Skip to main content

Table 3 Some numerical results of \(\varLambda _{1i}\), \(\varLambda _{2i}\), and \(\varGamma _{q}(\zeta _{i}+1)\) in Example 1 for \(q=\frac{1}{2}\)

From: On a system of fractional q-differential inclusions via sum of two multi-term functions on a time scale

n \(q =\frac{1}{2}\)
\(\varLambda _{11}\) \(\varLambda _{21}\) \(\varGamma _{q}(\zeta _{1}+1)\) \(\varLambda _{12}\) \(\varLambda _{22}\) \(\varGamma _{q}(\zeta _{2}+1)\) \(\varLambda _{13}\) \(\varLambda _{23}\) \(\varGamma _{q}(\zeta _{3} + 1)\)
1 2.082 3.0643 0.9743 1.8502 2.8525 0.9965 1.8071 2.8154 1.0157
2 2.1927 3.3761 0.9526 1.9826 3.183 0.9565 1.9472 3.1499 0.9686
3 2.2492 3.5371 0.9426 2.0498 3.354 0.9382 2.0183 3.3229 0.9472
13 2.3064 3.7014 0.9331 2.1177 3.5286 0.9209 2.0901 3.4995 0.9269
14 2.3064 3.7015 0.9331 2.1178 3.5287 0.9209 2.0901 3.4996 0.9269
15 2.3064 3.7015 0.9331 2.1178 3.5287 0.9209 2.0901 3.4996 0.9269
16 2.3064 3.7015 0.9331 2.1178 3.5287 0.9209 2.0901 3.4997 0.9269
17 2.3064 3.7015 0.9331 2.1178 3.5288 0.9209 2.0901 3.4997 0.9269
18 2.3064 3.7015 0.9331 2.1178 3.5288 0.9209 2.0901 3.4997 0.9269
19 2.3064 3.7015 0.9331 2.1178 3.5288 0.9209 2.0901 3.4997 0.9269
20 2.3064 3.7015 0.9331 2.1178 3.5288 0.9209 2.0901 3.4997 0.9269