- Research
- Open Access
- Published:
Multiple solutions for a coercive quasilinear elliptic equation via Morse theory
Boundary Value Problems volume 2021, Article number: 18 (2021)
Abstract
We study the quasilinear elliptic problem which is resonant at zero. By using Morse theory, we obtain five nontrivial solutions for the equation with coercive nonlinearities.
1 Introduction
Let Ω be a bounded domain in \(\mathbb{R}^{N}\) (\(N\geq 1\)) with smooth boundary ∂Ω. We study the following quasilinear elliptic problem:
where \(2< p<\infty \) and \(\Delta _{p}\) denotes the p-Laplacian operator defined by
In what follows, we denote by
the eigenvalues of −Δ in \(W_{0}^{1,2}(\Omega )\), and we let \(\mu _{1}>0\) be the first eigenvalue of \(-\Delta _{p}\) in \(W_{0}^{1,p}(\Omega )\) (see [9]). Moreover, we make the following assumptions:
- \((f_{1})\):
-
\(f\in \mathcal{C}^{1}(\overline{\Omega }\times \mathbb{R},\mathbb{R})\) with \(f(x,0)=0\), and satisfies the following condition:
$$ \bigl\vert f'(x,t) \bigr\vert \leq c\bigl(1+ \vert t \vert ^{q-2}\bigr),\quad \forall t\in {\mathbb{R}}, x\in \Omega ,$$for some constants \(c>0\) and \(q \in [2,p^{*})\), where \(p^{*}=Np/(N-p)\) if \(p< N \) and \(p^{*}=+\infty \) if \(N\leq p\),
- \((f_{2})\):
-
there exist \(M>0\) and \(\lambda <\frac{\lambda _{1}}{2}\) such that
$$ F(x,t)-\frac{1}{p} \mu _{1} \vert t \vert ^{p} \leq \lambda \vert t \vert ^{2}, \quad \text{for } \vert t \vert \geq M, x\in \Omega , $$where \(F(x,t)=\int _{0}^{t}f(x,s)\,ds\),
- \((f^{-})\):
-
there exist \(\alpha >0\) and \(k\geq 3\) such that
$$ f'(x,0)=\lambda _{k}, F(x,t)\leq \frac{1}{2} \lambda _{k} t^{2}, \quad \text{for } \vert t \vert \leq \alpha , x\in \Omega , $$ - \((f^{+})\):
-
there exist \(\alpha >0 \), \(k\geq 3\), \(C>0\) and \(2<\theta <p\) such that
$$ f'(x,0)=\lambda _{k}, F(x,t)\geq \frac{1}{2} \lambda _{k} t^{2}+C \vert t \vert ^{ \theta }, \quad \text{for } \vert t \vert \leq \alpha , x\in \Omega . $$
Under the conditions above, from [14, Theorem 1.2] we know that Eq. (1.1) has at least four nontrivial solutions. It is worth pointing out that, using similar conditions, the authors in [10, Theorem 3.2] not only obtain four nontrivial solutions, but also prove that two of them are sign changing. Moreover, when the nonlinearity f is resonant at infinity and non-resonant at zero, using variational methods, together with truncation and comparison techniques and Morse theory, the paper [11] can get the existence of six nontrivial solutions (two of them are sign changing).
The aim of this paper is to obtain the existence of another solution. Specifically, our result reads as follows.
Theorem 1.1
If \((f_{1})\), \((f_{2})\) and \((f^{-})\) (or \((f^{+})\)) hold, then Eq. (1.1) has at least five nontrivial solutions.
Remark 1.2
(1) In our proof, we first obtain a nontrivial solution near zero inspired by papers [13, 15]. Then we use the estimation of critical groups to distinguish the new solution from the known solutions of [10, 14]. The method of estimating critical groups comes from [5], which has studied the bifurcation problem of semilinear elliptic equations at zero, and obtained six nontrivial solutions of the equation with coercive nonlinearities.
(2) Checking the proof below, our result is also true when \(p=2\). So as far as we know, our theorem is new even for the semilinear elliptic equation.
This paper is organized as follows. In Sect. 2, by Morse theory the existence of a new nontrivial solution and the estimation of its critical groups are given. In Sect. 3, we give the proof of Theorem 1.1. In the sequel, the letter C will be used indiscriminately to denote a suitable positive constant whose value may change from line to line.
