{p_{s}}m_{w\zeta } \,d\sigma \,d\zeta \\ &\qquad{}+ \int _{\varOmega }\frac{\partial }{\partial \zeta } \biggl(h_{1} \biggl({ \delta _{21}} { \delta _{22}} {\dot{\zeta }} { \frac{W(T)}{\zeta }} \biggr) \biggr) \widetilde{p_{s}}m_{w\zeta } \,d \sigma \,d\zeta \\ &\qquad{}- \int _{\varOmega }\frac{\partial }{\partial \zeta } \biggl({\delta _{21}} { \delta _{22}} { \dot{\zeta }} {\frac{W(T)}{\zeta }} \biggr) \widetilde{p_{s}}m_{w\zeta }\,d \sigma \,d\zeta. \end{aligned}$$
(4.76)
One can easily check that \((V^{*},\dot{\zeta }^{*})\) satisfies
$$\begin{aligned} - \int _{\varOmega } \bigl( \bigl(V^{*}\cdot \nabla \bigr)m_{w\zeta }+\dot{\zeta ^{*}}m_{w \zeta \zeta } \bigr) \widetilde{p_{s}}m_{w\zeta } \,d\sigma \,d\zeta =0. \end{aligned}$$
(4.77)
By virtue of (4.16), (4.24)–(4.26), (4.53), the Gagliardo–Nirenberg–Sobolev inequality, the Young inequality and the fact that \(V^{*}_{\zeta }=V_{\zeta }\), we deduce that
$$\begin{aligned} & \biggl\vert - \int _{\varOmega } \biggl( \bigl(V^{*}_{\zeta }\cdot \nabla \bigr)m_{w} - \frac{1}{\widetilde{p_{s}}}\nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr)m_{w \zeta } \biggr) \widetilde{p_{s}}m_{w\zeta } \,d\sigma \,d\zeta \biggr\vert \\ &\quad\leq C \int _{\varOmega } \bigl( \bigl( \vert V_{\zeta } \vert + \vert \nabla V_{\zeta } \vert \bigr) \vert m_{w} \vert \vert m_{w \zeta } \vert + \vert V_{\zeta } \vert \vert m_{w} \vert \vert \nabla m_{w\zeta } \vert + \vert V \vert \vert m_{w\zeta } \vert \vert \nabla m_{w\zeta } \vert \bigr)\,d\sigma \,d\zeta \\ &\quad \leq C \Vert V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2}+C \Vert \nabla V_{\zeta } \Vert _{L^{2}( \varOmega )}^{2} +C \Vert m_{w} \Vert _{L^{4}(\varOmega )}^{2} \Vert m_{w\zeta } \Vert _{L^{4}( \varOmega )}^{2} \\ &\qquad{}+C \Vert V_{\zeta } \Vert _{L^{4}(\varOmega )}^{2} \Vert m_{w} \Vert _{L^{4}( \varOmega )}^{2} \\ &\qquad{}+C \Vert V \Vert _{L^{4}(\varOmega )}^{2} \Vert m_{w\zeta } \Vert _{L^{4}(\varOmega )}^{2}+ \varepsilon \Vert \nabla m_{w\zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad\leq C \Vert V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2}+C \Vert \nabla V_{\zeta } \Vert _{L^{2}( \varOmega )}^{2} \\ &\qquad{}+C \Vert m_{w} \Vert _{L^{4}(\varOmega )}^{2} \Vert m_{w\zeta } \Vert _{L^{2}( \varOmega )}^{\frac{1}{2}} \bigl( \Vert m_{w\zeta } \Vert _{L^{2}(\varOmega )}+ \Vert \nabla m_{w \zeta } \Vert _{L^{2}(\varOmega )}+ \Vert m_{w\zeta \zeta } \Vert _{L^{2}(\varOmega )} \bigr)^{ \frac{3}{2}} \\ &\qquad{}+C \Vert V_{\zeta } \Vert _{L^{2}(\varOmega )}^{\frac{1}{2}} \bigl( \Vert V_{\zeta } \Vert _{L^{2}( \varOmega )}+ \Vert \nabla V_{\zeta } \Vert _{L^{2}(\varOmega )}+ \Vert V_{\zeta \zeta } \Vert _{L^{2}( \varOmega )} \bigr)^{\frac{3}{2}} \Vert m_{w} \Vert _{L^{4}(\varOmega )}^{2} \\ &\qquad{}+C \Vert V \Vert _{L^{4}(\varOmega )}^{2} \Vert m_{w\zeta } \Vert _{L^{2}(\varOmega )}^{ \frac{1}{2}} \bigl( \Vert m_{w\zeta } \Vert _{L^{2}(\varOmega )}+ \Vert \nabla m_{w\zeta } \Vert _{L^{2}( \varOmega )}+ \Vert m_{w\zeta \zeta } \Vert _{L^{2}(\varOmega )} \bigr)^{\frac{3}{2}} \\ &\qquad{}+ \varepsilon \Vert \nabla m_{w\zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C \Vert V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2}+C \Vert \nabla V_{\zeta } \Vert _{L^{2}( \varOmega )}^{2} +C \Vert V_{\zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\qquad{}+C \bigl(1+ \Vert m_{w} \Vert _{L^{4}(\varOmega )}^{8}+ \Vert V \Vert _{L^{4}(\varOmega )}^{8} \bigr) \Vert m_{w\zeta } \Vert _{L^{2}( \varOmega )}^{2} \\ & \qquad{}+C \Vert m_{w} \Vert _{L^{4}(\varOmega )}^{8} \Vert V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2} + \varepsilon C \bigl( \Vert \nabla m_{w\zeta } \Vert _{L^{2}(\varOmega )}^{2}+ \Vert m_{w \zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \bigr) \\ &\quad \leq C(M)+C(M) \Vert m_{w\zeta } \Vert _{L^{2}(\varOmega )}^{2}+C \Vert \nabla V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2} +C \Vert V_{\zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\qquad{}+\varepsilon C \bigl( \Vert \nabla m_{w\zeta } \Vert _{L^{2}(\varOmega )}^{2}+ \Vert m_{w \zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \bigr), \end{aligned}$$
(4.78)
where \(\varepsilon >0\) is a small constant.
Using (4.16), the Young inequality and the Hardy inequality, we find that
$$\begin{aligned} & \biggl\vert - \int _{\varOmega }\frac{\partial }{\partial \zeta } \biggl(\delta _{21} \delta _{22} \frac{1}{\widetilde{p_{s}}\zeta } \int _{0}^{\zeta }\nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr)\widetilde{p_{s}}m_{w\zeta } \,d \sigma \,d\zeta \biggr\vert \\ &\quad = \biggl\vert \int _{\varOmega }\delta _{21}\delta _{22} \biggl( \frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr)m_{w\zeta \zeta } \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \biggl\Vert \frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot ( \widetilde{p_{s}}V) \,ds \biggr\Vert _{L^{2}(\varOmega )}^{2} +\varepsilon \Vert m_{w \zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C(M) +\varepsilon \Vert m_{w\zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2}, \end{aligned}$$
(4.79)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\nabla \cdot (\widetilde{p_{s}} \overline{V}) \delta _{21}\delta _{22}{W(T)}m_{w\zeta \zeta } \,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C(M)+\varepsilon \Vert m_{w\zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2}. \end{aligned}$$
(4.80)
Then we get
$$\begin{aligned} \biggl\Vert - \int _{\varOmega }\frac{\partial }{\partial \zeta } \biggl({\delta _{21}} { \delta _{22}} {\dot{\zeta }} {\frac{W(T)}{\zeta }} \biggr) \widetilde{p_{s}}m_{w \zeta }\,d\sigma \,d\zeta \biggr\Vert \leq C(M) + \varepsilon \Vert m_{w\zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2}, \end{aligned}$$
(4.81)
where \(\varepsilon >0\) is a small constant.
