In this section, we establish some necessary a priori bounds for smooth solutions to Cauchy problem (1.1)–(1.5). Before stating our main results, we first let \((\rho , \textbf {u}, \textbf {B})\) be a smooth solution of (1.1)–(1.5) on \(\mathbb{R}^{3} \times [0, T]\) for some \(0< T<\infty \). We can check that the equations of (1.1) can be written as follows:
$$ \textstyle\begin{cases} \rho _{t} +\operatorname{div}(\rho \textbf {u})=0, \\ \rho (\textbf {u}_{t}+\textbf {u}\cdot \nabla \textbf {u})+\nabla P(\rho )= \mu \Delta \textbf {u}+(\mu +\lambda )\nabla \operatorname{div} \textbf {u}+\textbf {B}\cdot \nabla \textbf {B}-\frac {1}{2}\nabla \vert \textbf {B}\vert ^{2}, \\ \textbf {B}_{t}+\textbf {u}\cdot \nabla \textbf {B}-\textbf {B}\cdot \nabla \textbf {u}+\textbf {B}\operatorname{div} \textbf {u}=\nu \Delta \textbf {B}, \\ \operatorname{div} \textbf {B}=0. \end{cases} $$
(2.1)
We start with the following estimates, which have been achieved in [17, Proposition 3.1], thus we do not explain in detail.
Lemma 2.1
For given constants \(M>0\), \(\bar{\rho }>2\), assume that \((\rho _{0}, \mathbf{ u}_{0}, \mathbf{ B}_{0})\) satisfies
$$ 0 \leqslant \inf \rho _{0} \leqslant \sup \rho _{0} \leqslant \bar{\rho }, \bigl\Vert (\nabla \mathbf{ u}_{0},\quad \nabla \mathbf{ B}_{0}) \bigr\Vert _{L^{2}}\leqslant M. $$
(2.2)
There exist positive constants K and ε, depending on μ, λ, ν, A, γ, ρ̄, and M, such that if
$$ E_{0}\triangleq \int \biggl(\frac {1}{2}\rho _{0} \vert \mathbf{ u}_{0} \vert ^{2}+G( \rho _{0})+ \frac {1}{2} \vert \mathbf{ B}_{0} \vert ^{2} \biggr)\,dx \leqslant \varepsilon , $$
(2.3)
where \(G(\cdot )\) is the potential energy density given by
$$ G(\rho )\triangleq \rho \int _{1}^{\rho } \frac {P(s)-P(1)}{s^{2}}\,ds, $$
then the following estimates hold:
$$\begin{aligned}& 0\leqslant \rho (x, t) \leqslant 2\bar{\rho },\qquad \forall (x, t) \in \mathbb{R}^{3} \times [0, T], \end{aligned}$$
(2.4)
$$\begin{aligned}& \sup_{0\leqslant t \leqslant T} \Vert \mathbf{ B} \Vert _{L^{3}}^{3}+ \int _{0}^{T} \Vert \mathbf{ B} \Vert _{L^{9}}^{3}\,dx \leqslant E_{0}^{1/9}, \end{aligned}$$
(2.5)
$$\begin{aligned}& \sup_{0\leqslant t\leqslant T}\bigl( \Vert \rho -1 \Vert _{L^{2}}^{2}+ \Vert \sqrt{\rho } \mathbf{ u} \Vert _{L^{2}}^{2}+ \Vert \mathbf{ B} \Vert _{L^{2}}^{2} \bigr)+ \int _{0}^{T}\bigl( \Vert \nabla \mathbf{ u} \Vert _{L^{2}}^{2}+ \Vert \nabla \mathbf{ B} \Vert _{L^{2}}^{2}\bigr)\,dt \leqslant KE_{0}, \end{aligned}$$
(2.6)
$$\begin{aligned}& \sup_{0\leqslant t\leqslant T}\bigl( \Vert \nabla \mathbf{ u} \Vert _{L^{2}}^{2}+ \Vert \nabla \mathbf{ B} \Vert _{L^{2}}^{2}\bigr)+ \int _{0}^{T}\bigl( \Vert \sqrt{\rho } \dot{ \mathbf{ u}} \Vert _{L^{2}}^{2}+ \Vert \mathbf{ B}_{t} \Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \mathbf{ B} \bigr\Vert _{L^{2}}^{2}\bigr)\,dt \leqslant K. \end{aligned}$$
(2.7)
Remark 2.1
Estimates (2.4)–(2.7) are independent of time T and the lower bound of density. Furthermore, if the initial density possesses a positive lower bound, then it follows from the expression of \(G(\cdot )\) that
$$ E_{0}\triangleq \bigl\Vert (\rho _{0}-1, \textbf {u}_{0}, \textbf {B}_{0}) \bigr\Vert _{L^{2}}^{2}. $$
(2.8)
In the following, we will use the convention that C or \(C_{i}\) (\(i=1, 2, \ldots \)) denotes a generic positive constant depending on μ, λ, ν, γ, A, ρ̄, the initial data, and T.
First, we will prove the following refined t-weighted estimates of the material derivative and the gradient of magnetic.
Lemma 2.2
Under the conditions of (2.2) and (2.3), there exists a positive constant C depending on T such that
$$ \begin{aligned} &\sup_{0\leqslant t\leqslant T}t \bigl( \Vert \sqrt{\rho } \dot{\mathbf{u}} \Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \mathbf{ B} \bigr\Vert _{L^{2}}^{2}+ \Vert \mathbf{ B}_{t} \Vert _{L^{2}}^{2} \bigr) \\ &\quad {} + \int _{0}^{T} t \bigl( \Vert \nabla \dot{\mathbf{u}} \Vert _{L^{2}}^{2}+ \Vert \nabla \mathbf{ B}_{t} \Vert _{L^{2}}^{2}+ \Vert \nabla \mathbf{ B} \Vert _{H^{2}}^{2} \bigr)\,dt \leqslant C(T). \end{aligned} $$
(2.9)
Proof
In order to prove (2.9), we first need to apply \(t \dot{u}^{j} [\partial _{t}+\operatorname {div}(\textbf {u}\cdot )]\) to the both sides of the jth equation of (2.1)2, then integrate by parts over \(\mathbb{R}^{3}\), and add the results together. We get by some calculations that
$$ \begin{aligned} \frac {1}{2} \biggl( t \int \rho \vert \dot{\textbf {u}} \vert ^{2}\,dx \biggr)_{t} ={}&\frac {1}{2} \int \rho \vert \dot{\textbf {u}} \vert ^{2}\,dx+\mu \int t \dot{u}^{j} \bigl[\Delta {u}^{j}_{t}+\operatorname{div}\bigl(\textbf {u}\Delta u^{j}\bigr)\bigr]\,dx \\ &{} +(\lambda +\mu ) \int t \dot{u}^{j}\bigl[\partial _{j}\partial _{t}(\operatorname{div} \textbf {u})+\operatorname{div}\bigl(\textbf {u}\partial _{j}(\operatorname{div} \textbf {u})\bigr)\bigr]\,dx \\ &{} - \int t \dot{u}^{j}\bigl[\partial _{j}P_{t}+\operatorname{div}(\textbf {u}\partial _{j}P)\bigr]\,dx \\ &{} -\frac {1}{2} \int t \dot{u}^{j}\bigl[\partial _{t}\partial _{j}\bigl( \vert \textbf {B}\vert ^{2}\bigr)+\operatorname{div} \bigl(\textbf {u}\partial _{j}\bigl( \vert \textbf {B}\vert ^{2}\bigr)\bigr)\bigr]\,dx \\ &{} + \int t \dot{u}^{j}\bigl[\partial _{t} \bigl(B^{i} \partial _{i} B^{j}\bigr)+\operatorname{div}\bigl(\textbf {u}B^{i} \partial _{i} B^{j}\bigr)\bigr]\,dx \\ ={}&\frac {1}{2} \int \rho \vert \dot{\textbf {u}} \vert ^{2}\,dx+\sum _{i=1}^{5} I_{i}. \end{aligned} $$
(2.10)
Now, we estimate the right-hand side of terms of (2.10). Due to the Cauchy–Schwarz inequality, we get by integration by parts that
$$ \begin{aligned} I_{1} &=-\mu \int t \bigl(\partial _{k} \dot{u}^{j} \partial _{k} u_{t}^{j}+\partial _{k} \dot{u}^{j} u^{k} \partial _{l} \partial _{l} u^{j} \bigr)\,dx \\ &=-\mu \int t \bigl( \vert \nabla \dot{\textbf {u}} \vert ^{2}- \partial _{k} \dot{u}^{j} \partial _{k} u^{l} \partial _{l} u^{j}+\partial _{k} \dot{u}^{j} \partial _{l} u^{l} \partial _{k} u^{j}-\partial _{k} \dot{u}^{j} \partial _{l} u^{k} \partial _{l} u^{j} \bigr)\,dx \\ &\leqslant -\frac {7\mu }{8} \bigl(t \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2} \bigr)+C t \Vert \nabla \textbf {u}\Vert _{L^{4}}^{4} \end{aligned} $$
(2.11)
and
$$ I_{2} \leqslant - (\mu +\lambda ) \bigl(t \Vert \operatorname {div}\dot{\textbf {u}} \Vert _{L^{2}}^{2} \bigr)+\frac {\mu }{8} \bigl(t \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2} \bigr)+C t \Vert \nabla \textbf {u}\Vert _{L^{4}}^{4}. $$
(2.12)
In order to estimate \(I_{3}\), we notice that
$$ \bigl(P(\rho )-P(1) \bigr)_{t}+\textbf {u}\cdot \nabla \bigl(P(\rho )-P(1) \bigr)+\gamma P(\rho )\operatorname{div} \textbf {u}=0, $$
(2.13)
which, together with (2.4), yields
