Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. **163**(2), 201–215 (2000). https://doi.org/10.1016/S0025-5564(99)00055-3

Article
MathSciNet
MATH
Google Scholar

Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. **41**(1), 3–44 (1999). https://doi.org/10.1137/S0036144598335107

Article
MathSciNet
MATH
Google Scholar

Ali, N., Zaman, G., Algahtani, O.: Stability analysis of HIV-1 model with multiple delays. Adv. Differ. Equ. **2016**(1), 1 (2016). https://doi.org/10.1186/s13662-016-0808-4

Article
MathSciNet
MATH
Google Scholar

Ali, N., Zaman, G., Alqahtani, A.M., Alshomrani, A.S.: The effects of time lag and cure rate on the global dynamics of HIV-1 model. BioMed Res. Int. **2017**, Article ID 8094947 (2017). https://doi.org/10.1155/2017/8094947.

Article
Google Scholar

Essunger, P., Perelson, A.S.: Modeling HIV infection of \(CD_{4}^{+}\) T-cell subpopulations. J. Theor. Biol. **170**(4), 367–391 (1994). https://doi.org/10.1006/jtbi.1994.1199

Article
Google Scholar

Nowak, M.A., Bangham, C.R.: Population dynamics of immune responses to persistent viruses. Science **272**(5258), 74–79 (1996). https://doi.org/10.1126/science.272.5258.74

Article
Google Scholar

Kirschner, D.E., Webb, G.F.: A mathematical model of combined drug therapy of HIV infection. J. Theor. Med. **1**(1), 25–34 (1997)

Article
Google Scholar

Wodarz, D., Hamer, D.H.: Infection dynamics in HIV-specific \(CD_{4}^{+}\) T cells: does a \(CD_{4}^{+}\) T-cell boost benefit the host or the virus. Math. Biosci. **209**(1), 14–29 (2007). https://doi.org/10.1016/j.mbs.2007.01.007

Article
MathSciNet
MATH
Google Scholar

Martin, N., Sattentau, Q.: Cell-to-cell HIV-1 spread and its implications for immune evasion. Curr. Opin. HIV AIDS **4**(2), 143–149 (2009). https://doi.org/10.1097/COH.0b013e328322f94a

Article
Google Scholar

Huang, G., Takeuchi, Y., Ma, W.: Lyapunov functionals for delay differential equations model of viral infections. SIAM J. Appl. Math. **70**(7), 2693–2708 (2010). https://doi.org/10.1137/090780821

Article
MathSciNet
MATH
Google Scholar

Sigal, A., Kim, J.T., Balazs, A.B., Dekel, E., Mayo, A., Milo, R., Baltimore, D.: Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature **477**(7362), 95–98 (2011). https://doi.org/10.1038/nature10347

Article
Google Scholar

Yan, Y., Wang, W.: Global stability of a five-dimensional model with immune responses and delay. Discrete Contin. Dyn. Syst., Ser. B **17**(1), 401–416 (2012). https://doi.org/10.3934/dcdsb.2012.17.401

Article
MathSciNet
MATH
Google Scholar

Wang, Y., Zhou, Y., Brauer, F., Heffernan, J.M.: Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J. Math. Biol. **67**(4), 901–934 (2013). https://doi.org/10.1007/s00285-012-0580-3

Article
MathSciNet
MATH
Google Scholar

Fouts, T.R., Bagley, K., Prado, I.J., Bobb, K.L., Schwartz, J.A., Xu, R., Gallo, R.C.: The balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection. Proc. Natl. Acad. Sci. **112**(9), E992–E999 (2015). https://doi.org/10.1073/pnas.1423669112

Article
Google Scholar

Kamboj, D., Sharma, M.D.: Effects of combined drug therapy on HIV-1 infection dynamics. Int. J. Biomath. **9**(05), 1650065 (2016). https://doi.org/10.1142/S1793524516500650

Article
MathSciNet
MATH
Google Scholar

Ełaiw, A.M., Raezah, A.A., Hattaf, K.: Stability of HIV-1 infection with saturated virus-target and infected-target incidences and CTL immune response. Int. J. Biomath. **10**(05), 1750070 (2017). https://doi.org/10.1142/S179352451750070X

Article
MathSciNet
MATH
Google Scholar

Lin, J., Xu, R., Tian, X.: Threshold dynamics of an HIV-1 model with both viral and cellular infections, cell-mediated, and humoral immune responses. Math. Biosci. Eng. **16**(1), 292–319 (2018) https://www.aimspress.com/fileOther/PDF/MBE/mbe-16-01-015.pdf

Article
Google Scholar

Zhou, X., Song, X., Shi, X.: A differential equation model of HIV infection of \(CD_{4}^{+}\) T-cells with cure rate. J. Math. Anal. Appl. **342**(2), 1342–1355 (2008). https://doi.org/10.1016/j.jmaa.2008.01.008

Article
MathSciNet
MATH
Google Scholar

Zhou, X., Song, X., Shi, X.: Analysis of stability and Hopf bifurcation for an HIV infection model with time delay. Appl. Math. Comput. **199**(1), 23–38 (2008). https://doi.org/10.1016/j.amc.2007.09.030

Article
MathSciNet
MATH
Google Scholar

Hattaf, K., Yousfi, N.: Dynamics of HIV infection model with therapy and cure rate. Int. J. Tomogr. Stat. **16**(11), 74–80 (2011) http://www.ceser.in/ceserp/index.php/ijts/article/view/218

MATH
Google Scholar

Perelson, A.S., Nelson, P.W.: Mathematical models of HIV dynamics in vivo. SIAM Rev. **41**(1), 3–44 (1999). https://doi.org/10.1137/S0036144598335107