2 A solution near zero
For any \(\lambda \in \mathbb{R}\), let \(f(x,u)=\lambda _{k} u+g(x,u)\) and \(G(x,u)=\int _{0}^{u}g(x,s)\,ds\), then we consider the \(\mathcal{C}^{2}\) functional \(I_{\lambda }:W_{0}^{1,p}(\Omega )\to \mathbb{R}\) defined by setting
where \(W_{0}^{1,p}(\Omega )\) is the Sobolev space endowed with the norm
By \((f_{1})\), weak solutions of Eq. (1.1) correspond to critical points of functional \(I_{\lambda _{k}}\), which is also defined in the following form:
By [6, Page 277], the second order differential of \(I_{\lambda _{k}}\) in isolated critical point \(u_{0}\) is given by
for any \(v, w \in W_{0}^{1, p}(\Omega )\). In addition, if we assume that \(I_{\lambda _{k}}(u_{0})=c\in \mathbb{R}\), and U is an isolated neighborhood of \(u_{0}\), then the group
is called the ℓth critical group of the functional \(I_{\lambda _{k}}\) at \(u_{0}\), where \(I_{\lambda _{k}}^{c}=\{u\in W_{0}^{1,p}(\Omega ): I_{\lambda _{k}}(u) \leq c\}\), and \(H_{\ell }(\cdot ,\cdot )\) are the singular relative homological groups with a coefficient group \({\mathbb{F}}\) (see [1, Definition 4.1, Chapter I]).
Before stating our results, we recall the following result concerning critical groups estimates.
Lemma 2.1
([8, Theorem 3.1])
Let V be a subspace of \(W_{0}^{1,p}(\Omega )\) of finite dimension m. For critical point \(u_{0}\) of \(I_{\lambda _{k}}\), we assume that:
-
(i)
the function \(I_{\lambda _{k}}\) is of class \(C^{2}\) on \(u_{0}+V\) and for every \(v \in V\) the functions \(u_{0} \mapsto \langle I_{\lambda _{k}}^{\prime }(u_{0}), v \rangle \) and \(u_{0} \mapsto \langle I_{\lambda _{k}}^{\prime \prime }(u_{0}) v, v \rangle \) are continuous on \(W_{0}^{1,p}(\Omega )\),
-
(ii)
\(\langle I_{\lambda _{k}}^{\prime \prime }(u_{0}) v, v \rangle <0\) for every \(v \in V \backslash \{0\}\).
Then we have \(C_{\ell }(I_{\lambda _{k}}, u_{0})=\{0\}\) for every \(\ell \leqslant m-1\).
Lemma 2.2
If \((f_{1})\) and \((f^{-})\) hold, then Eq. (1.1) has a nontrivial solution \(v_{0}\) such that
where \(d_{k-1}=\operatorname{dim} \{ \bigoplus _{i \leq k-1} \operatorname{ker} (-\Delta -\lambda _{i} ) \} \).
Proof
The proof will be divided into several steps.
(1) For some \(\delta >0\) with \(\lambda _{k}<\lambda <\lambda _{k}+\delta <\lambda _{k+1}\), we assume that
is the set of critical points of \({I}_{\lambda }\). By (2.1) and (2.2), we know that
then \(I_{\lambda }''(0)\) is injective. So \(u=0\) is an isolated critical point (see [7, Corollary 2.4]). Meanwhile, [6, Theorem 1.1] shows that
For some small \(\rho >0\), let
be an isolated neighborhood of 0 such that \(K({I}_{\lambda })\cap B_{\rho }(0)=\{0\}\). If we define \(O=\overline{B_{\rho }(0)}\), then \({I}_{\lambda }\) satisfies the Palais–Smale condition on O. Let \(\beta _{1}\), \(\beta _{2}\) be regular values of \({I}_{\lambda }\) such that
Define
where \(\tilde{O}=\bigcup_{t\in \mathbb{R}} \vartheta (t, O)\) and ϑ is the pseudo–gradient flow of \({I}_{\lambda }\). Here \((W, W^{-})\) is called the Gromoll–Meyer pair for the isolated critical point \(u=0\) (see [1, Definition 5.1, Chapter I]). Meanwhile, using (2.4) and [1, Theorem 5.2, Chapter I] we have
(2) For any \(u,v\in W_{0}^{1,p}(\Omega )\) and \(\lambda _{k}<\lambda <\lambda _{k}+\delta \) with \(\delta >0\), using (2.1) we get
Thus, for any \(\varepsilon >0\), by (2.7) there is \(\delta >0\) such that
Using [3, Theorem III.4], we know that Gromoll–Meyer pairs are stable under small perturbation, then (2.8) implies that there exists \(\delta >0\) such that \((W,W^{-})\) is still a Gromoll–Meyer pair for \(I_{\lambda _{k}}\) with the critical set
Then (2.6) implies that
Here more properties of \(C_{q} (I_{\lambda _{k}},S_{\lambda _{k}})\) can be found in [3, Definition II.1, Theorem III.3].
