- Research
- Open access
- Published:
The entropy weak solution to a generalized Fornberg–Whitham equation
Boundary Value Problems volume 2020, Article number: 102 (2020)
Abstract
We investigate a nonlinear generalized Fornberg–Whitham equation. The key element is that we derive an \(L^{2}(\mathbb{R})\) conservation law for solutions of the equation. We establish several estimates by utilizing the \(L^{2}(\mathbb{R})\) conservation law. These estimates lead to the proof of the existence and uniqueness of entropy weak solution of the equation in the space \(L^{1}(\mathbb{R})\cap L^{\infty}(\mathbb{R})\).
1 Introduction
Consider the nonlinear partial differential equation
where \(m>0\) and k are constants. Assume that \(V_{0}(x)=V(0,x)\) is an initial value to Eq. (1). We establish the inequality
where \(c_{1}>0\) and \(c_{2}>0\) are constants independent of t.
If \(k=-1\) and \(m=\frac{3}{2}\), then Eq. (1) becomes the Fornberg–Whitham equation [1, 2]
Recently, Holmes and Thompson [3] proved the well-posedness of Eq. (3) in the Besov space in the periodic and nonperiodic cases and established a Cauchy–Kowalevski-type theorem for Eq. (3) to show the existence and uniqueness of analytic solutions. The blow-up criterion for the solutions is given in [3]. Using several estimates derived from the Fornberg–Whitham equation itself and the conclusions in [4], Haziot [5] found sufficient conditions on the initial data to guarantee the wave breaking of solutions of Eq. (3). Gao et al. [6] proved the \(L^{1}\) local stability of strong solutions of Eq. (3).
We know that the dynamic properties of the Fornberg–Whitham model are related to those of the Cammassa–Holm equation[7], Degasperis–Processi equation [8], and Novikov equation[9], which have peakon solutions (see[10–13]). Other dynamical properties of the Camassa–Holm, Degasperis–Processi, and Novikov equations can be found in [14–21] and the references therein.
We write the Cauchy problem for Eq. (1):
which is equivalent to
where \(m>0\) is a constant, \(\varLambda=(1-\partial^{2}_{x})^{\frac{1}{2}}\), and \(Q(t,x)= [kV+(\frac{m}{2}-\frac{3}{4})V^{2}(t,x) ]\).
Motivated by the desire to further investigate the Fornberg–Whitham equation (3), the objective of this work is to establish the existence and uniqueness of entropy solutions for Eq. (1). Using the viscous approximation techniques and assuming that the initial value \(V_{0}(x)\) belongs to the space \(L^{1}(\mathbb{R})\cap L^{\infty}(\mathbb{R})\), we prove the well-posedness of the entropy solutions. The novelty is that we derive a new \(L^{2}(\mathbb{R})\) conservation law for Eq. (1). The ideas for obtaining our main result come from those in [22].
The structure of this paper is as follows. In Sect. 2, we establish several estimates for the viscous approximations of problem (5), and in Sect. 3, we present our main results and their proofs.
2 Estimates of viscous approximations
Set
\(\phi_{\varepsilon}(x)=\varepsilon^{-\frac{1}{4}}\phi (\varepsilon^{-\frac{1}{4}}x)\) with \(0<\varepsilon<1\), and \(V_{0,\varepsilon}=\phi_{\varepsilon}\star V_{0}=\int_{\mathbb{R}}\phi _{\varepsilon}(x-y)V_{0}(y)\,dy\). We have \(V_{0,\varepsilon}\in C^{\infty}\) for any \(V_{0}\in H^{s}\) with \(s\geq0\).
For conciseness in this paper, we let c denote an arbitrary positive constant, which is independent of parameter ε and time t.
