Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163(2), 201–215 (2000). https://doi.org/10.1016/S0025-5564(99)00055-3
Article
MathSciNet
MATH
Google Scholar
Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41(1), 3–44 (1999). https://doi.org/10.1137/S0036144598335107
Article
MathSciNet
MATH
Google Scholar
Ali, N., Zaman, G., Algahtani, O.: Stability analysis of HIV-1 model with multiple delays. Adv. Differ. Equ. 2016(1), 1 (2016). https://doi.org/10.1186/s13662-016-0808-4
Article
MathSciNet
MATH
Google Scholar
Ali, N., Zaman, G., Alqahtani, A.M., Alshomrani, A.S.: The effects of time lag and cure rate on the global dynamics of HIV-1 model. BioMed Res. Int. 2017, Article ID 8094947 (2017). https://doi.org/10.1155/2017/8094947.
Article
Google Scholar
Essunger, P., Perelson, A.S.: Modeling HIV infection of \(CD_{4}^{+}\) T-cell subpopulations. J. Theor. Biol. 170(4), 367–391 (1994). https://doi.org/10.1006/jtbi.1994.1199
Article
Google Scholar
Nowak, M.A., Bangham, C.R.: Population dynamics of immune responses to persistent viruses. Science 272(5258), 74–79 (1996). https://doi.org/10.1126/science.272.5258.74
Article
Google Scholar
Kirschner, D.E., Webb, G.F.: A mathematical model of combined drug therapy of HIV infection. J. Theor. Med. 1(1), 25–34 (1997)
Article
Google Scholar
Wodarz, D., Hamer, D.H.: Infection dynamics in HIV-specific \(CD_{4}^{+}\) T cells: does a \(CD_{4}^{+}\) T-cell boost benefit the host or the virus. Math. Biosci. 209(1), 14–29 (2007). https://doi.org/10.1016/j.mbs.2007.01.007
Article
MathSciNet
MATH
Google Scholar
Martin, N., Sattentau, Q.: Cell-to-cell HIV-1 spread and its implications for immune evasion. Curr. Opin. HIV AIDS 4(2), 143–149 (2009). https://doi.org/10.1097/COH.0b013e328322f94a
Article
Google Scholar
Huang, G., Takeuchi, Y., Ma, W.: Lyapunov functionals for delay differential equations model of viral infections. SIAM J. Appl. Math. 70(7), 2693–2708 (2010). https://doi.org/10.1137/090780821
Article
MathSciNet
MATH
Google Scholar
Sigal, A., Kim, J.T., Balazs, A.B., Dekel, E., Mayo, A., Milo, R., Baltimore, D.: Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477(7362), 95–98 (2011). https://doi.org/10.1038/nature10347
Article
Google Scholar
Yan, Y., Wang, W.: Global stability of a five-dimensional model with immune responses and delay. Discrete Contin. Dyn. Syst., Ser. B 17(1), 401–416 (2012). https://doi.org/10.3934/dcdsb.2012.17.401
Article
MathSciNet
MATH
Google Scholar
Wang, Y., Zhou, Y., Brauer, F., Heffernan, J.M.: Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J. Math. Biol. 67(4), 901–934 (2013). https://doi.org/10.1007/s00285-012-0580-3
Article
MathSciNet
MATH
Google Scholar
Fouts, T.R., Bagley, K., Prado, I.J., Bobb, K.L., Schwartz, J.A., Xu, R., Gallo, R.C.: The balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection. Proc. Natl. Acad. Sci. 112(9), E992–E999 (2015). https://doi.org/10.1073/pnas.1423669112
Article
Google Scholar
Kamboj, D., Sharma, M.D.: Effects of combined drug therapy on HIV-1 infection dynamics. Int. J. Biomath. 9(05), 1650065 (2016). https://doi.org/10.1142/S1793524516500650
Article
MathSciNet
MATH
Google Scholar
Ełaiw, A.M., Raezah, A.A., Hattaf, K.: Stability of HIV-1 infection with saturated virus-target and infected-target incidences and CTL immune response. Int. J. Biomath. 10(05), 1750070 (2017). https://doi.org/10.1142/S179352451750070X
Article
MathSciNet
MATH
Google Scholar
Lin, J., Xu, R., Tian, X.: Threshold dynamics of an HIV-1 model with both viral and cellular infections, cell-mediated, and humoral immune responses. Math. Biosci. Eng. 16(1), 292–319 (2018) https://www.aimspress.com/fileOther/PDF/MBE/mbe-16-01-015.pdf
Article
Google Scholar
Zhou, X., Song, X., Shi, X.: A differential equation model of HIV infection of \(CD_{4}^{+}\) T-cells with cure rate. J. Math. Anal. Appl. 342(2), 1342–1355 (2008). https://doi.org/10.1016/j.jmaa.2008.01.008
Article
MathSciNet
MATH
Google Scholar
Zhou, X., Song, X., Shi, X.: Analysis of stability and Hopf bifurcation for an HIV infection model with time delay. Appl. Math. Comput. 199(1), 23–38 (2008). https://doi.org/10.1016/j.amc.2007.09.030
Article
MathSciNet
MATH
Google Scholar
Hattaf, K., Yousfi, N.: Dynamics of HIV infection model with therapy and cure rate. Int. J. Tomogr. Stat. 16(11), 74–80 (2011) http://www.ceser.in/ceserp/index.php/ijts/article/view/218
MATH
Google Scholar
Perelson, A.S., Nelson, P.W.: Mathematical models of HIV dynamics in vivo. SIAM Rev. 41(1), 3–44 (1999). https://doi.org/10.1137/S0036144598335107
Article