$$ \begin{aligned} I_{3} &= \int t \bigl(P_{t} \operatorname{div}\dot{\textbf {u}}+ \partial _{i} \dot{u}^{j} u^{i} \partial _{j} P \bigr)\,dx \\ &= \int t \bigl( \operatorname{div}\dot{\textbf {u}} \bigl(-\gamma P(\rho )\operatorname{div} \textbf {u}-\textbf {u}\cdot \nabla P(\rho ) \bigr)-P(\rho )\partial _{j} \bigl( \partial _{i}\dot{u}^{j} u^{i}\bigr) \bigr)\,dx \\ &= \int t P(\rho ) \bigl[-\gamma (\operatorname{div} \dot{\textbf {u}}) (\operatorname{div} \textbf {u})+\partial _{j} \dot{u}^{j} \partial _{i} u^{i}-\partial _{i} \dot{u}^{j} \partial _{j} u^{i} \bigr]\,dx \\ &\leqslant \frac {\mu }{8} \bigl(t \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2} \bigr)+Ct \Vert \nabla \textbf {u}\Vert _{L^{2}}^{2}. \end{aligned} $$
(2.14)
Next, for \(I_{4}\), we obtain after using the integration by parts that
$$ \begin{aligned} I_{4} &= \int t \bigl(\partial _{j}\dot{u}^{j} B^{i} B_{t}^{i}+ \partial _{i} \dot{u}^{j} u^{i} B^{k} \partial _{j}B^{k} \bigr)\,dx \\ &\leqslant Ct \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}} \bigl( \Vert \textbf {B}_{t} \Vert _{L^{6}} \Vert \textbf {B}\Vert _{L^{3}}+ \Vert \textbf {u}\Vert _{L^{6}} \Vert \textbf {B}\Vert _{L^{\infty }} \Vert \nabla \textbf {B}\Vert _{L^{3}} \bigr) \\ &\leqslant \frac {\mu }{8} \bigl(t \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2} \bigr)+Ct \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{2} \Vert \textbf {B}\Vert _{L^{3}}^{2}+ Ct \Vert \nabla \textbf {u}\Vert _{L^{2}}^{2} \Vert \nabla \textbf {B}\Vert _{L^{2}}^{2} \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \\ &\leqslant \frac {\mu }{8} \bigl(t \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2} \bigr)+Ct \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{2} \Vert \textbf {B}\Vert _{L^{3}}^{2}+ Ct \bigl( \Vert \nabla \textbf {u}\Vert _{L^{2}}^{4}+ \Vert \nabla \textbf {B}\Vert _{L^{2}}^{4} \bigr) \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2}, \end{aligned} $$
(2.15)
where we have used the Gagliardo–Nirenberg inequality
$$ \Vert \textbf {v}\Vert _{L^{p}}\leqslant C \Vert \textbf {v}\Vert _{L^{2}}^{\frac {6-p}{2p}} \Vert \nabla \textbf {v}\Vert _{L^{2}}^{\frac {3p-6}{2p}},\quad \forall \textbf {v}\in H^{1} \text{ and } 2\leqslant p\leqslant 6. $$
(2.16)
By using (2.16) and integrating by parts, we obtain
$$ \begin{aligned} I_{5} &= \int t \bigl(\dot{u}^{j} \partial _{i}B^{j} B_{t}^{i}+ \dot{u}^{j} \partial _{i}B_{t}^{j} B^{i}-\partial _{k}\dot{u}^{j} u^{k} B^{i} \partial _{i}B^{j} \bigr)\,dx \\ &\leqslant Ct \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}} \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}} \Vert \textbf {B}\Vert _{L^{3}}+ Ct \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}} \Vert \nabla \textbf {u}\Vert _{L^{2}} \Vert \textbf {B}\Vert _{L^{\infty }} \Vert \nabla \textbf {B}\Vert _{L^{3}} \\ &\leqslant \frac {\mu }{8} \bigl(t \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2} \bigr)+Ct \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{2} \Vert \textbf {B}\Vert _{L^{3}}^{2}+ Ct \bigl( \Vert \nabla \textbf {u}\Vert _{L^{2}}^{4}+ \Vert \nabla \textbf {B}\Vert _{L^{2}}^{4} \bigr) \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2}. \end{aligned} $$
(2.17)
Substituting (2.11)–(2.17) into (2.10), we have
$$ \begin{aligned} \frac {d}{dt} \bigl(t \Vert \sqrt{ \rho } \dot{\textbf {u}} \Vert _{L^{2}}^{2} \bigr)+t \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2}\leqslant{}& Ct \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{2} \Vert \textbf {B}\Vert _{L^{3}}^{2}+C \bigl( \Vert \sqrt{\rho } \dot{ \textbf {u}} \Vert _{L^{2}}^{2}+t \Vert \nabla \textbf {u}\Vert _{L^{2}}^{2} \bigr) \\ &{}\times C t \Vert \nabla \textbf {u}\Vert _{L^{4}}^{4}+Ct \bigl( \Vert \nabla \textbf {u}\Vert _{L^{2}}^{4}+ \Vert \nabla \textbf {B}\Vert _{L^{2}}^{4} \bigr) \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2}. \end{aligned} $$
(2.18)
What is left is to estimate the term \(\|\nabla \textbf {B}_{t}\|_{L^{2}}\). To this end, noticing that
$$ \textbf {B}_{tt}-\nu \Delta \textbf {B}_{t}= (\textbf {B}\cdot \nabla \textbf {u}- \textbf {u}\cdot \nabla \textbf {B}-\textbf {B}\operatorname{div} \textbf {u})_{t} $$
and using the fact that \(\textbf {u}_{t}=\dot{\textbf {u}}-\textbf {u}\cdot \nabla \textbf {u}\), we obtain after direct computations that
$$ \begin{aligned} &\frac {1}{2}\frac {d}{dt} \bigl(t \Vert \textbf {B}_{t} \Vert _{L^{2}}^{2} \bigr)+\nu t \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{2} \\ &\quad =\frac {1}{2} \Vert \textbf {B}_{t} \Vert _{L^{2}}^{2} + \int t ( \textbf {B}_{t} \cdot \nabla \textbf {u}-\textbf {u}\cdot \nabla \textbf {B}_{t}-\textbf {B}_{t} \operatorname{div} \textbf {u}) \cdot \textbf {B}_{t}\,dx \\ &\qquad {} + \int t ( \textbf {B}\cdot \nabla \dot{\textbf {u}}- \dot{\textbf {u}}\cdot \nabla \textbf {B}-\textbf {B}\operatorname{div}\dot{\textbf {u}} )\cdot \textbf {B}_{t}\,dx \\ &\qquad {} + \int t \bigl(-\textbf {B}\cdot \nabla (\textbf {u}\cdot \nabla \textbf {u})+( \textbf {u}\cdot \nabla \textbf {u})\cdot \nabla \textbf {B}+ \textbf {B}\operatorname{div}( \textbf {u}\cdot \nabla \textbf {u}) \bigr)\cdot \textbf {B}_{t}\,dx \\ &\quad =\frac {1}{2} \Vert \textbf {B}_{t} \Vert _{L^{2}}^{2} +\sum_{i=1}^{3}J_{i}. \end{aligned} $$
(2.19)
Now, we estimate \(J_{i}\) as follows. By using (2.16) and the Cauchy–Schwarz inequality, we get
$$ \begin{aligned} J_{1} &\leqslant Ct \Vert \textbf {B}_{t} \Vert _{L^{3}} \Vert \textbf {B}_{t} \Vert _{L^{6}} \Vert \nabla \textbf {u}\Vert _{L^{2}}+Ct \Vert \textbf {u}\Vert _{L^{6}} \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}} \Vert \textbf {B}_{t} \Vert _{L^{3}} \\ &\leqslant Ct \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{\frac {3}{2}} \Vert \textbf {B}_{t} \Vert _{L^{2}}^{\frac {1}{2}} \Vert \nabla \textbf {u}\Vert _{L^{2}} \\ & \leqslant \frac {\nu }{8} \bigl(t \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{2} \bigr)+Ct \Vert \textbf {B}_{t} \Vert _{L^{2}}^{2} \Vert \nabla \textbf {u}\Vert _{L^{2}}^{4} \end{aligned} $$
(2.20)
and
$$ \begin{aligned} J_{2} &= \int t( \textbf {B}\cdot \nabla \dot{\textbf {u}}- \dot{\textbf {u}}\cdot \nabla \textbf {B}-\textbf {B}\cdot \operatorname{div} \dot{\textbf {u}} )\cdot \textbf {B}_{t}\,dx \\ &\leqslant Ct \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}} \Vert \textbf {B}\Vert _{L^{3}} \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}} \\ &\leqslant \frac {\nu }{8} \bigl(t \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{2} \bigr)+C t \Vert \textbf {B}\Vert _{L^{3}}^{2} \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2} \end{aligned} $$
(2.21)
and