(3) Assume that \(S_{\lambda _{k}}=\{v_{1},v_{2},\ldots ,v_{n}\}\) for some \(n\in \mathbb{N}\), \((W_{j},W_{j}^{-})\) is the Gromoll–Meyer pair for \(v_{j}\) (\(j=1,\ldots ,n\)), and \(Q(t)\) is a formal series with nonnegative integral coefficients. By ([2, Page 414]) we have the Morse relation (or see [13, Proposition 2.7]):
this together with (2.9) implies that \(I_{\lambda _{k}}\) has a critical point \(u_{0}(\rho )\in W\) such that
Without losing generality, we assume that \(u=0\) is an isolated solution of Eq. (1.1). Using \((f_{1})\) and \((f^{-})\), by [14, Theorem 1.1] or [12, Proposition 2.3] for \(p=2\) we have
Then (2.11) and (2.12) show that Eq. (1.1) has a nontrivial solution \(u_{0}(\rho )\in W\).
(4) By standard elliptic regularity arguments we have \(u_{0}(\rho )\in \mathcal{C}_{0}^{1}(\overline{\Omega })\) (see [6, Page 277]). Since
for any \(\varepsilon >0\) there is some \(\rho >0\) small enough such that
Now, we choose constants \(\lambda _{*}\) and \(\lambda ^{*}\) satisfying
Let \(\varepsilon >0\) to be selected suitably later. By \(f'(x,0)=\lambda _{k}\), the compactness of Ω̅ and (2.13), we may find a solution \(u_{0}(\rho )\) to our equation such that \(\|u_{0}(\rho )\|_{\mathcal{C}_{0}^{1}(\overline{{\Omega }})}< \varepsilon \) and
For \(v \in E_{k-1} \backslash \{0\}\) where \(E_{k-1}= \bigoplus _{i \leq k-1} \operatorname{ker} (-\Delta - \lambda _{i} )\), by (2.2), (2.13) and (2.14) we have
Moreover, we can choose \(\varepsilon >0\) such that
this together with (2.15) shows that
then from Lemma 2.1 we get (2.3). Let \(v_{0}=u_{0}(\rho )\), then we complete the proof. □
Lemma 2.3
If \((f_{1})\) and \((f^{+})\) hold, then Eq. (1.1) has a nontrivial solution \(v_{0}\) such that (2.3) holds.
Proof
For some \(\delta >0\) small such that \(\lambda _{k}-\delta <\lambda <\lambda _{k}\), by [6, Theorem 1.1] we get
Using \((f_{1})\) and \((f^{+})\), from [14, Theorem 1.1], we have
Similar to Lemma 2.2, Eq. (1.1) has a nontrivial solution \(v_{0}\) such that (2.3) holds. We complete the proof. □
Remark 2.4
(1) According to our proof, it is not difficult to find that any critical point in W satisfies the critical group estimation (2.3).
(2) In the lemmas above, the method for the existence of a nontrivial solution is the same as that in [13, 15], but our result also has a new content: the estimation of the critical groups for this solution.
3 Proof of theorem
Now we can give the proof of our theorem as follows.
Proof of Theorem 1.1
Under our assumptions, Ref. [14] has proved that \(I_{\lambda _{k}}\) satisfies the Palais–Smale condition, and there are three nontrivial solutions \(u_{i}\) (\(i=1,2,3\)). Moreover, two of them are local minima such that
and \(u_{3}\) is the mountain pass solution such that (see [11] or [10, Page 412])
From Lemma 2.2 and Lemma 2.3, we know that
where \(S_{\lambda _{k}} =B_{\rho }(0)\cap {K({I_{\lambda _{k}}})}=W\cap {K({I_{ \lambda _{k}}})}\), \(d=d_{k}\) for \((f^{-})\) and \(d=d_{k-1}\) for \((f^{+})\).