MathSciNet
MATH
Google Scholar
Mbogo, W.R., Luboobi, L.S., Odhiambo, J.W.: Stochastic model for in-host HIV dynamics with therapeutic intervention. Int. Sch. Res. Not. Biomath. 2013, Article ID 103708 (2013). https://downloads.hindawi.com/archive/2013/103708.pdf
MATH
Google Scholar
Ogunlaran, O.M., Oukouomi Noutchie, S.C.: Mathematical model for an effective management of HIV infection. BioMed Res. Int. 2016, Article ID 4217548 (2016). https://doi.org/10.1155/2016/4217548
Article
Google Scholar
Nampala, H., Luboobi, L.S., Mugisha, J.Y., Obua, C.: Mathematical modeling of liver enzyme elevation in HIV mono-infection. Math. Biosci. 242(1), 77–85 (2013). https://doi.org/10.1016/j.mbs.2012.12.005
Article
MathSciNet
MATH
Google Scholar
Karrakchou, J., Rachik, M., Gourari, S.: Optimal control and infectiology, application to an HIV/AIDS model. Appl. Math. Comput. 177(2), 807–818 (2006). https://doi.org/10.1016/j.amc.2005.11.092
Article
MathSciNet
MATH
Google Scholar
Srivastava, P.K., Banerjee, M., Chandra, P.: Modeling the drug therapy for HIV infection. J. Biol. Syst. 17(02), 213–223 (2009). https://doi.org/10.1142/S0218339009002764
Article
MathSciNet
MATH
Google Scholar
Bakare, E.A., Nwagwo, A., Danso-Addo, E.: Optimal control analysis of an SIR epidemic model with constant recruitment. Int. J. Appl. Math. Res. 3(3), 273–285 (2014). https://doi.org/10.14419/ijamr.v3i3.2872
Article
Google Scholar
Ali, N., Zaman, G., Alshomrani, A.S.: Optimal control strategy of HIV-1 epidemic model for recombinant virus. Cogent Math. 4(1), 1293468 (2017). https://doi.org/10.1080/23311835.2017.1293468
Article
MathSciNet
MATH
Google Scholar
Hattaf, K., Yousfi, N.: Two optimal treatments of HIV infection model. World J. Model. Simul. 8(1), 27–36 (2012)
MATH
Google Scholar
Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987)
Google Scholar
Kaminski, R., Bella, R., Yin, C., Otte, J., Ferrante, P., Gendelman, H.E., Khalili, K.: Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther. 23(8), 690–695 (2016). https://doi.org/10.1038/gt.2016.41
Article
Google Scholar
Smith, H.L., De Leenheer, P.: Virus dynamics: a global analysis. SIAM J. Appl. Math. 63(4), 1313–1327 (2003) https://www.jstor.org/stable/4095962
Article
MathSciNet
Google Scholar
Perelson, A.S.: Modeling the interaction of the immune system with HIV. In: Mathematical and Statistical Approaches to AIDS Epidemiology, vol. 83, pp. 350–370 (1989). https://doi.org/10.1007/978-3-642-93454-4-17
Chapter
Google Scholar
Xu, R.: Global stability of an HIV-1 infection model with saturation infection and intracellular delay. J. Math. Anal. Appl. 375(1), 75–81 (2011). https://doi.org/10.1016/j.jmaa.2010.08.055
Article
MathSciNet
MATH
Google Scholar
Neilan, R.L.M., Schaefer, E., Gaff, H., Fister, K.R., Lenhart, S.: Modeling optimal intervention strategies for cholera. Bull. Math. Biol. 72(8), 2004–2018 (2010). https://doi.org/10.1007/s11538-010-9521-8
Article
MathSciNet
MATH
Google Scholar
Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, Berlin (2012)
MATH
Google Scholar
Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL, a modeling language for mathematical programming. Manag. Sci. 36(5), 519–554 (1990). https://doi.org/10.1287/mnsc.36.5.519
Article
MATH
Google Scholar
Wang, J., Guo, M., Liu, X., Zhao, Z.: Threshold dynamics of HIV-1 virus model with the cell-to-cell transmission, cell-mediated immune responses and distributed delay. Appl. Math. Comput. 291, 149–161 (2016). https://doi.org/10.1016/j.amc.2016.06.032
Article
MathSciNet
MATH
Google Scholar
Tabit, Y., Hattaf, K., Yousfi, N.: Dynamics of an HIV pathogenesis model with CTL immune response and two saturated rates. World J. Model. Simul. 10(3), 215–223 (2014)
Google Scholar
Tabit, Y., Meskaf, A., Allali, K.: Mathematical analysis of HIV model with two saturated rates, CTL and antibody responses. World J. Model. Simul. 12(2), 137–146 (2016)
Google Scholar
Fister, K.R., Lenhart, S., McNally, J.S.: Optimizing chemotherapy in an HIV model. J. Differ. Equ. 32(1998), 1–12 (1998) https://digital.library.txstate.edu/handle/10877/7929
MATH
Google Scholar
Butler, S., Kirschner, D., Lenhart, S.: Optimal control of chemotherapy affecting the infectivity of HIV. In: Advances in Mathematical Population Dynamics: Molecules, Cells, Man, pp. 104–120. World Scientific, Singapore (1997)
Google Scholar
Wang, X., Wang, W.: An HIV infection model based on a vectored immunoprophylaxis experiment. J. Theor. Biol. 313, 127–135 (2012). https://doi.org/10.1016/j.jtbi.2012.08.023
Article
MathSciNet
MATH
Google Scholar