For a smooth function \(V_{0,\varepsilon}\) and \(s\geq0\), we have
For problem (4), we will discuss the limiting behavior of a sequence of smooth functions \(\{V_{\varepsilon}\} _{\varepsilon>0}\), where each function \(V_{\varepsilon}\) satisfies the viscous problem
or, in the equivalent form,
where
Lemma 2.1
If\(V_{0}\in L^{2}(\mathbb{R})\), then for any fixed\(\varepsilon>0\), there exists a unique global smooth solution\(V_{\varepsilon}=V_{\varepsilon}(t,x)\)to the Cauchy problem (6) belonging to\(C([0,\infty); H^{s}(\mathbb{R}))\)with\(s\geq0\).
Proof
Using Theorem 2.3 in [23], we directly get the result of this lemma. □
Now we give the following lemma, which plays a key role in our investigation of Eq. (1).
Lemma 2.2
Suppose that\(V_{\varepsilon}\)is a solution of problem (7), \(V_{0}\in L^{2}(\mathbb{R})\), and\(t>0\). Then
where\(c_{1}\), \(c_{2}\), and\(c_{3}\)are positive constants independent ofεandt.
Proof
Let \(g_{\varepsilon}=(\frac{2m}{3}-\partial _{xx}^{2})^{-1}V_{\varepsilon}\). We have
Multiplying the first equation of problem (7) by \(g_{\varepsilon}-\partial_{xx}^{2}g_{\varepsilon}\) and integrating over \(\mathbb{R}\) yields
We have
For the right-hand side of (13), integrating by parts and using (11) result in
From (12), (13), and (14) we conclude that
Using the smoothness of the function \(V_{0,\varepsilon}\), we have
It follows from (11) that
Using (15) and (16), we derive that there exist constants \(c_{1}\) and \(c_{2}\) such that
and
The proof of Lemma 2.2 follows from (17) and (18). □
Letting \(\varepsilon=0\) in the proof of Lemma 2.2, for Eq. (1), we obtain inequality (2).
Using Lemma 2.2, we give the following conclusion for the term \(Q_{\varepsilon}(t,x)\).
Lemma 2.3
If\(V_{0}\in L^{2}(\mathbb{R})\), then
Proof
We have
and
Using the Schwarz inequality leads to
Utilizing the Tonelli theorem and (23), we get
and
From (21)–(25) and Lemma 2.2 we derive that (19) and (20) hold. The proof is finished. □
If \(V_{0}\in L^{1}(\mathbb{R})\cap L^{\infty}(\mathbb{R})\), then we derive \(V_{0}\in L^{2}(\mathbb{R})\).
Lemma 2.4
If\(V_{0}\in L^{1}(\mathbb{R})\cap L^{\infty}(\mathbb{R})\), then
Proof
Using the first equation of problem (7), we have
Applying Lemma 2.3 yields
Setting \(K(t)=\| V_{0}\|_{L^{\infty}(\mathbb{R})}+ct (\| V_{0}\|_{L^{2}}+\| V_{0}\|_{L^{2}}^{2} )\), we get
Since \(\| V_{\varepsilon}(0,x)\|_{L^{\infty}(\mathbb {R})}\leq K(0)\), using the comparison principle, we derive that (26) holds. □
Applying Lemma 2.4 and the methods presented in [22], we obtain the following result.
Lemma 2.5
(Oleinik-type estimate)
Let\(V_{0}\in L^{1}(\mathbb {R})\cap L^{\infty}(\mathbb{R})\)and\(T>0\). Then
where the constant\(C_{T}\)depends onT.
We omit the proof of this lemma since it is similar to that of Lemma 2.11 in [22].
We state the concepts of weak solution and entropy weak solution (see [22, 24]).