Claim: \(u_{i} \notin W\) for \(i=1,2,3\).
Reasoning by contradiction, when \(u_{i} \in W\), from Lemma 2.2, Lemma 2.3 and Remark 2.4, there is \(\rho >0\) small enough such that
which is in contradiction with (3.1) and (3.2) because of \(k\geq 3\). Then the claim holds.
If \(I_{\lambda _{k}}\) has only four nontrivial critical points: \(v_{0}\) and \(u_{i}\) for \(i=1,2,3\), then, for \(a<\inf I_{\lambda _{k}}(K({I_{\lambda _{k}}}))\), [14, Lemma 4.1] gives the ℓth critical group of \(I_{\lambda _{k}}\) at infinity:
where \((W_{0}^{1,p}(\Omega ),I_{\lambda _{k}}^{a})\) is the Gromoll–Meyer pair for \(K({I_{\lambda _{k}}})\) (see [4, Theorem 2.2]).
Now from (3.1) to (3.4), using the Gromoll–Meyer pairs \((W,W^{-})\) and \((W_{0}^{1,p}(\Omega ),I_{\lambda _{k}}^{a})\), the Morse relation (2.10) gives
this contradiction implies that Eq. (1.1) has another nontrivial solution \(u_{4}\notin W\). The proof is completed. □
Availability of data and materials
Not applicable.
References
Chang, K.-C.: Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)
Chang, K.-C.: Methods in Nonlinear Analysis. Springer, Berlin (2005)
Chang, K.-C., Ghoussoub, N.: The Conley index and the critical groups via an extension of Gromoll–Meyer theory. Topol. Methods Nonlinear Anal. 7, 77–93 (1996)
Chang, K.-C., Wang, Z.-Q.: Notes on the bifurcation theorem. J. Fixed Point Theory Appl. 1, 195–208 (2007)
Chen, Y., Su, J., Sun, M., Tian, R.: Multiple solutions for the coercive semilinear elliptic equations. J. Math. Anal. Appl. 487, 124031 (2020)
Cingolani, S., Vannella, G.: Critical groups computations on a class of Sobolev Banach spaces via Morse index. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20, 271–292 (2003)
Cingolani, S., Vannella, G.: Marino–Prodi perturbation type results and Morse indices of minimax critical points for a class of functionals in Banach spaces. Ann. Mat. Pura Appl. 186, 155–183 (2007)
Lancelotti, S.: Morse index estimates for continuous functionals associated with quasilinear elliptic equations. Adv. Differ. Equ. 7, 99–128 (2002)
Lindqvist, P.: On the equation \(\operatorname{div} (|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0\). Proc. Am. Math. Soc. 109, 157–164 (1990)
Papageorgiou, N.S., Rădulescu, V.D.: Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance. Appl. Math. Optim. 69, 393–430 (2014)
Papageorgiou, N.S., Smyrlis, G.: On nonlinear nonhomogeneous resonant Dirichlet equations. Pac. J. Math. 264, 421–453 (2013)
Su, J.: Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues. Nonlinear Anal. 48, 881–895 (2002)
Sun, M., Su, J., Zhang, B.: Critical groups and multiple solutions for Kirchhoff type equations with critical exponents. Commun. Contemp. Math. 2050031 (2020). https://doi.org/10.1142/S0219199720500315
Sun, M., Zhang, M., Su, J.: Critical groups at zero and multiple solutions for a quasilinear elliptic equation. J. Math. Anal. Appl. 428, 696–712 (2015)
Tian, R., Sun, M., Zhao, L.: Applications of Morse theory to some nonlinear elliptic equations with resonance at zero. Nonlinear Anal. 113, 87–93 (2015)
Acknowledgements
The authors would like to express their sincere thanks to the reviewers for their helpful advice and comments. The authors thank Professor Rushun Tian for many valuable discussions and suggestions.
Funding
The paper was supported by NCUT (110052971921/102, 110052972027/014, XN137/002/006), KZ202010028048, and NSFC (11771302, 11671026).
Author information
Authors and Affiliations
Contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Fu, L., Sun, M. Multiple solutions for a coercive quasilinear elliptic equation via Morse theory. Bound Value Probl 2021, 18 (2021). https://doi.org/10.1186/s13661-021-01494-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-021-01494-w
MSC
- 35J92
- 35J35
- 35B34
Keywords
- Quasilinear elliptic equations
- Resonant
- Morse theory