Applying (4.77)–(4.81), we deduce that
$$\begin{aligned} &\frac{d}{dt} \int _{\varOmega }\widetilde{p_{s}} m_{w\zeta }^{2} \,d\sigma \,d \zeta +C \int _{\varOmega } \vert \nabla m_{w\zeta } \vert ^{2}\,d\sigma \,d\zeta +C \int _{\varOmega }m_{w\zeta \zeta }^{2}\,d\sigma \,d\zeta \\ &\quad \leq C(M)+C(M) \Vert m_{w\zeta } \Vert _{L^{2}(\varOmega )}^{2}+C \Vert \nabla V_{\zeta } \Vert _{L^{2}(\varOmega )}^{2} +C \Vert V_{\zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\qquad{}+\varepsilon C \bigl( \Vert \nabla m_{w\zeta } \Vert _{L^{2}(\varOmega )}^{2}+ \Vert m_{w \zeta \zeta } \Vert _{L^{2}(\varOmega )}^{2} \bigr), \end{aligned}$$
(4.82)
which combining with (4.16), Lemma 4.3 and the Gronwall inequality gives (4.74). □
Lemma 4.9
Under the assumptions of Theorem 2.1, for any\(M>0\)given, the specific humidityqto the system (2.4)3satisfies
$$\begin{aligned} & \int _{\varOmega } \vert \nabla q \vert ^{2}\,d\sigma \,d \zeta + \int _{0}^{t} \int _{ \varOmega } \vert \Delta q \vert ^{2} \,d\sigma \,d\zeta \,d\tau + \int _{0}^{t} \int _{ \varOmega } \vert \nabla q_{\zeta } \vert ^{2} \,d\sigma \,d\zeta \,d\tau \\ &\quad{}+ \int _{0}^{t} \int _{S^{2}} \vert \nabla q \vert ^{2}|_{\zeta =1} \,d\sigma \,d\tau \leq C(M), \quad t\in [0,M], \end{aligned}$$
(4.83)
where\(C(M)>0\)denotes a constant dependent on timeM.
Proof
Taking the inner product of (2.4)3 with Δq, we find that
$$\begin{aligned} &\frac{1}{2}\frac{d}{dt} \int _{\varOmega } \vert \nabla q \vert ^{2}\,d\sigma \,d \zeta + \mu _{3} \int _{\varOmega }\frac{1}{\widetilde{p_{s}}} \vert \Delta q \vert ^{2}\,d \sigma \,d\zeta +\nu _{3} \int _{\varOmega } \biggl(\frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \vert \nabla q_{\zeta } \vert ^{2}\,d\sigma \,d\zeta \\ &\qquad{}+\nu _{3}k_{s3} \int _{S^{2}} \biggl( \biggl(\frac{g\zeta }{R\widetilde{T}} \biggr)^{2}f \bigl( \vert {V_{10}} \vert \bigr) \vert \nabla q \vert ^{2} \biggr)\bigg|_{\zeta =1}\,d\sigma \\ &\quad{}= \int _{\varOmega } \bigl(V^{*}\cdot \nabla \bigr)q\Delta q\,d \sigma \,d\zeta + \int _{\varOmega }\dot{\zeta ^{*}}q_{\zeta }\Delta q\,d \sigma \,d\zeta \\ &\qquad{}+ \int _{\varOmega } \biggl(\delta _{21}\delta _{22} \frac{\dot{\zeta }}{\zeta }W(T) \biggr) \widetilde{p_{s}}\Delta q\,d\sigma \,d \zeta \\ &\qquad{}+ \int _{S^{2}} \biggl(\frac{g\zeta }{R\widetilde{T}}f \bigl( \vert {V_{10}} \vert \bigr)q_{m}^{*} \Delta q \biggr)\bigg|_{\zeta =1}\,d\sigma. \end{aligned}$$
(4.84)
Thanks to (4.16) and (4.25), we get