$$ \begin{aligned} J_{3} ={}& \int t \bigl( B^{i} u^{j} \partial _{j} u^{k} \partial _{i}B_{t}^{k} + u^{k} \partial _{k} u^{i} \partial _{i}B^{j} B_{t}^{j} \\ &{}- \partial _{j} B^{i} u^{k} \partial _{k} u^{j} B_{t}^{i} -B^{i} u^{k} \partial _{k} u^{j} \partial _{j}B_{t}^{i} \bigr)\,dx \\ \leqslant{}& \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}} \Vert \nabla \textbf {B}\Vert _{L^{2}} \Vert \nabla \textbf {u}\Vert _{L^{2}} \Vert \nabla \textbf {u}\Vert _{L^{6}} \\ \leqslant{}& \frac {\nu }{8} \bigl(t \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{2} \bigr)+Ct \Vert \nabla \textbf {B}\Vert _{L^{2}}^{2} \Vert \nabla \textbf {u}\Vert _{L^{2}}^{2} \Vert \nabla \textbf {u}\Vert _{L^{6}}^{2}. \end{aligned} $$
(2.22)
Putting (2.20)–(2.22) into (2.19), we obtain
$$ \begin{aligned} &\frac {d}{dt} \bigl(t \Vert \textbf {B}_{t} \Vert _{L^{2}}^{2} \bigr)+ t \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{2} \\ &\quad \leqslant Ct \Vert \textbf {B}\Vert _{L^{3}}^{2} \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2}+C \Vert \textbf {B}_{t} \Vert _{L^{2}}^{2}+Ct \Vert \textbf {B}_{t} \Vert _{L^{2}}^{2} \Vert \nabla \textbf {u}\Vert _{L^{2}}^{4} \\ &\qquad {} +Ct \Vert \nabla \textbf {B}\Vert _{L^{2}}^{2} \Vert \nabla \textbf {u}\Vert _{L^{2}}^{2} \Vert \nabla \textbf {u}\Vert _{L^{6}}^{2}. \end{aligned} $$
(2.23)
Thus, integrating the resulting equations (2.18) and (2.23) over \((0, T)\) and using (2.3), (2.6), and (2.7), we deduce after adding them together that
$$ \begin{aligned} &\sup_{0\leqslant t \leqslant T} \bigl(t \Vert \sqrt{\rho } \dot{\textbf {u}} \Vert _{L^{2}}^{2}+t \Vert \textbf {B}_{t} \Vert _{L^{2}}^{2} \bigr)+ \int _{0}^{T} t \bigl( \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2}+ \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{2} \bigr)\,dt \\ &\quad \leqslant C+C_{1} \int _{0}^{T} t \Vert \nabla \textbf {u}\Vert _{L^{4}}^{4}\,dt+C \int _{0}^{T} t \Vert \nabla \textbf {u}\Vert _{L^{6}}^{2}\,dt. \end{aligned} $$
(2.24)
We are now in a position of estimating the last two terms on the right-hand side of (2.24). Indeed, it follows from (1.2), (2.4) and the \(L^{p}\)-estimates that
$$ \Vert \nabla F \Vert _{L^{p}}+ \Vert \nabla \omega \Vert _{L^{p}} \leqslant C \bigl( \Vert \sqrt{\rho } \dot{\textbf {u}} \Vert _{L^{p}}+ \Vert \textbf {B}\cdot \nabla \textbf {B}\Vert _{L^{p}} \bigr), \quad \forall p\in [2, 6], $$
(2.25)
so that, suing (1.11), (2.4)–(2.6), (2.16), (2.25), and the standard \(L^{p}\)-estimates, we find
$$ \begin{aligned} \Vert \nabla \textbf {u}\Vert _{L^{6}} & \leqslant C \bigl( \Vert \operatorname {div}\textbf {u}\Vert _{L^{6}}+ \Vert \omega \Vert _{L^{6}} \bigr) \\ & \leqslant C \bigl( \Vert F \Vert _{L^{6}}+ \bigl\Vert P(\rho )-P(1) \bigr\Vert _{L^{6}}+ \bigl\Vert | \textbf {B}|^{2} \bigr\Vert _{L^{6}}+ \Vert \omega \Vert _{L^{6}} \bigr) \\ & \leqslant C \bigl( \Vert \nabla F \Vert _{L^{2}}+ \Vert \nabla \omega \Vert _{L^{2}}+ \Vert \nabla \textbf {B}\Vert _{L^{6}}+1 \bigr) \\ & \leqslant C \bigl(1+ \Vert \sqrt{\rho } \dot{\textbf {u}} \Vert _{L^{2}}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}} \bigr), \end{aligned} $$
(2.26)
which, together with (2.7), gives
$$ \int _{0}^{T} t \Vert \nabla \textbf {u}\Vert _{L^{6}}^{2}\,dt\leqslant C \int _{0}^{T} t \bigl(1+ \Vert \sqrt{\rho } \dot{ \textbf {u}} \Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigr)\,dt \leqslant C(T). $$
(2.27)
On the other hand, it follows from (2.1)3 that
$$ \bigl\Vert \nabla ^{2}\textbf {B}\bigr\Vert _{L^{2}} \leqslant C \bigl( \Vert \textbf {B}_{t} \Vert _{L^{2}}+ \Vert \nabla \textbf {B}\Vert _{L^{2}} \Vert \nabla \textbf {u}\Vert _{L^{2}}^{2} \bigr). $$
It follows from (2.7), (2.24), and (2.27) that
$$ \begin{aligned} \sup_{0\leqslant t \leqslant T} \bigl(t \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigr) &\leqslant C \sup_{0\leqslant t \leqslant T} t \bigl( \Vert \textbf {B}_{t} \Vert _{L^{2}}^{2}+ \Vert \nabla \textbf {B}\Vert _{L^{2}}^{2} \Vert \nabla \textbf {u}\Vert _{L^{2}}^{4} \bigr) \\ &\leqslant C+ C \int _{0}^{T} t \Vert \nabla \textbf {u}\Vert _{L^{4}}^{4}\,dt. \end{aligned} $$
(2.28)
In view of (2.7), (2.6), and (2.26), we have
$$ \begin{aligned} \int _{0}^{T} t \Vert \nabla \textbf {u}\Vert _{L^{4}}^{4}\,dt & \leqslant C \int _{0}^{T} t \Vert \nabla \textbf {u}\Vert _{L^{2}} \Vert \nabla \textbf {u}\Vert _{L^{6}}^{3}\,dt \\ &\leqslant C+ C \int _{0}^{T} t \bigl( \Vert \sqrt{\rho } \dot{ \textbf {u}} \Vert _{L^{2}}^{3}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{3} \bigr)\,dt \\ &\leqslant C+C \sup_{0\leqslant t \leqslant T} \sqrt{t} \bigl( \Vert \sqrt{\rho } \dot{\textbf {u}} \Vert _{L^{2}}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}} \bigr) \\ &\leqslant C+\delta \sup_{0\leqslant t \leqslant T} \bigl( t \Vert \sqrt{ \rho } \dot{\textbf {u}} \Vert _{L^{2}}^{2}+t \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigr), \end{aligned} $$
(2.29)
where \(\delta >0\) is an undetermined number.
Based upon (2.1)3, it is easy to get that
$$ \begin{aligned} \Vert \nabla \textbf {B}\Vert _{H^{2}} \leqslant{}& C+C \bigl\Vert \nabla (\textbf {B}_{t}+\textbf {u}\cdot \nabla \textbf {B}-\textbf {B}\cdot \nabla \textbf {u}+\textbf {B}\operatorname{div} \textbf {u}) \bigr\Vert _{L^{2}} \\ \leqslant{}& C+C \bigl( \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}+ \Vert \nabla \textbf {u}\Vert _{L^{6}} \Vert \nabla \textbf {B}\Vert _{L^{3}}+ \Vert \textbf {u}\Vert _{L^{6}} \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{3}}+ \Vert \textbf {B}\Vert _{L^{2}} \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}} \bigr) \\ \leqslant{}& C+C \bigl( \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}+ \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}} \Vert \nabla \textbf {B}\Vert _{L^{2}}^{1/2} \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{1/2} \bigr) \\ &{} +C \bigl( \Vert \nabla \textbf {u}\Vert _{L^{2}} \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{1/2} \Vert \nabla \textbf {B}\Vert _{H^{2}}^{1/2}+ \Vert \textbf {B}\Vert _{L^{2}} \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}} \bigr), \end{aligned} $$
thus
$$ \Vert \nabla \textbf {B}\Vert _{H^{2}} \leqslant C+C \bigl( \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}+ \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}} \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{1/2}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}+ \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}} \bigr), $$
from which, together with (2.7), (2.26)–(2.28), we have
$$ \begin{aligned} \int _{0}^{T} t \Vert \nabla \textbf {B}\Vert _{H^{2}}^{2}\,dt \leqslant{}& C+C \int _{0}^{T} t \Vert \nabla \textbf {B}_{t} \Vert _{L^{2}}^{2}\,dt+C \sup _{0\leqslant t \leqslant T} \bigl(t \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2} \bigr) \int _{0}^{T} \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}\,dt \\ &{} +C \int _{0}^{T} t \bigl( \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2} \bigr) \\ \leqslant{}& C(T). \end{aligned} $$