Definition 2.6
(Weak solution)
A function \(V: \mathbb {R}_{+}\times\mathbb{R}\rightarrow\mathbb{R}\) is called a weak solution of the Cauchy problem (5) if
- (i)
\(V\in L^{\infty}(\mathbb{R}_{+}; L^{2}(\mathbb{R}))\), and
- (ii)
\(\partial_{t}V+\frac{3}{4}\partial_{x}(V^{2})+\partial_{x}Q(t,x)=0\) in \(D'([0,\infty)\times\mathbb{R})\), that is, for all \(f\in C_{c}^{\infty}([0,\infty)\times\mathbb{R})\), we have the identity
$$\begin{aligned} \int_{R_{+}} \int_{\mathbb{R}} \biggl(V\partial_{t}f+ \frac{3V^{2}}{4}\partial _{x}f-\partial_{x}Q(t,x)f \biggr)\,dx\,dt + \int_{\mathbb {R}}V_{0}(x)f(0,x)\,dx=0. \end{aligned}$$(31)
Definition 2.7
(Entropy weak solution)
We call a function \(V: \mathbb{R}_{+}\times\mathbb{R}\rightarrow\mathbb{R}\) an entropy weak solution of Cauchy problem (5) if
- (i)
V is a weak solution in the sense of Definition 2.6,
- (ii)
\(V\in L^{\infty}([0,T]\times\mathbb{R})\) for any \(T>0\), and
- (iii)
for any convex \(C^{2}\) entropy function \(\eta: \mathbb {R}\rightarrow\mathbb{R}\) with corresponding entropy flux \(q: \mathbb {R}\rightarrow\mathbb{R}\) defined by \(q'(V)=\frac{3}{4}\eta'(V)V\), we have
$$\begin{aligned} \partial_{t}\eta(V)+\partial_{x}q(V)+ \eta'(V)\partial_{x}Q\leq0 \quad\textrm {in } D'\bigl([0,\infty)\times\mathbb{R}\bigr), \end{aligned}$$(32)that is, for all \(f\in C_{c}^{\infty}([0,\infty)\times\mathbb{R})\), \(f(t,x)\geq0\), we have
$$\begin{aligned} \int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \bigl(\eta(V)\partial_{t} f+q(V) \partial_{x}f-\eta'(V)\partial_{x}Qf \bigr)\,dx\,dt+ \int_{\mathbb{R}}\eta \bigl(V_{0}(x)\bigr)f(0,x)\,dx\geq0. \end{aligned}$$(33)
Remark 2.8
As stated by Coclite and Karsen [22], by a standard argument we get that the Kruzkov entropies/entropy fluxes
where \(k_{1}\) is an arbitrary constant, satisfy (33).
3 Main results
We state the following \(L^{1}(\mathbb{R})\) stability result of entropy weak solutions for Eq. (1).
Theorem 3.1
(\(L^{1}\)-stability)
Assume that\(V_{1}(t,x)\)and\(V_{2}(t,x)\)are two entropy weak solutions of problem (5) with initial data\(V_{01}\in L^{1}(\mathbb{R})\cap L^{\infty}(\mathbb{R})\)and\(V_{02}\in L^{1}(\mathbb{R})\cap L^{\infty}(\mathbb{R})\), respectively. Let\(T>0\)be the maximal existence time of solutions\(V_{1}(t,x)\)and\(V_{2}(t,x)\). Then
whereCdepends on\(V_{01}\in L^{1}(\mathbb{R})\cap L^{\infty}(\mathbb {R})\)and\(V_{02}\in L^{1}(\mathbb{R})\cap L^{\infty}(\mathbb{R})\)andT.
The proof of Theorem 3.1 is the standard argument presented in Gao et al. [6]. We omit its proof.
We employ the compensated compactness method in [25, 26] to discuss the strong convergence of a subsequence of the viscosity approximations.
Lemma 3.2
Let\(\{V_{\varepsilon}\}_{\varepsilon>0}\)be a family of functions defined on\((0,\infty)\times\mathbb{R}\)such that
where the constant\(C_{T}>0\)depends onT, and the family
is compact in\(H^{-1}_{\mathrm{loc}}((0,\infty)\times\mathbb{R})\)for any convex\(\eta\in C^{2}(\mathbb{R})\), where\(q(V)=aV\eta'(V)\)with constant\(a>0\). Then there exist a sequence\(\{\varepsilon_{n}\}_{n\in N}\), \(\varepsilon_{n}\rightarrow0\), and a function\(V\in L^{\infty}((0, T)\times\mathbb{R})\), \(T>0\), such that
Lemma 3.2 can be found in [25] or [26].