Article
MathSciNet
MATH
Google Scholar

Mbogo, W.R., Luboobi, L.S., Odhiambo, J.W.: Stochastic model for in-host HIV dynamics with therapeutic intervention. Int. Sch. Res. Not. Biomath. **2013**, Article ID 103708 (2013). https://downloads.hindawi.com/archive/2013/103708.pdf

MATH
Google Scholar

Ogunlaran, O.M., Oukouomi Noutchie, S.C.: Mathematical model for an effective management of HIV infection. BioMed Res. Int. **2016**, Article ID 4217548 (2016). https://doi.org/10.1155/2016/4217548

Article
Google Scholar

Nampala, H., Luboobi, L.S., Mugisha, J.Y., Obua, C.: Mathematical modeling of liver enzyme elevation in HIV mono-infection. Math. Biosci. **242**(1), 77–85 (2013). https://doi.org/10.1016/j.mbs.2012.12.005

Article
MathSciNet
MATH
Google Scholar

Karrakchou, J., Rachik, M., Gourari, S.: Optimal control and infectiology, application to an HIV/AIDS model. Appl. Math. Comput. **177**(2), 807–818 (2006). https://doi.org/10.1016/j.amc.2005.11.092

Article
MathSciNet
MATH
Google Scholar

Srivastava, P.K., Banerjee, M., Chandra, P.: Modeling the drug therapy for HIV infection. J. Biol. Syst. **17**(02), 213–223 (2009). https://doi.org/10.1142/S0218339009002764

Article
MathSciNet
MATH
Google Scholar

Bakare, E.A., Nwagwo, A., Danso-Addo, E.: Optimal control analysis of an SIR epidemic model with constant recruitment. Int. J. Appl. Math. Res. **3**(3), 273–285 (2014). https://doi.org/10.14419/ijamr.v3i3.2872

Article
Google Scholar

Ali, N., Zaman, G., Alshomrani, A.S.: Optimal control strategy of HIV-1 epidemic model for recombinant virus. Cogent Math. **4**(1), 1293468 (2017). https://doi.org/10.1080/23311835.2017.1293468

Article
MathSciNet
MATH
Google Scholar

Hattaf, K., Yousfi, N.: Two optimal treatments of HIV infection model. World J. Model. Simul. **8**(1), 27–36 (2012)

MATH
Google Scholar

Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987)

Google Scholar

Kaminski, R., Bella, R., Yin, C., Otte, J., Ferrante, P., Gendelman, H.E., Khalili, K.: Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther. **23**(8), 690–695 (2016). https://doi.org/10.1038/gt.2016.41

Article
Google Scholar

Smith, H.L., De Leenheer, P.: Virus dynamics: a global analysis. SIAM J. Appl. Math. **63**(4), 1313–1327 (2003) https://www.jstor.org/stable/4095962

Article
MathSciNet
Google Scholar

Perelson, A.S.: Modeling the interaction of the immune system with HIV. In: Mathematical and Statistical Approaches to AIDS Epidemiology, vol. 83, pp. 350–370 (1989). https://doi.org/10.1007/978-3-642-93454-4-17

Chapter
Google Scholar

Xu, R.: Global stability of an HIV-1 infection model with saturation infection and intracellular delay. J. Math. Anal. Appl. **375**(1), 75–81 (2011). https://doi.org/10.1016/j.jmaa.2010.08.055

Article
MathSciNet
MATH
Google Scholar

Neilan, R.L.M., Schaefer, E., Gaff, H., Fister, K.R., Lenhart, S.: Modeling optimal intervention strategies for cholera. Bull. Math. Biol. **72**(8), 2004–2018 (2010). https://doi.org/10.1007/s11538-010-9521-8

Article
MathSciNet
MATH
Google Scholar

Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, Berlin (2012)

MATH
Google Scholar

Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL, a modeling language for mathematical programming. Manag. Sci. **36**(5), 519–554 (1990). https://doi.org/10.1287/mnsc.36.5.519

Article
MATH
Google Scholar

Wang, J., Guo, M., Liu, X., Zhao, Z.: Threshold dynamics of HIV-1 virus model with the cell-to-cell transmission, cell-mediated immune responses and distributed delay. Appl. Math. Comput. **291**, 149–161 (2016). https://doi.org/10.1016/j.amc.2016.06.032

Article
MathSciNet
MATH
Google Scholar

Tabit, Y., Hattaf, K., Yousfi, N.: Dynamics of an HIV pathogenesis model with CTL immune response and two saturated rates. World J. Model. Simul. **10**(3), 215–223 (2014)

Google Scholar

Tabit, Y., Meskaf, A., Allali, K.: Mathematical analysis of HIV model with two saturated rates, CTL and antibody responses. World J. Model. Simul. **12**(2), 137–146 (2016)

Google Scholar

Fister, K.R., Lenhart, S., McNally, J.S.: Optimizing chemotherapy in an HIV model. J. Differ. Equ. **32**(1998), 1–12 (1998) https://digital.library.txstate.edu/handle/10877/7929

MATH
Google Scholar

Butler, S., Kirschner, D., Lenhart, S.: Optimal control of chemotherapy affecting the infectivity of HIV. In: Advances in Mathematical Population Dynamics: Molecules, Cells, Man, pp. 104–120. World Scientific, Singapore (1997)

Google Scholar

Wang, X., Wang, W.: An HIV infection model based on a vectored immunoprophylaxis experiment. J. Theor. Biol. **313**, 127–135 (2012). https://doi.org/10.1016/j.jtbi.2012.08.023

Article
MathSciNet
MATH
Google Scholar