Therefore, putting (2.27)–(2.29) into (2.24) and choosing a suitably small number \(\delta >0\), we immediately obtain (2.9). □
Lemma 2.3
Under the conditions of (2.2) and (2.3), there exists a positive constant C depending on T such that
$$ \int _{0}^{T} \bigl( \Vert \mathbf{ B}\cdot \nabla \mathbf{ B} \Vert _{L^{p}}^{q}+ \|\sqrt{\rho }\dot{\mathbf{u}}\|_{L^{p}}^{q}+\| \operatorname{div} \mathbf{ u} \bigl\Vert _{L^{\infty }}^{q}+ \bigr\Vert \operatorname{curl} \mathbf{ u} \|_{L^{\infty }}^{q} \bigr)\,dt \leqslant C(T), $$
(2.30)
where \(\operatorname{curl} \mathbf{ u}=\nabla \times \mathbf{ u}\), and \((p, q)\) satisfies
$$ 3< p< 6 \quad {\textit{and}}\quad 1< q< \frac {4p}{5p-6}< \frac {4}{3}. $$
(2.31)
Proof
It follows from (2.4) and (2.16) that
$$ \begin{aligned} & \Vert \textbf {B}\cdot \nabla \textbf {B}\Vert _{L^{p}}^{q}+ \Vert \sqrt{ \rho }\dot{\textbf {u}} \Vert _{L^{p}}^{q} \\ &\quad \leqslant C \bigl( \Vert \textbf {B}\Vert _{L^{\infty }}^{q} \Vert \nabla \textbf {B}\Vert _{L^{p}}^{q}+ \Vert \sqrt{\rho }\dot{\textbf {u}} \Vert _{L^{2}}^{\frac {q(6-p)}{2p}} \Vert \nabla \dot{ \textbf {u}} \Vert _{L^{2}}^{\frac {q(3p-6)}{2p}} \bigr) \\ &\quad \leqslant C \bigl( \Vert \nabla \textbf {B}\Vert _{L^{2}}^{\frac {3q}{p}} \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{\frac {q(2p-3)}{p}}+ \Vert \sqrt{\rho } \dot{\textbf {u}} \Vert _{L^{2}}^{\frac {q(6-p)}{2p}} \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{ \frac {q(3p-6)}{2p}} \bigr), \end{aligned} $$
so that, by virtue of Lemma 2.2 and (2.7), we obtain
$$\begin{aligned} & \int _{0}^{T} \bigl( \Vert \textbf {B}\cdot \nabla \textbf {B}\Vert _{L^{p}}^{q}+ \Vert \sqrt{\rho }\dot{\textbf {u}} \Vert _{L^{p}}^{q} \bigr)\,dt \\ & \quad \leqslant C \int _{0}^{T} \bigl( \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{ \frac {q(2p-3)}{p}}+ \Vert \sqrt{\rho }\dot{\textbf {u}} \Vert _{L^{2}}^{ \frac {q(6-p)}{2p}} \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{ \frac {q(3p-6)}{2p}} \bigr)\,dt \\ \begin{aligned}&\quad \leqslant C \sup_{0\leqslant t \leqslant T} \bigl(t \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigr)^{\frac {q(2p-3)}{2p}} \int _{0}^{T} t^{- \frac {q(2p-3)}{2p}}\,dt \\ &\qquad {} +C \sup_{0\leqslant t \leqslant T} \bigl(t \Vert \sqrt{\rho } \dot{\textbf {u}} \Vert _{L^{2}}^{2} \bigr){\frac {q(6-p)}{4p}} \int _{0}^{T} t^{- \frac {q}{2}} \bigl(t \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2} \bigr)^{ \frac {q(3p-6)}{4p}}\,dt\end{aligned} \\ &\quad \leqslant C \int _{0}^{T} t^{-\frac {q(2p-3)}{2p}}\,dt+C \biggl( \int _{0}^{T} t^{-\frac {2pq}{4p-3pq+6q}}\,dt \biggr)^{ \frac {4p-3pq+6q}{4p}} \biggl( \int _{0}^{T} t \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2}\,dt \biggr)^{\frac {q(3p-6)}{4p}} \\ &\quad \leqslant C(T), \end{aligned}$$
(2.32)
since \(3< p<6\) and \(1< q<\frac {4p}{5p-6}<2\) yield that
$$ 0< \frac {q(2p-3)}{2p}< 1,\qquad 0< \frac {2pq}{4p-3pq+6q}< 1,\qquad 0< \frac {q(3p-6)}{4p}< 1. $$
Due to (2.4)–(2.7), (2.25), and the Sobolev embedding inequality, we have that
$$ \begin{aligned} & \Vert \operatorname {div}\textbf {u}\Vert _{L^{\infty }}+ \Vert \omega \Vert _{L^{\infty }} \\ &\quad \leqslant C \bigl( \Vert F \Vert _{L^{\infty }}+ \bigl\Vert P(\rho )-P(1) \bigr\Vert _{L^{\infty }}+ \bigl\Vert |\textbf {B}|^{2} \bigr\Vert _{L^{\infty }}+ \Vert \omega \Vert _{L^{\infty }} \bigr) \\ &\quad \leqslant C \bigl(1+ \Vert F \Vert _{L^{\infty }}+ \Vert \omega \Vert _{L^{\infty }}+ \Vert \nabla \textbf {B}\Vert _{L^{2}} \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}+ \Vert \nabla F \Vert _{L^{p}}+ \Vert \nabla \omega \Vert _{L^{p}} \bigr) \\ &\quad \leqslant C \bigl(1+ \Vert \nabla \textbf {u}\Vert _{L^{2}}+ \Vert \textbf {B}\Vert _{L^{2}}^{1/2} \Vert \nabla \textbf {B}\Vert _{L^{2}}^{1/2}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}+ \Vert \sqrt{\rho } \dot{\textbf {u}} \Vert _{L^{p}}+ \Vert \textbf {B}\cdot \nabla \textbf {B}\Vert _{L^{p}} \bigr) \\ &\quad \leqslant C \bigl(1+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}+ \Vert \sqrt{ \rho } \dot{\textbf {u}} \Vert _{L^{p}}+ \Vert \textbf {B}\cdot \nabla \textbf {B}\Vert _{L^{p}} \bigr). \end{aligned} $$
(2.33)
On the other hand, since \(1< q<\frac {4}{3}\), we obtain
$$ \int _{0}^{T} \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{q}\,dt \leqslant \bigl( t \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigr)^{\frac {q}{2}} \int _{0}^{T} t^{-\frac {q}{2}}\,dt \leqslant C(T), $$
which, combined with (2.32) and (2.33), leads to (2.30). □
Next, we need to estimate \(\|\nabla \textbf {u}\|_{L^{p}}\) with \(1< p< \infty \) and \(p=\infty \), respectively. Clearly, since it holds that
$$ -\Delta \mathbf{ u}=\nabla \operatorname{div}\mathbf{ u}-\nabla \times \operatorname{curl} \mathbf{ u}, $$
thus, for \(1< p<\infty \), we have
$$ \Vert \nabla \mathbf{ u} \Vert _{L^{p}}\leqslant C \bigl( \Vert \operatorname{div} \mathbf{ u} \Vert _{L^{p}}+ \Vert \operatorname{curl} \mathbf{ u} \Vert _{L^{p}} \bigr). $$
However, for \(p=\infty \), the above inequality cannot work. Thus, the following Beale, Kato, and Majda type inequality (cf. [1, 14]) will be used later to estimate \(\|\nabla \textbf {u}\|_{L^{\infty }}\).
Lemma 2.4
For any \(k \in \mathbb{Z}^{+}\) and \(p\in (1,+\infty )\), let \(D^{k, p}\triangleq \{\mathbf{ v}\in L^{1}_{\mathrm{loc}} | \partial ^{k} \mathbf{ v}\in L^{p}\}\) and \(D^{1}\triangleq D^{1, 2}\) be the homogeneous Sobolev spaces. Then, for any \(\mathbf{ v}\in D^{1}\cap D^{2,p} \) with \(p \in (3, +\infty )\), there exists a positive constant \(C(p)>0\) such that, for all \(\nabla \mathbf{ v} \in L^{2} \cap D^{1, p} \),
$$ \Vert \nabla \mathbf{ v} \Vert _{L^{\infty }}\leqslant C \bigl(1+ \Vert \nabla \mathbf{ v} \Vert _{L^{2}} \bigr)+C\bigl( \Vert \operatorname{div} \mathbf{ v} \Vert _{L^{\infty }}+ \Vert \nabla \times \mathbf{ v} \Vert _{L^{\infty }}\bigr)\ln \bigl(e+ \bigl\Vert \nabla ^{2} \mathbf{ v} \bigr\Vert _{L^{p}} \bigr). $$
(2.34)
With the help of Lemmas 2.3 and 2.4, we can now derive the \(L^{2}\)-\(L^{p}\)-estimates (\(3< p<6\)) of the gradient of density.
Lemma 2.5
Under the conditions of (1.13) and (2.3), it holds that
$$ \sup_{0 \leqslant t \leqslant T} \bigl( \Vert \nabla \rho \Vert _{{L^{2}}{ \cap } {L^{p}}}+ \Vert \rho _{t} \Vert _{L^{2}} \bigr) + \int _{0}^{T} \bigl( \bigl\Vert \nabla ^{2} \mathbf{ u} \bigr\Vert _{L^{p}}^{q}+ \Vert \nabla \mathbf{ u} \Vert _{L^{\infty }}^{q} \bigr)\,dt\leqslant C(T), $$
(2.35)
where \(3< p<6\) and \(q>1\) are the same ones as in (2.31).