Lemma 3.3
([27])
Suppose thatΩis a bounded open subset of\(R^{H}\), \(H\geq2\). Assume that the sequence\(\{M_{n}\} _{n=1}^{\infty}\)of distributions is bounded in\(W^{-1, \infty}(\varOmega )\)and
where\(\{M_{n}^{(1)}\}_{n=1}^{\infty}\)lies in a compact subset of\(H_{\mathrm{loc}}^{-1}(\varOmega)\), and\(\{M_{n}^{(2)}\}_{n=1}^{\infty}\)lies in a bounded subset of\(L^{1}_{\mathrm{loc}}(\varOmega)\). Then\(\{M_{n}\} _{n=1}^{\infty}\)lies in a compact subset of\(H^{-1}_{\mathrm{loc}}(\varOmega)\).
Lemma 3.4
Let\(V_{0}\in L^{1}(\mathbb{R})\cap L^{\infty}(\mathbb{R})\). Then there exists a subsequence\(V_{\varepsilon_{n}}\), \(n\in 1,2,3,\dots\), of\(\{V_{\varepsilon}\}_{\varepsilon>0}\)and a limit function
such that
Proof
Suppose that \(\eta:\mathbb{R}\rightarrow\mathbb{R}\) is an arbitrary convex \(C^{2}\) entropy function that is compactly supported, and \(q: \mathbb{R}\rightarrow\mathbb{R}\) is the corresponding entropy flux defined by \(q'(V)=\frac{3}{4}\eta'(V)V\). We set
where
We claim that
Therefore we know that (40) holds. Using Lemmas 3.2 and 3.3, we confirm that there exists a subsequence \(\{V_{\varepsilon_{n}}\}\) and a limit function V satisfying (36) such that, as \(n\rightarrow \infty\),
Using Lemma 2.5, from (44) and (45) we obtain (37). The proof is finished. □
Lemma 3.5
If\(V_{0}\in L^{1}(\mathbb{R})\cap L^{\infty }(\mathbb{R})\), then there exists a function\(Q(t,x)= [kV+ (\frac {m}{2}-\frac{3}{4})V^{2}(t,x) ]\)such that
where the sequence\(\varepsilon_{n}\), and the functionVare constructed in Lemma 3.4.
We omit the proof of Lemma 3.5 since it is similar to that of Lemma 4.4 in [22].
Theorem 3.6
Let\(V_{0}\in L^{1}(\mathbb{R})\cap L^{\infty }(\mathbb{R})\). Then there exists at least one entropy weak solution to problem (5).
Proof
If \(f\in C_{c}^{\infty}(\mathbb{R}_{+}\times\mathbb{R})\), then from (31) we get
Using Lemmas 3.4, we make sure that the function V presented in Lemma 3.4 is a weak solution of problem (5) in the sense of Definition 2.6. We have to verify that V satisfies the entropy inequalities in Definition 2.7. Let \(\eta\in C^{2}(\mathbb{R})\) be a convex entropy with flux q defined by \(q'(V)=\frac{3}{4}V\eta'(V)\). Using the convexity of η and problem (7) results in
Thus by Lemmas 3.4 and 3.5 it follows that the entropy inequality holds. The proof is finished. □
From Theorems 3.1 and 3.6 we have the following:
Theorem 3.7
Let\(V_{0}\in L^{1}(\mathbb{R})\cap L^{\infty}(\mathbb{R})\). Then the Cauchy problem (5) has a unique entropy weak solution in the sense of Definition 2.7.