$$\begin{aligned} & \biggl\vert \int _{\varOmega } \bigl(V^{*}\cdot \nabla \bigr)q\Delta q\,d \sigma \,d\zeta \biggr\vert \\ &\quad \leq C \bigl\Vert V^{*}\nabla q \bigr\Vert _{L^{2}(\varOmega )}^{2}+ \varepsilon \Vert \Delta q \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C \Vert V \Vert _{L^{4}(\varOmega )}^{2} \Vert \nabla q \Vert _{L^{4}(\varOmega )}^{2} + \varepsilon \Vert \Delta q \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C \Vert V \Vert _{L^{4}(\varOmega )}^{2} \Vert \nabla q \Vert _{L^{2}(\varOmega )}^{ \frac{1}{2}} \bigl( \Vert \nabla q \Vert _{L^{2}(\varOmega )}+ \Vert \Delta q \Vert _{L^{2}( \varOmega )}+ \Vert \nabla q_{\zeta } \Vert _{L^{2}(\varOmega )} \bigr)^{\frac{3}{2}} + \varepsilon \Vert \Delta q \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad\leq C \bigl(1+ \Vert V \Vert _{L^{4}(\varOmega )}^{8} \bigr) \Vert \nabla q \Vert _{L^{2}(\varOmega )}^{2}+ \varepsilon C \Vert \Delta q \Vert _{L^{2}(\varOmega )}^{2}+\varepsilon \Vert \nabla q_{\zeta } \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad\leq C(M) \Vert \nabla q \Vert _{L^{2}(\varOmega )}^{2}+ \varepsilon C \Vert \Delta q \Vert _{L^{2}(\varOmega )}^{2}+\varepsilon \Vert \nabla q_{\zeta } \Vert _{L^{2}( \varOmega )}^{2}, \end{aligned}$$
(4.85)
where \(\varepsilon >0\) is a small constant.
By (4.16), (4.28) and (4.60), we infer
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\dot{\zeta ^{*}}q_{\zeta }\Delta q\,d \sigma \,d\zeta \biggr\vert \\ &\quad \leq C \int _{S^{2}} \biggl( \int _{0}^{1} \biggl( \int _{0}^{\zeta } \bigl\vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \bigr\vert \,ds+ \biggl\vert \frac{\partial \widetilde{p_{s}}}{\partial t} \biggr\vert \biggr) \vert q_{\zeta } \vert \vert \Delta q \vert \,d\zeta \biggr)\,d\sigma \\ &\quad \leq C \int _{S^{2}} \biggl( \int _{0}^{1} \bigl\vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \bigr\vert ^{2} \,d \zeta +C(M) \biggr) \biggl( \int _{0}^{1} \vert q_{\zeta } \vert ^{2} \,d\zeta \biggr)\,d\sigma +\varepsilon \Vert \Delta q \Vert _{L^{2}( \varOmega )}^{2} \\ &\quad \leq C \biggl( \int _{S^{2}} \biggl( \int _{0}^{1} \bigl\vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \bigr\vert ^{2} \,d \zeta +C(M) \biggr)^{2} \,d\sigma \biggr)^{ \frac{1}{2}} \biggl( \int _{S^{2}} \biggl( \int _{0}^{1} \vert q_{\zeta } \vert ^{2} \,d \zeta \biggr)^{2}\,d\sigma \biggr)^{\frac{1}{2}} \\ &\qquad{}+ \varepsilon \Vert \Delta q \Vert _{L^{2}( \varOmega )}^{2} \\ &\quad \leq C \biggl( \int _{0}^{1} \biggl( \int _{S^{2}} \bigl\vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \bigr\vert ^{4} \,d \sigma +C(M) \biggr)^{\frac{1}{2}} \,d\zeta \biggr) \biggl( \int _{0}^{1} \biggl( \int _{S^{2}} \vert q_{\zeta } \vert ^{4} \,d \sigma \biggr)^{\frac{1}{2}}\,d\zeta \biggr) \\ &\qquad{}+\varepsilon \Vert \Delta q \Vert _{L^{2}( \varOmega )}^{2} \\ &\quad \leq C \biggl( \int _{0}^{1} \bigl\Vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \bigr\Vert _{L^{2}(S^{2})} \bigl\Vert \nabla \cdot \bigl(\widetilde{p_{s}}V^{*} \bigr) \bigr\Vert _{H^{1}(S^{2})} \,d\zeta +C(M) \biggr) \\ &\qquad{}\times \biggl( \int _{0}^{1} \Vert q_{\zeta } \Vert _{L^{2}(S^{2})} \Vert q_{\zeta } \Vert _{H^{1}(S^{2})} \,d\zeta \biggr) +\varepsilon \Vert \Delta q \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C \bigl( \bigl\Vert \nabla \cdot (\widetilde{p_{s}}V ) \bigr\Vert _{L^{2}(\varOmega )}+C(M) \bigr) \bigl( \bigl\Vert \nabla \cdot ( \widetilde{p_{s}}V ) \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \Delta ( \widetilde{p_{s}}V ) \bigr\Vert _{L^{2}(\varOmega )} \bigr) \\ &\qquad{}\times \Vert q_{\zeta } \Vert _{L^{2}(\varOmega )} \bigl( \Vert q_{\zeta } \Vert _{L^{2}(\varOmega )}+ \Vert \nabla q_{\zeta } \Vert _{L^{2}(\varOmega )} \bigr)+\varepsilon \Vert \Delta q \Vert _{L^{2}( \varOmega )}^{2} \\ &\quad \leq C(M) +C(M) \Vert \Delta V \Vert _{L^{2}(\varOmega )}^{2}+ \varepsilon \Vert \Delta q \Vert _{L^{2}(\varOmega )}^{2}+ \varepsilon \Vert \nabla q_{\zeta } \Vert _{L^{2}( \varOmega )}^{2}, \end{aligned}$$
(4.86)
where \(\varepsilon >0\) is a small constant.
Applying (4.16), (4.60), the Hardy inequality and the Young inequality, we also obtain
$$\begin{aligned} &\biggl\vert R \int _{\varOmega }\frac{1}{\widetilde{p_{s}}\zeta } \biggl( \int _{0}^{\zeta }\nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr)\Delta q\,d\sigma \,d\zeta \biggr\vert \\ &\quad \leq C \bigl\Vert \nabla \cdot (\widetilde{p_{s}}V)\,ds \bigr\Vert _{L^{2}(\varOmega )} \Vert \Delta q \Vert _{L^{2}(\varOmega )} \leq C(M)+\varepsilon \Vert \Delta q \Vert _{L^{2}( \varOmega )}^{2}, \end{aligned}$$
(4.87)
$$\begin{aligned} &\biggl\vert \int _{\varOmega }\frac{1}{\widetilde{p_{s}}}\nabla \cdot ( \widetilde{p_{s}} \overline{V})\Delta q\,d\sigma \,d\zeta \biggr\vert \leq C(M)+ \varepsilon \Vert \Delta q \Vert _{L^{2}(\varOmega )}^{2}, \end{aligned}$$
(4.88)
$$\begin{aligned} &\biggl\Vert \int _{S^{2}}\frac{g\zeta }{R\widetilde{T}}f \bigl( \vert {V_{10}} \vert \bigr)q_{m}^{*} \Delta q \vert _{\zeta =1}\,d \sigma \biggr\Vert \leq C(M)+\varepsilon \Vert \nabla q|_{ \zeta =1} \Vert _{L^{2}(s^{2})}^{2}, \end{aligned}$$
(4.89)
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\delta _{21}\delta _{22} \frac{\dot{\zeta }}{\zeta }W(T)\widetilde{p_{s}}\Delta q\,d\sigma\,d \zeta \biggr\vert \leq C(M)+\varepsilon \Vert \Delta q \Vert _{L^{2}(\varOmega )}^{2}, \end{aligned}$$
(4.90)
where \(\varepsilon >0\) is a small constant.