Proof
To prove (2.35), operating ∇ to both sides of (2.1)1, then multiplying it by \(|\nabla \rho |^{p-2}\nabla \rho \) with \(p\in [2, 6]\) and integrating by parts over \(\mathbb{R}^{3}\), we know from (2.4) that
$$ \frac {d}{dt} \Vert \nabla \rho \Vert _{L^{p}} \leqslant C \bigl( \Vert \nabla \textbf {u}\Vert _{L^{\infty }} \Vert \nabla \rho \Vert _{L^{p}}+ \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{p}} \bigr). $$
(2.36)
Recalling that \(\mathcal{L}\triangleq -\mu \Delta -(\mu +\lambda )\nabla \operatorname {div}\) is a strong elliptic operator (cf. [5]), we deduce from (2.1)2 and (2.4) that, for any \(p\in (3,6)\),
$$ \begin{aligned} \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{p}} &\leqslant C \bigl( \Vert \sqrt{\rho }\dot{ \textbf {u}} \Vert _{L^{p}}+ \Vert \nabla P \Vert _{L^{p}}+ \Vert \textbf {B}\cdot \nabla \textbf {B}\Vert _{L^{p}}+ \bigl\Vert \nabla \vert \textbf {B}\vert ^{2} \bigr\Vert _{L^{p}} \bigr) \\ &\leqslant C \bigl( \Vert \sqrt{\rho }\dot{\textbf {u}} \Vert _{L^{p}}+ \Vert \nabla \rho \Vert _{L^{p}}+ \Vert \textbf {B}\cdot \nabla \textbf {B}\Vert _{L^{p}} \bigr), \end{aligned} $$
(2.37)
which, combined with (2.36), yields
$$ \frac {d}{dt} \Vert \nabla \rho \Vert _{L^{p}} \leqslant C \bigl( \Vert \nabla \textbf {u}\Vert _{L^{\infty }}+1 \bigr) \Vert \nabla \rho \Vert _{L^{p}}+C \bigl( \Vert \sqrt{\rho } \dot{\textbf {u}} \Vert _{L^{p}}+ \Vert \textbf {B}\cdot \nabla \textbf {B}\Vert _{L^{p}} \bigr). $$
(2.38)
Using Lemma 2.4 and (2.37), we obtain that, for any \(p \in (3, 6)\),
$$ \begin{aligned} \Vert \nabla \textbf {u}\Vert _{L^{\infty }}\leqslant{}& C+C\bigl( \Vert \operatorname {div}\textbf {u}\Vert _{L^{\infty }}+ \Vert \nabla \times \textbf {u}\Vert _{L^{\infty }}\bigr)\ln \bigl(e+ \Vert \nabla \rho \Vert _{L^{p}} \bigr) \\ &{} +C\bigl( \Vert \operatorname {div}\textbf {u}\Vert _{L^{\infty }}+ \Vert \nabla \times \textbf {u}\Vert _{L^{ \infty }}\bigr)\ln \bigl(e+ \Vert \sqrt{\rho } \dot{ \textbf {u}} \Vert _{L^{p}}+ \Vert \textbf {B}\cdot \nabla \textbf {B}\Vert _{L^{p}} \bigr). \end{aligned} $$
(2.39)
Substituting (2.39) into (2.38), we obtain
$$ \frac {d}{dt} \bigl(e+ \Vert \nabla \rho \Vert _{L^{p}} \bigr)\leqslant C A(t) \ln \bigl(e+ \Vert \nabla \rho \Vert _{L^{p}} \bigr), $$
(2.40)
where
$$ \begin{aligned} A(t)\triangleq{}& C +C \bigl( \Vert \operatorname {div}\textbf {u}\Vert _{L^{\infty }}+ \Vert \nabla \times \textbf {u}\Vert _{L^{\infty }}+ \Vert \sqrt{\rho } \dot{\textbf {u}} \Vert _{L^{p}}+ \Vert \textbf {B}\cdot \nabla \textbf {B}\Vert _{L^{p}} \bigr) \\ &{} + C \bigl( \Vert \operatorname {div}\textbf {u}\Vert _{L^{\infty }}+ \Vert \nabla \times \textbf {u}\Vert _{L^{\infty }} \bigr) \ln \bigl(e+ \Vert \sqrt{\rho } \dot{\textbf {u}} \Vert _{L^{p}}+ \Vert \textbf {B}\cdot \nabla \textbf {B}\Vert _{L^{p}} \bigr). \end{aligned} $$
It follows from Lemma 2.3 and the relation \(\ln (e+y) \leqslant (e+y)^{\delta }\) for any \(y \geqslant 0\) and \(\delta >0\) that
$$ \int _{0}^{T} A(t)\,dt \leqslant C(T), $$
which, together with (2.40), yields
$$ \sup_{0\leqslant t\leqslant T} \bigl\Vert \nabla \rho (t) \bigr\Vert _{L^{p}} \leqslant C(T), \quad \forall p\in (3,6). $$
(2.41)
In terms of (2.7), (2.30), (2.37), (2.41) and the Sobolev embedding inequality, we obtain that for any p, q being as the ones in (2.31),
$$ \begin{aligned} & \int _{0}^{T} \bigl( \bigl\Vert \nabla ^{2}\textbf {u}\bigr\Vert _{L^{p}}^{q}+ \Vert \nabla \textbf {u}\Vert _{L^{\infty }}^{q} \bigr)\,dt \\ &\quad \leqslant C \int _{0}^{T} \bigl(1+ \bigl\Vert \nabla ^{2}\textbf {u}\bigr\Vert _{L^{p}}^{q} \bigr)\,dt \\ & \quad \leqslant C \int _{0}^{T} \bigl(1+ \Vert \sqrt{\rho } \dot{ \textbf {u}} \Vert _{L^{p}}^{q}+ \Vert \nabla \rho \Vert _{L^{p}}^{q}+ \bigl\Vert \textbf {B}\cdot \nabla ^{2} \textbf {B}\bigr\Vert _{L^{p}}^{q} \bigr)\,dt \\ &\quad \leqslant C(T). \end{aligned} $$
(2.42)
Taking \(p=2\) in (2.36), we have
$$ \begin{aligned} \frac {d}{dt} \Vert \nabla \rho \Vert _{L^{2}} &\leqslant C \bigl( \Vert \nabla \textbf {u}\Vert _{L^{\infty }} \Vert \nabla \rho \Vert _{L^{2}}+ \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}} \bigr) \\ &\leqslant C \bigl( \Vert \nabla \textbf {u}\Vert _{L^{\infty }}^{q}+1 \bigr) \Vert \nabla \rho \Vert _{L^{2}}+C \bigl(1+ \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{q} \bigr),\quad \forall p>3, \end{aligned} $$
thus, it follows from Gronwall’s inequality that
$$ \sup_{0\leqslant t \leqslant T} \bigl\Vert \nabla \rho (t) \bigr\Vert _{L^{2}} \leqslant C(T). $$
(2.43)
On the other hand, we know from (2.1)1 that
$$ \begin{aligned} \bigl\Vert \rho _{t}(t) \bigr\Vert _{L^{2}} &\leqslant C \bigl( \Vert \nabla \textbf {u}\Vert _{L^{2}}+ \Vert \textbf {u}\Vert _{L^{6}}+ \Vert \nabla \rho \Vert _{L^{3}} \bigr) \\ &\leqslant C \bigl(1+ \Vert \nabla \rho \Vert _{L^{3}} \bigr) \\ &\leqslant C \bigl(1+ \Vert \nabla \rho \Vert _{L^{2}}+ \Vert \nabla \rho \Vert _{L^{p}} \bigr) \\ &\leqslant C(T), \quad \forall p\in (3, 6), \end{aligned} $$
which, together with (2.41)–(2.43), gives (2.35). □
Remark 2.2
It is worth mentioning that the estimates stated in Lemmas 2.2, 2.3, and 2.5 are independent of the lower bound of density.
The next lemma is to exclude the presence of vacuum, which plays an important role in the treatment of \(\|\nabla \textbf {u}\|_{L^{3}}\).
Lemma 2.6
Suppose that if \(\rho _{0}\) satisfies \(\inf_{x \in \mathbb{R}^{3}} \rho _{0}(x) \geqslant \underline{\rho }>0\), then there exists a positive constant \(c(\underline{\rho }, T)\), depending on \(\underline{\rho }\) and T, such that
$$ \rho (x, t)\geqslant c(\underline{\rho }, T), \quad \forall x\in \mathbb{R}^{3}, t\in [0, T], $$
(2.44)
and moreover,
$$ \sup_{0\leqslant t \leqslant T} \bigl(t \bigl\Vert \nabla ^{2} \mathbf{ u} \bigr\Vert _{L^{2}}^{2}+t \Vert \mathbf{ u}_{t} \Vert _{L^{2}}^{2} \bigr)+ \int _{0}^{T} \bigl( \bigl\Vert \nabla ^{2} \mathbf{ u} \bigr\Vert _{L^{2}}^{2}+ \Vert \mathbf{ u}_{t} \Vert _{L^{2}}^{2}+t \Vert \nabla \mathbf{u}_{t} \Vert _{L^{2}}^{2} \bigr)\,dt \leqslant C(T). $$
(2.45)
Proof
We infer from (2.30) that
$$ \rho (x, t)\geqslant \inf_{x \in \mathbb{R}^{3}} \rho _{0}(x)\exp \biggl\{ - \int _{0}^{t} \Vert \operatorname {div}\textbf {u}\Vert _{L^{\infty }}\,ds \biggr\} \geqslant c(\underline{\rho }, T), $$
which leads to the desired estimate (2.44).