References
Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. A 299, 6–25 (1967)
Fornberg, G., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. Ser. A 289, 373–404 (1978)
Holmes, J., Thompson, R.C.: Well-posedness and continuity properties of the Fornberg–Whitham equation in Besov spaces. J. Differ. Equ. 263, 4355–4381 (2017)
Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)
Haziot, S.V.: Wave breaking for the Fornberg–Whitham equation. J. Differ. Equ. 263, 8178–8185 (2017)
Gao, X.J., Lai, S.Y., Chen, H.J.: The stability of solutions for the Fornberg–Whitham equation in \(L^{1}(\mathbb{R})\) space. Bound. Value Probl. 2018, Article ID 142 (2018)
Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)
Degasperis, A., Procesi, M.: Asymptotic integrability. In: Symmetry and Perturbation Theory, pp. 23–37. World Scientific, Singapore (1999)
Novikov, V.: Generalizations of the Camassa–Holm equation. J. Phys. A 42(34), Article ID 342002 (2009)
Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)
Constantin, A., Ivanov, R.I.: Dressing method for the Degasperis–Procesi equation. Stud. Appl. Math. 138, 205–226 (2017)
Eckhardt, J.: The inverse spectral transform for the conservative Camassa–Holm flow with decaying initial data. Arch. Ration. Mech. Anal. 224, 21–52 (2017)
Fu, Y., Liu, Y., Qu, C.Z.: On the blow-up structure for the generalized periodic Camassa–Holm and Degasperis–Procesi equation. J. Funct. Anal. 262, 3125–3158 (2012)
Ma, C., Gao, Y., Guo, Z.: Large time behavior of momentum support for a Novikov type equation. Math. Phys. Anal. Geom. 22, Article ID 23 (2019). https://doi.org/10.1007/s11040-019-9317-5
Guo, Z., Li, K., Xu, C.: On generalized Camassa–Holm type equation with \((k+1)\)-degree nonlinearities. Z. Angew. Math. Mech. 98, 1567–1573 (2018)
Guo, Z., Li, X., Yu, C.: Some properties of solutions to the Camassa–Holm type equation with higher-order nonlinearities. J. Nonlinear Sci. 28, 1901–1914 (2018)
Guo, Z.: On an integrable Camassa–Holm type equation with cubic nonlinearity. Nonlinear Anal. 34, 225–232 (2017)
Grayshan, K.: Peakon solutions of the Novikov equation and properties of the data-to-solution map. J. Math. Anal. Appl. 397, 515–521 (2013)
Liu, Y., Yin, Z.Y.: Global existence and blow-up phenomena for the Degasperis–Procesi equation. Commun. Math. Phys. 267, 801–820 (2006)
Mi, Y.S., Mu, C.L.: On the Cauchy problem for the modified Novikov equation with peakon solutions. J. Differ. Equ. 254, 961–982 (2013)
Zhou, Y.: Blow-up solutions to the DGH equation. J. Funct. Anal. 250, 227–248 (2007)
Coclite, G.M., Karlsen, K.H.: On the well-posedness of the Degasperis–Procesi equation. J. Funct. Anal. 223, 60–91 (2006)
Coclite, G.M., Karlsen, K.H., Holden, H.: Well-posedness for a parabolic–elliptic system. Discrete Contin. Dyn. Syst. 13, 659–682 (2005)
Kruzkov, S.N.: First order quasi-linear equations in several independent variables. Math. USSR Sb. 10, 217–243 (1970)
Schonbek, M.E.: Convergence of solutions to nonlinear dispersive equations. Commun. Partial Differ. Equ. 7, 959–1000 (1982)
Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Anal. Mech. Heriot–Watt Symposium, vol. IV, pp. 136–212. Pitman, Boston (1979)
Murat, F.: L’injection du cone positif de \(H^{-1}\) dans \(W^{-1, q}\) est compacte pour tout \(q<2\). J. Math. Pures Appl. 60, 309–322 (1981)
Availability of data and materials
Not applicable.
Funding
This work is supported by the National Natural Science Foundation of China (No. 11471263).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to the writing of this paper. They read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Additional information
List of abbreviations
Not applicable.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Li, N., Lai, S. The entropy weak solution to a generalized Fornberg–Whitham equation. Bound Value Probl 2020, 102 (2020). https://doi.org/10.1186/s13661-020-01400-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-020-01400-w