By (4.85)–(4.90), we obtain
$$\begin{aligned} & \frac{d}{dt} \int _{\varOmega } \vert \nabla q \vert ^{2}\,d\sigma \,d \zeta + C \int _{\varOmega } \vert \Delta q \vert ^{2}\,d\sigma \,d \zeta + C \int _{\varOmega } \vert \nabla q_{\zeta } \vert ^{2}\,d \sigma \,d\zeta \\ &\qquad{}+ C \int _{S^{2}} \vert \nabla q \vert ^{2}|_{\zeta =1} \,d\sigma \\ &\quad \leq C(M)+C(M) \Vert \nabla q \Vert _{L^{2}(\varOmega )}^{2} +C \Vert \Delta V \Vert _{L^{2}( \varOmega )}^{2}, \end{aligned}$$
(4.91)
which combining with (4.16), (4.28), (4.60) and the Gronwall inequality shows (4.83). □
Lemma 4.10
Under the assumptions of Theorem 2.1, for any\(M>0\)given, the liquid water content\(m_{w}\)to the system (2.4)4satisfies
$$\begin{aligned} &\int _{\varOmega } \vert \nabla m_{w} \vert ^{2}\,d\sigma \,d\zeta + \int _{0}^{t} \int _{ \varOmega } \vert \Delta m_{w} \vert ^{2} \,d\sigma \,d\zeta \,d\tau \\ &\qquad{} + \int _{0}^{t} \int _{ \varOmega } \vert \nabla m_{w\zeta } \vert ^{2} \,d\sigma \,d\zeta \,d\tau \\ &\quad \leq C(M),\quad t\in [0,M], \end{aligned}$$
(4.92)
where\(C(M)>0\)denotes a constant dependent of timeM.
Proof
Taking the inner product of (2.4)4 with \(\Delta m_{w}\), we know that
$$\begin{aligned} &\frac{1}{2}\frac{d}{dt} \int _{\varOmega } \vert \nabla m_{w} \vert ^{2}\,d\sigma \,d \zeta +{\mu _{4}} \int _{\varOmega }\frac{1}{\widetilde{p_{s}}} \vert \Delta m_{w} \vert ^{2}\,d \sigma \,d\zeta +{\nu _{4}} \int _{\varOmega } \biggl(\frac{g\zeta }{R\widetilde{T}} \biggr)^{2} \vert \nabla m_{w\zeta } \vert ^{2}\,d\sigma \,d\zeta \\ &\quad = \int _{\varOmega } \bigl(V^{*}\cdot \nabla \bigr)m_{w}\Delta m_{w}\,d\sigma \,d\zeta + \int _{\varOmega }\dot{\zeta ^{*}}m_{w\zeta } \Delta m_{w}\,d\sigma \,d\zeta \\ &\qquad{}+ \int _{\varOmega }h_{1} \biggl({\delta _{21}} { \delta _{22}} {\dot{\zeta }} { \frac{W(T)}{\zeta }} \biggr) \widetilde{p_{s}}\Delta m_{w}\,d\sigma \,d\zeta \\ &\qquad{}- \int _{\varOmega }{\delta _{21}} {\delta _{22}} { \dot{\zeta }} { \frac{W(T)}{\zeta }}\widetilde{p_{s}}\Delta m_{w}\,d\sigma \,d\zeta. \end{aligned}$$
(4.93)
By (4.16) and (4.25), we obtain
$$\begin{aligned} & \biggl\vert \int _{\varOmega } \bigl(V^{*}\cdot \nabla \bigr)m_{w}\Delta m_{w}\,d\sigma \,d \zeta \biggr\vert \\ &\quad \leq C \int _{\varOmega } \bigl\vert V^{*} \bigr\vert ^{2} \vert \nabla m_{w} \vert ^{2}\,d\sigma \,d\zeta + \varepsilon \Vert \Delta m_{w} \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad\leq C \Vert V \Vert _{L^{4}(\varOmega )}^{2} \Vert \nabla m_{w} \Vert _{L^{4}(\varOmega )}^{2} +\varepsilon \Vert \Delta m_{w} \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C \Vert V \Vert _{L^{4}(\varOmega )}^{2} \Vert \nabla m_{w} \Vert _{L^{2}(\varOmega )}^{ \frac{1}{2}} \bigl( \Vert \nabla m_{w} \Vert _{L^{2}(\varOmega )}+ \Vert \Delta m_{w} \Vert _{L^{2}( \varOmega )}+ \Vert \nabla m_{w\zeta } \Vert _{L^{2}(\varOmega )} \bigr)^{\frac{3}{2}} \\ &\qquad{}+ \varepsilon \Vert \Delta m_{w} \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C \bigl(1+ \Vert V \Vert _{L^{4}(\varOmega )}^{8} \bigr) \Vert \nabla m_{w} \Vert _{L^{2}(\varOmega )}^{2}+ \varepsilon C \Vert \Delta m_{w} \Vert _{L^{2}(\varOmega )}^{2}+\varepsilon \Vert \nabla m_{w} \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C(M) \Vert \nabla m_{w} \Vert _{L^{2}(\varOmega )}^{2}+ \varepsilon C \Vert \Delta m_{w} \Vert _{L^{2}(\varOmega )}^{2}+ \varepsilon \Vert \nabla m_{w} \Vert _{L^{2}( \varOmega )}^{2}, \end{aligned}$$
(4.94)
where \(\varepsilon >0\) is a small constant.