Next, due to (2.1)1 and the \(L^{2}\)-theory of elliptic system, we infer from (2.4) and (2.5) that
$$ \begin{aligned} \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}} &\leqslant C \bigl( \Vert \dot{\textbf {u}} \Vert _{L^{2}}+ \Vert \nabla \rho \Vert _{L^{2}}+ \Vert \textbf {B}\Vert _{L^{3}} \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}} \bigr) \\ &\leqslant C \bigl( \Vert \dot{\textbf {u}} \Vert _{L^{2}}+ \Vert \nabla \rho \Vert _{L^{2}}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}} \bigr). \end{aligned} $$
Hence it follows from (2.4), (2.7), (2.9), (2.35), and (2.45) that
$$ \begin{aligned} &\sup_{0\leqslant t\leqslant T} \bigl(t \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2} \bigr)+ \int _{0}^{T} \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2}\,dt \\ &\quad \leqslant C \sup _{0\leqslant t\leqslant T} \bigl(t \Vert \dot{\textbf {u}} \Vert _{L^{2}}^{2}+t \Vert \nabla \rho \Vert _{L^{2}}^{2}+t \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigr) \\ &\qquad {} +C \int _{0}^{T} \bigl( \Vert \dot{\textbf {u}} \Vert _{L^{2}}^{2}+ \Vert \nabla \rho \Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigr)\,dt \\ &\quad \leqslant C(T). \end{aligned} $$
(2.46)
Recalling the definition of the material derivative, we have
$$ \Vert \textbf {u}_{t} \Vert _{L^{2}}^{2}\leqslant \Vert \dot{\textbf {u}} \Vert _{L^{2}}^{2}+ \Vert \textbf {u}\cdot \nabla \textbf {u}\Vert _{L^{2}}^{2} \leqslant C \bigl( \Vert \dot{\textbf {u}} \Vert _{L^{2}}^{2}+ \Vert \nabla \textbf {u}\Vert _{L^{2}}^{2} \Vert \nabla \textbf {u}\Vert _{H^{1}}^{2} \bigr), $$
so that it follows from (2.4), (2.7), (2.9), (2.44), and (2.46) that
$$ \sup_{0\leqslant t\leqslant T} \bigl(t \Vert \textbf {u}_{t} \Vert _{L^{2}}^{2} \bigr)+ \int _{0}^{T} \Vert \textbf {u}_{t} \Vert _{L^{2}}^{2}\,dt \leqslant C(T), $$
(2.47)
and analogously,
$$ \begin{aligned} \int _{0}^{T}t \Vert \nabla \textbf {u}_{t} \Vert _{L^{2}}^{2}\,dt & \leqslant \int _{0}^{T} t \Vert \nabla \dot{\textbf {u}} \Vert _{L^{2}}^{2}\,dt+ \int _{0}^{T}t \bigl\Vert \nabla ( \textbf {u}\cdot \nabla \textbf {u}) \bigr\Vert _{L^{2}}^{2}\,dt \\ &\leqslant C+C \int ^{T}_{0}t \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert ^{4}_{L^{2}}\,dt+C \int ^{T}_{0} t \Vert \textbf {u}\Vert ^{2}_{L^{\infty }} \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert ^{2}_{L^{2}}\,dt \\ &\leqslant C+C \int ^{T}_{0}t \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert ^{4}_{L^{2}}\,dt \\ &\leqslant C. \end{aligned} $$
(2.48)
The combination of (2.46)–(2.48) leads to the desired estimate (2.45). □
The following technical lemma is concerned with the estimate of \(\|\nabla \textbf {u}\|_{L^{3}}\), which plays an essential role in the entire analysis.
Lemma 2.7
Assume that the conditions of Theorem 1.1hold. Then
$$ \sup_{0\leqslant t \leqslant T} \Vert \nabla \mathbf{ u} \Vert _{L^{3}} \leqslant C(T). $$
(2.49)
Proof
In terms of the standard \(L^{p}\)-estimate, to bound \(\|\nabla \textbf {u}\|_{L^{p}}\) with \(1< p<\infty \), it suffices to show that both \(\| \operatorname{div} \textbf {u}\|_{L^{p}}\) and \(\|\operatorname{curl} \textbf {u}\|_{L^{p}}\) are bounded. To do this, we first operate div and curl to both sides of (2.1)2 to get that
$$ \begin{aligned} &\rho (\operatorname{div} \textbf {u})_{t}+\rho \textbf {u}\cdot \nabla (\operatorname{div} \textbf {u})-(2\mu + \lambda )\Delta (\operatorname{div} \textbf {u}) \\ &\quad =-(\nabla \rho )\cdot \textbf {u}_{t} -\partial _{j}\bigl( \rho u^{i}\bigr) \partial _{i} u^{j}-\Delta P+ \partial _{j} B^{i} \partial _{i} B^{j}- \frac {1}{2}\Delta \vert \textbf {B}\vert ^{2} \end{aligned} $$
(2.50)
and
$$ \begin{aligned} &\rho (\operatorname{curl} \textbf {u})_{t}+\rho \textbf {u}\cdot \nabla (\operatorname{curl} \textbf {u})-\mu \Delta (\operatorname{curl} \textbf {u}) \\ &\quad =-(\nabla \rho )\times \textbf {u}_{t}-\nabla \bigl(\rho \textbf {u}^{i}\bigr) \times (\partial _{i} \textbf {u})+\bigl(\nabla B^{i}\bigr) \times (\partial _{i} \textbf {B})+\textbf {B}\cdot \nabla (\operatorname{curl} \textbf {B}) . \end{aligned} $$
(2.51)
We shall divide the proofs into three steps.
Step I. Estimation of \(\|\operatorname {div}\textbf {u}\|_{L^{3}}\).
Multiplying (2.50) by \(|\operatorname {div}u|\operatorname {div}u\) and integrating by parts over \(\mathbb{R}^{3}\), we obtain
$$ \begin{aligned} &\frac {1}{3}\frac {d}{dt} \int \rho \vert \operatorname {div}\textbf {u}\vert ^{3}\,dx+(2 \mu +\lambda ) \int \bigl( \vert \operatorname {div}\textbf {u}\vert \vert \nabla \operatorname {div}\textbf {u}\vert ^{2}+ \vert \operatorname {div}\textbf {u}\vert \bigl\vert \nabla \vert \operatorname {div}\textbf {u}\vert \bigr\vert ^{2} \bigr)\,dx \\ &\quad = - \int (\textbf {u}_{t}\cdot \nabla \rho ) \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx- \int \partial _{j} \bigl(\rho u^{i}\bigr) \partial _{i} u^{j} \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &\qquad {} + \int \nabla P\cdot \nabla \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx + \int \partial _{j} B^{i} \partial _{i} B^{j} \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &\qquad {} + \int \nabla \vert \textbf {B}\vert ^{2} \cdot \nabla \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \triangleq \sum _{i=1}^{5}J_{i}. \end{aligned} $$
(2.52)
By virtue of (2.1)2, we know that
$$ \begin{aligned} J_{1} ={}&- \int \rho ^{-1} \bigl(\mu \Delta \textbf {u}+(\mu + \lambda ) \nabla \operatorname {div}\textbf {u}-\nabla P-\rho \textbf {u}\cdot \nabla \textbf {u}\bigr)\cdot \nabla \rho \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &{} - \int \rho ^{-1} \biggl(\textbf {B}\cdot \nabla \textbf {B}- \frac {1}{2}\nabla \vert \textbf {B}\vert ^{2} \biggr)\cdot \nabla \rho \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx. \end{aligned} $$
Based on the integration by parts, the first term on the right-hand side can be written as
$$ \begin{aligned} &-\mu \int \rho ^{-1} \Delta \textbf {u}\cdot \nabla \rho \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &\quad =-\mu \int \Delta \textbf {u}\cdot \nabla \ln \rho \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &\quad =\mu \int \bigl(\partial _{i} u^{j}\partial _{j} (\ln \rho ) \bigr)\partial _{i} \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx+ \mu \int \bigl(\partial _{i} u^{j}\partial _{ij}(\ln \rho ) \bigr) \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &\quad =\mu \int \bigl(\partial _{i} u^{j}\partial _{j} (\ln \rho ) \bigr)\partial _{i} \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx- \mu \int (\partial _{i}\operatorname {div}\textbf {u}) \bigl(\partial _{i}( \ln \rho ) \bigr) \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &\qquad {} -\mu \int \bigl(\partial _{i} u^{j}\partial _{i}(\ln \rho ) \bigr)\partial _{j} \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx, \end{aligned} $$
hence
$$ \begin{aligned} J_{1} ={}&- \int \textbf {B}\cdot \nabla \textbf {B}\cdot \nabla ( \ln \rho ) \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &{}+ \frac {1}{2} \int \rho ^{-1} \nabla \vert \textbf {B}\vert ^{2} \cdot \nabla \rho \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &{} + \mu \int \bigl(\partial _{i} u^{j}\partial _{j} (\ln \rho ) \bigr)\partial _{i} \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &{}- \mu \int (\partial _{i}\operatorname {div}\textbf {u}) \bigl(\partial _{i}( \ln \rho ) \bigr) \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &{} -\mu \int \bigl(\partial _{i} u^{j}\partial _{i}(\ln \rho ) \bigr)\partial _{j} \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &{} -( \mu +\lambda ) \int \nabla \operatorname {div}\textbf {u}\cdot \nabla (\ln \rho ) \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &{} + \int \rho ^{-1}\nabla P \cdot \nabla \rho \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx + \int ( \textbf {u}\cdot \nabla \textbf {u})\cdot \nabla \rho \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ \leqslant{}& C \int \vert \nabla \rho \vert \vert \textbf {B}\vert \vert \nabla \textbf {B}\vert \vert \operatorname {div}\textbf {u}\vert ^{2}\,dx+C \int \vert \nabla \rho \vert \vert \nabla \textbf {u}\vert \vert \operatorname {div}\textbf {u}\vert \vert \nabla \operatorname {div}\textbf {u}\vert \,dx \\ &{} + C \int \vert \nabla \rho \vert ^{2} \vert \operatorname {div}\textbf {u}\vert ^{2}\,dx+C \int \vert \nabla \rho \vert \vert \nabla \textbf {u}\vert \vert \textbf {u}\vert \vert \operatorname {div}\textbf {u}\vert ^{2}\,dx \triangleq \sum _{i=1}^{4}J_{1, i}. \end{aligned} $$
(2.53)
The right-hand side terms (2.53) can be estimated as follows. By virtue of (2.7) and (2.34), we obtain
$$ \begin{aligned} J_{1, 1} &\leqslant C \Vert \nabla \rho \Vert _{L^{3}} \Vert \textbf {B}\Vert _{L^{6}} \Vert \nabla \textbf {B}\Vert _{L^{6}} \Vert \operatorname {div}\textbf {u}\Vert _{L^{6}}^{2} \\ &\leqslant C \bigl\Vert \nabla ^{2}\textbf {B}\bigr\Vert _{L^{2}} \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{1/2} \Vert \operatorname {div}\textbf {u}\Vert _{L^{9}}^{3/2} \\ &\leqslant C \bigl\Vert \nabla ^{2}\textbf {B}\bigr\Vert _{L^{2}} \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{1/2} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2} \nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}} \\ &\leqslant \frac {2\mu +\lambda }{8} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2} \nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}}^{2}+C \bigl\Vert \nabla ^{2}\textbf {B}\bigr\Vert _{L^{2}}^{2} \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}, \end{aligned} $$
(2.54)
where the following simple fact was used:
$$ \textstyle\begin{cases} \Vert \operatorname {div}\textbf {u}\Vert _{L^{6}} \leqslant C \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{1/4} \Vert \operatorname {div}\textbf {u}\Vert _{L^{9}}^{3/4}, \\ \Vert \operatorname {div}\textbf {u}\Vert _{L^{9}}= \||\operatorname {div}\textbf {u}|^{3/2}\|_{L^{6}}^{2/3} \leqslant C \Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2}\nabla \operatorname {div}\textbf {u}\Vert _{L^{2}}^{2/3}. \end{cases} $$
(2.55)
Next, for the second term \(J_{1, 2}\), we have from (2.35), (2.55), and the Cauchy–Schwarz inequality that
$$ \begin{aligned} J_{1, 2} &\leqslant C \Vert \nabla \rho \Vert _{L^{p}} \Vert \nabla \textbf {u}\Vert _{L^{\frac {9p}{4p-9}}} \Vert \operatorname {div}\textbf {u}\Vert _{L^{9}}^{1/2} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2} \nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}} \\ &\leqslant \frac {2\mu +\lambda }{16} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2} \nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}}^{2}+C \Vert \nabla \textbf {u}\Vert _{L^{ \frac {9p}{4p-9}}}^{2} \Vert \operatorname {div}\textbf {u}\Vert _{L^{9}} \\ &\leqslant \frac {2\mu +\lambda }{8} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2} \nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}}^{2}+C \Vert \nabla \textbf {u}\Vert _{L^{ \frac {9p}{4p-9}}}^{3}, \end{aligned} $$
(2.56)
and similarly,
$$ \begin{aligned} J_{1, 3}+J_{1, 4} & \leqslant C \Vert \nabla \rho \Vert _{L^{3}}^{2} \Vert \operatorname {div}\textbf {u}\Vert _{L^{6}}^{2}+C \Vert \nabla \rho \Vert _{L^{3}} \Vert \nabla \textbf {u}\Vert _{L^{6}} \Vert \textbf {u}\Vert _{L^{6}} \Vert \operatorname {div}\textbf {u}\Vert _{L^{6}}^{2} \\ &\leqslant C \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2}+C \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}} \Vert \operatorname {div}\textbf {u}\Vert _{L^{6}}^{2} \\ &\leqslant C \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2}+C \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}} \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{1/2} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2} \nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}} \\ &\leqslant \frac {2\mu +\lambda }{8} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2} \nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}}^{2}+C \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2} \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}+C \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2}. \end{aligned} $$
(2.57)
Inserting (2.54)–(2.57) into (2.53), we see that
$$ \begin{aligned} J_{1}\leqslant{}& \frac {3(2\mu +\lambda )}{8} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2}\nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}}^{2}+C \bigl( \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2}+ \Vert \nabla \textbf {u}\Vert _{L^{ \frac {9p}{4p-9}}}^{3} \bigr) \\ &{} +C \bigl( \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2} \bigr) \bigl(1+ \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{2} \bigr),\quad 3< p< 6. \end{aligned} $$
(2.58)
For \(J_{2}\), we have from (2.4), (2.7), (2.35), and (2.54) that
$$ \begin{aligned} J_{2} &\leqslant C \int \vert \nabla \rho \vert \vert \textbf {u}\vert \vert \nabla \textbf {u}\vert \vert \operatorname {div}\textbf {u}\vert ^{2}\,dx+C \int \vert \rho \vert \vert \nabla \textbf {u}\vert ^{2} \vert \operatorname {div}\textbf {u}\vert ^{2}\,dx \\ &\leqslant C \Vert \nabla \rho \Vert _{L^{3}} \Vert \textbf {u}\Vert _{L^{6}} \Vert \nabla \textbf {u}\Vert _{L^{6}} \Vert \operatorname {div}\textbf {u}\Vert _{L^{6}}^{2}+C \Vert \nabla \textbf {u}\Vert _{L^{6}}^{2} \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{2} \\ &\leqslant \frac {2\mu +\lambda }{8} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2}\nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}}^{2}+C \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2} \bigl(1+ \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{2} \bigr), \end{aligned} $$
(2.59)
and similarly,
$$ \begin{aligned} J_{3} &\leqslant C \int \vert \nabla \rho \vert \vert \operatorname {div}\textbf {u}\vert \vert \nabla \operatorname {div}\textbf {u}\vert \,dx \\ &\leqslant \Vert \nabla \rho \Vert _{L^{3}} \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{1/2} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2}\nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}} \\ &\leqslant \frac {2\mu +\lambda }{4} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2}\nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}}^{2}+C \bigl(1+ \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{2} \bigr). \end{aligned} $$
(2.60)
Noticing that \(\operatorname {div}\textbf {B}=0\), we have from (2.5) and the integration by parts that
$$ \begin{aligned} J_{4}+J_{5} &=-C \int B^{i} \partial _{i} B^{j} \partial _{j} \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx+C \int \partial _{j}B^{i} B^{i} \partial _{j} \bigl( \vert \operatorname {div}\textbf {u}\vert \operatorname {div}\textbf {u}\bigr)\,dx \\ &\leqslant C \int \vert \textbf {B}\vert \vert \nabla \textbf {B}\vert \vert \operatorname {div}\textbf {u}\vert \vert \nabla \operatorname {div}\textbf {u}\vert \,dx \\ &\leqslant \Vert \textbf {B}\Vert _{L^{3}} \Vert \nabla \textbf {B}\Vert _{L^{6}} \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{1/2} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2}\nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}} \\ &\leqslant \frac {2\mu +\lambda }{4} \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2}\nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}}^{2}+C \bigl\Vert \nabla ^{2}\textbf {B}\bigr\Vert _{L^{2}}^{2} \bigl(1+ \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{2} \bigr). \end{aligned} $$
(2.61)
Substituting (2.58)–(2.61) into (2.52), we have
$$ \begin{aligned} &\frac {d}{dt} \int \rho \vert \operatorname {div}\textbf {u}\vert ^{3}\,dx+ \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2}\nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}}^{2} \\ &\quad \leqslant \bigl( 1+ \bigl\Vert \nabla ^{2}\textbf {B}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2}\textbf {u}\bigr\Vert _{L^{2}}^{2} \bigr) \bigl(1+ \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{2} \bigr)+C \Vert \nabla \textbf {u}\Vert _{L^{\frac {9p}{4p-9}}}^{3}. \end{aligned} $$
(2.62)
Step II. Estimation of \(\|\operatorname{curl} \textbf {u}\|_{L^{3}}\).
Multiplying (2.51) by \(|\operatorname{curl} \textbf {u}| \operatorname{curl} \textbf {u}\) and integrating by parts over \(\mathbb{R}^{3}\), we get
$$ \begin{aligned} &\frac {1}{3}\frac {d}{dt} \int \rho \vert \operatorname{curl} \textbf {u}\vert ^{3}\,dx+\mu \int \bigl( \vert \operatorname{curl} \textbf {u}\vert \vert \nabla \operatorname{curl} \textbf {u}\vert ^{2}+ \vert \operatorname{curl} \textbf {u}\vert \bigl\vert \nabla \vert \operatorname{curl} \textbf {u}\vert \bigr\vert ^{2} \bigr)\,dx \\ &\quad = \int \bigl(\nabla B^{i}\bigr) \times (\partial _{i} \textbf {B})\cdot \bigl( \vert \operatorname{curl} \textbf {u}\vert \operatorname{curl} \textbf {u}\bigr)\,dx \\ &\qquad {}+ \int \textbf {B}\cdot \nabla (\operatorname{curl} \textbf {B})\cdot \bigl( \vert \operatorname{curl} \textbf {u}\vert \operatorname{curl} \textbf {u}\bigr)\,dx \\ &\qquad {} - \int (\nabla \rho \times \textbf {u}_{t} ) \bigl( \vert \operatorname{curl} \textbf {u}\vert \operatorname{curl} \textbf {u}\bigr)\,dx \\ &\qquad {}- \int \nabla \bigl(\rho u^{i}\bigr) \times (\partial _{i} \textbf {u}) \bigl( \vert \operatorname{curl} \textbf {u}\vert \operatorname{curl} \textbf {u}\bigr)\,dx \\ &\quad \triangleq \sum_{i=1}^{4} N_{i}. \end{aligned} $$