Thanks to (4.16), (4.28) and (4.74), we have
$$\begin{aligned} & \biggl\vert \int _{\varOmega }\dot{\zeta ^{*}}m_{w\zeta } \Delta m_{w}\,d\sigma \,d \zeta \biggr\vert \\ &\quad \leq C \int _{S^{2}} \biggl( \int _{0}^{1} \biggl( \int _{0}^{\zeta } \bigl\vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \bigr\vert \,ds+ \biggl\vert \frac{\partial \widetilde{p_{s}}}{\partial t} \biggr\vert \biggr) \vert m_{w\zeta } \vert \vert \Delta m_{w} \vert \,d\zeta \biggr)\,d\sigma \\ &\quad \leq C \int _{S^{2}} \biggl( \int _{0}^{1} \bigl\vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \bigr\vert ^{2} \,d \zeta +C(M) \biggr) \biggl( \int _{0}^{1} \vert m_{w \zeta } \vert ^{2} \,d\zeta \biggr)\,d\sigma +\varepsilon \Vert \Delta m_{w} \Vert _{L^{2}( \varOmega )}^{2} \\ &\quad \leq C \biggl( \int _{S^{2}} \biggl( \int _{0}^{1} \bigl\vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \bigr\vert ^{2} \,d \zeta +C(M) \biggr)^{2} \,d\sigma \biggr)^{ \frac{1}{2}} \biggl( \int _{S^{2}} \biggl( \int _{0}^{1} \vert m_{w\zeta } \vert ^{2} \,d \zeta \biggr)^{2}\,d\sigma \biggr)^{\frac{1}{2}} \\ &\qquad{}+ \varepsilon \Vert \Delta m_{w} \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C \biggl( \int _{0}^{1} \biggl( \int _{S^{2}} \bigl\vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \bigr\vert ^{4} \,d \sigma +C(M) \biggr)^{\frac{1}{2}} \,d\zeta \biggr) \biggl( \int _{0}^{1} \biggl( \int _{S^{2}} \vert m_{w\zeta } \vert ^{4} \,d \sigma \biggr)^{\frac{1}{2}}\,d\zeta \biggr) \\ &\qquad{}+\varepsilon \Vert \Delta m_{w} \Vert _{L^{2}( \varOmega )}^{2} \\ &\quad \leq C \biggl( \int _{0}^{1} \bigl\Vert \nabla \cdot \bigl( \widetilde{p_{s}}V^{*} \bigr) \bigr\Vert _{L^{2}(S^{2})} \bigl\Vert \nabla \cdot \bigl(\widetilde{p_{s}}V^{*} \bigr) \bigr\Vert _{H^{1}(S^{2})} \,d\zeta +C(M) \biggr) \\ &\qquad{}\times \biggl( \int _{0}^{1} \Vert m_{w\zeta } \Vert _{L^{2}(S^{2})} \Vert m_{w\zeta } \Vert _{H^{1}(S^{2})} \,d\zeta \biggr) +\varepsilon \Vert \Delta m_{w} \Vert _{L^{2}( \varOmega )}^{2} \\ &\quad \leq C \bigl\Vert \nabla \cdot (\widetilde{p_{s}}V ) \bigr\Vert _{L^{2}(\varOmega )} \bigl( \bigl\Vert \nabla \cdot (\widetilde{p_{s}}V ) \bigr\Vert _{L^{2}(\varOmega )}+ \bigl\Vert \Delta ( \widetilde{p_{s}}V ) \bigr\Vert _{L^{2}(\varOmega )} \bigr) \\ &\qquad{}\times \Vert m_{w\zeta } \Vert _{L^{2}(\varOmega )} \bigl( \Vert m_{w\zeta } \Vert _{L^{2}( \varOmega )}+ \Vert \nabla m_{w\zeta } \Vert _{L^{2}(\varOmega )} \bigr)+\varepsilon \Vert \Delta m_{w} \Vert _{L^{2}(\varOmega )}^{2} \\ &\quad \leq C(M) +C(M) \Vert \Delta V \Vert _{L^{2}(\varOmega )}^{2}+ \varepsilon \Vert \Delta m_{w} \Vert _{L^{2}(\varOmega )}^{2}+ \varepsilon \Vert \nabla m_{w\zeta } \Vert _{L^{2}(\varOmega )}^{2}, \end{aligned}$$
(4.95)
where \(\varepsilon >0\) is a small constant.
By (4.28), the Cauchy–Schwarz inequality, the Hardy inequality and the Young inequality, we get
$$\begin{aligned} &\biggl\Vert \int _{\varOmega }h_{1} \biggl({\delta _{21}} { \delta _{22}} {\dot{\zeta }} { \frac{W(T)}{\zeta }} \biggr) \widetilde{p_{s}}\Delta m_{w}\,d\sigma \,d\zeta \\ &\qquad{} - \int _{\varOmega }{\delta _{21}} {\delta _{22}} { \dot{\zeta }} { \frac{W(T)}{\zeta }}\widetilde{p_{s}}\Delta m_{w}\,d\sigma \,d\zeta \biggr\Vert \\ &\quad \leq C \biggl\vert \int _{\varOmega }\delta _{21}\delta _{22}\nabla \cdot ( \widetilde{p_{s}}\overline{V}){W(T)}\Delta m_{w} \,d \sigma \,d\zeta \biggr\vert \\ &\qquad{}+C \biggl\vert \int _{\varOmega } \biggl(\delta _{21}\delta _{22} \frac{1}{\zeta } \int _{0}^{\zeta }\nabla \cdot (\widetilde{p_{s}}V) \,ds \biggr) W(T)\Delta m_{w}\,d\sigma \,d\zeta \biggr\vert \\ &\qquad{}+C \biggl\vert \int _{\varOmega }\Delta m_{w}\,d\sigma \,d\zeta \biggr\vert \\ &\quad\leq C(M)+\varepsilon \Vert \Delta m_{w} \Vert _{L^{2}(\varOmega )}^{2}, \end{aligned}$$
(4.96)
where \(C(M)>0\) denotes a constant dependent of time M and \(\varepsilon >0\) is a small constant such that
$$\begin{aligned} &\frac{d}{dt} \int _{\varOmega } \vert \nabla m_{w} \vert ^{2}\,d\sigma \,d\zeta +C \int _{\varOmega } \vert \Delta m_{w} \vert ^{2}\,d\sigma \,d\zeta +C \int _{\varOmega } \vert \nabla m_{w \zeta } \vert ^{2}\,d\sigma \,d\zeta \\ &\quad \leq C(M) +C(M) \Vert \Delta V \Vert _{L^{2}(\varOmega )}^{2}+C(M) \Vert \nabla m_{w} \Vert _{L^{2}(\varOmega )}^{2}, \end{aligned}$$
(4.97)
thanks to the Gronwall inequality, we deduce (4.92). □