(2.63)
The right-hand side terms of (2.63) can be estimated as follows. Since it holds by the Cauchy–Schwarz inequality that
$$ N_{1} \leqslant C \int \vert \nabla \textbf {B}\vert ^{2} \vert \operatorname{curl} \textbf {u}\vert ^{2}\,dx \leqslant C \Vert \nabla \textbf {B}\Vert _{L^{6}}^{2} \Vert \operatorname{curl} \textbf {u}\Vert _{L^{3}}^{2} \leqslant C \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \Vert \operatorname{curl} \textbf {u}\Vert _{L^{3}}^{2}. $$
(2.64)
Thanks to \(\operatorname {div}\textbf {B}=0\), we obtain from the integration by parts that
$$ \begin{aligned} N_{2} &\leqslant C \int \vert \textbf {B}\vert \vert \nabla \textbf {B}\vert \vert \operatorname{curl} \textbf {u}\vert \vert \nabla \operatorname{curl} \textbf {u}\vert \,dx \\ &\leqslant C \Vert \textbf {B}\Vert _{L^{3}} \Vert \nabla \textbf {B}\Vert _{L^{6}} \Vert \operatorname{curl} \textbf {u}\Vert _{L^{3}}^{1/2} \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}} \\ &\leqslant \frac {\mu }{4} \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigl(1+ \Vert \operatorname{curl} \textbf {u}\Vert _{L^{3}}^{2} \bigr). \end{aligned} $$
(2.65)
In terms of the following simple fact that
$$ \mu \Delta \textbf {u}+(\mu +\lambda )\nabla \operatorname {div}\textbf {u}=(2\mu + \lambda )\nabla \operatorname {div}\textbf {u}-\mu \nabla \times (\operatorname{curl} \textbf {u}), $$
we have from (2.1)2 that
$$ \begin{aligned} N_{3} ={}&- \int (\nabla \ln \rho )\times \biggl(\textbf {B}\cdot \nabla \textbf {B}- \frac {1}{2}\nabla \vert \textbf {B}\vert ^{2} \biggr) \cdot \bigl( \vert \operatorname{curl} \textbf {u}\vert \operatorname{curl} \textbf {u}\bigr)\,dx \\ &{} +\mu \int (\nabla \ln \rho )\times (\nabla \times \operatorname{curl} \textbf {u}) \cdot \bigl( \vert \operatorname{curl} \textbf {u}\vert \operatorname{curl} \textbf {u}\bigr)\,dx \\ &{} -(2\mu +\lambda ) \int (\nabla \ln \rho )\times (\nabla \operatorname {div}\textbf {u}) \cdot \bigl( \vert \operatorname{curl} \textbf {u}\vert \operatorname{curl} \textbf {u}\bigr)\,dx \\ &{} + \int (\nabla \ln \rho )\times (\nabla P) \cdot \bigl( \vert \operatorname{curl} \textbf {u}\vert \operatorname{curl} \textbf {u}\bigr)\,dx \\ &{} + \int (\nabla \ln \rho )\times (\rho \textbf {u}\cdot \nabla \textbf {u})\cdot \bigl( \vert \operatorname{curl} \textbf {u}\vert \operatorname{curl} \textbf {u}\bigr)\,dx \\ \triangleq{}& \sum_{i=1}^{5} N_{3, i}. \end{aligned} $$
(2.66)
It is easy to get from (2.35) and the Cauchy–Schwarz inequality that
$$ \begin{aligned} N_{3,1} &\leqslant C \int \vert \nabla \rho \vert \vert \textbf {B}\vert \vert \nabla \textbf {B}\vert \vert \operatorname{curl} \textbf {u}\vert ^{2}\,dx \\ &\leqslant C \Vert \nabla \rho \Vert _{L^{3}} \Vert \textbf {B}\Vert _{L^{6}} \Vert \nabla \textbf {B}\Vert _{L^{6}} \Vert \operatorname{curl} \textbf {u}\Vert _{L^{6}}^{2} \\ &\leqslant \frac {\mu }{16} \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigl(1+ \Vert \operatorname{curl} \textbf {u}\Vert _{L^{3}}^{2} \bigr). \end{aligned} $$
(2.67)
By virtue of (2.35) and (2.55),
$$ \begin{aligned} N_{3,2} &\leqslant C \int \vert \nabla \rho \vert \vert \nabla \operatorname{curl} \textbf {u}\vert \vert \nabla \textbf {u}\vert \vert \operatorname{curl} \textbf {u}\vert \,dx \\ &\leqslant C \Vert \nabla \rho \Vert _{L^{p}} \Vert \nabla \textbf {u}\Vert _{L^{ \frac {9p}{4p-9}}} \Vert \operatorname{curl} \textbf {u}\Vert _{L^{9}}^{1/2} \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}} \\ &\leqslant \frac {\mu }{16} \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}}^{2}+ \Vert \nabla \textbf {u}\Vert _{L^{ \frac {9p}{4p-9}}}^{3}. \end{aligned} $$
(2.68)
A key observation for dealing with \(N_{3, 3}\) lies in the fact that for smooth scalar/vector functions f, g, and h,
$$ \int (\nabla f\times \nabla g)\cdot h \,dx=- \int g(\nabla f)\cdot ( \nabla \times h)\,dx, $$
so that, by taking \(f=\ln \rho \), \(g=\operatorname {div}\textbf {u}\), and \(h=|\operatorname{curl} \textbf {u}|\operatorname{curl} \textbf {u}\), we find
$$ \begin{aligned} N_{3,3} &=(2\mu +\lambda ) \int \bigl(\nabla \times \bigl( \vert \operatorname{curl} \textbf {u}\vert \operatorname{curl} \textbf {u}\bigr) \bigr) \cdot (\nabla \ln \rho ) (\operatorname{div} \textbf {u})\,dx \\ &\leqslant C \int \vert \nabla \rho \vert \vert \nabla \operatorname{curl} \textbf {u}\vert \vert \nabla \textbf {u}\vert \vert \operatorname{curl} \textbf {u}\vert \,dx \\ &\leqslant C \Vert \nabla \rho \Vert _{L^{p}} \Vert \nabla \textbf {u}\Vert _{L^{ \frac {9p}{4p-9}}} \Vert \operatorname{curl} \textbf {u}\Vert _{L^{9}}^{1/2} \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}} \\ &\leqslant \frac {\mu }{16} \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}}^{2}+ \Vert \nabla \textbf {u}\Vert _{L^{ \frac {9p}{4p-9}}}^{3}. \end{aligned} $$
(2.69)
Next, for \(N_{3, 4}\), we have from (2.4) and (2.57) that
$$ N_{3, 4}\leqslant C \int \vert \nabla \rho \vert ^{2} \vert \operatorname{curl} \textbf {u}\vert ^{2}\,dx \leqslant C \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2}, $$
(2.70)
and
$$ \begin{aligned} N_{3,5} &\leqslant C \int \vert \nabla \rho \vert \vert \rho \vert \vert \textbf {u}\vert \vert \nabla \textbf {u}\vert \vert \operatorname{curl} \textbf {u}\vert ^{2}\,dx \\ &\leqslant C \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}} \Vert \operatorname{curl} \textbf {u}\Vert _{L^{6}}^{2}\,dx \\ &\leqslant \frac {\mu }{16} \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigl(1+ \Vert \operatorname{curl} \textbf {u}\Vert _{L^{3}}^{2} \bigr). \end{aligned} $$
(2.71)
Inserting (2.67)–(2.71) into (2.66), we have
$$ \begin{aligned} N_{3}\leqslant{}& \frac {\mu }{4} \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}}^{2}+C \bigl( \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigr) \bigl(1+ \Vert \operatorname{curl} \textbf {u}\Vert _{L^{3}}^{2} \bigr) \\ &{} +C \Vert \nabla \textbf {u}\Vert _{L^{\frac {9p}{4p-9}}}^{3}. \end{aligned} $$
(2.72)
Similarly, it is easily seen from (2.59) that
$$ \begin{aligned} N_{4} &\leqslant C \int \bigl( \vert \nabla \rho \vert \vert \textbf {u}\vert \vert \nabla \textbf {u}\vert + \vert \rho \vert \vert \nabla \textbf {u}\vert ^{2} \bigr) \vert \operatorname{curl} \textbf {u}\vert ^{2}\,dx \\ &\leqslant C \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}} \Vert \operatorname{curl} \textbf {u}\Vert _{L^{6}}^{2}\,dx \\ &\leqslant \frac {\mu }{4} \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2} \bigl(1+ \Vert \operatorname{curl} \textbf {u}\Vert _{L^{3}}^{2} \bigr). \end{aligned} $$
(2.73)
Thus, putting (2.64), (2.65), (2.72), and (2.73) into (2.63), we obtain
$$ \begin{aligned} &\frac {d}{dt} \int \rho \vert \operatorname{curl} \textbf {u}\vert ^{3}\,dx+ \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}}^{2} \\ &\quad \leqslant C \bigl( \bigl\Vert \nabla ^{2} \textbf {u}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2} \textbf {B}\bigr\Vert _{L^{2}}^{2} \bigr) \bigl(1+ \Vert \operatorname{curl} \textbf {u}\Vert _{L^{3}}^{2} \bigr)+C \Vert \nabla \textbf {u}\Vert _{L^{ \frac {9p}{4p-9}}}^{3}. \end{aligned} $$
(2.74)
Step III. Closing the estimations.
In view of (2.62) and (2.74), we have
$$ \begin{aligned} &\frac {d}{dt} \bigl( \bigl\Vert \rho ^{1/3} \operatorname {div}\textbf {u}\bigr\Vert _{L^{3}}^{3}+ \bigl\Vert \rho ^{1/3} \operatorname{curl} \textbf {u}\bigr\Vert _{L^{3}}^{3}\,dx \bigr) \\ &\qquad {} + \bigl\Vert \vert \operatorname {div}\textbf {u}\vert ^{1/2}\nabla \operatorname {div}\textbf {u}\bigr\Vert _{L^{2}}^{2}+dx+ \bigl\Vert \vert \operatorname{curl} \textbf {u}\vert ^{1/2} \nabla \operatorname{curl} \textbf {u}\bigr\Vert _{L^{2}}^{2} \\ & \quad \leqslant \bigl( 1+ \bigl\Vert \nabla ^{2}\textbf {B}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2}\textbf {u}\bigr\Vert _{L^{2}}^{2} \bigr) \bigl(1+ \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{2}+ \Vert \operatorname{curl} \textbf {u}\Vert _{L^{3}}^{2} \bigr)+C \Vert \nabla \textbf {u}\Vert _{L^{\frac {9p}{4p-9}}}^{3}. \end{aligned} $$
(2.75)
Since it holds that
$$ 1< \frac {18-2p}{p}\leqslant 2 \quad \text{and}\quad 1\leqslant \frac {5p-18}{p}< 2\quad \text{for } \frac {9}{2}\leqslant p< 6, $$
thus
$$ \Vert \nabla \textbf {u}\Vert _{L^{\frac {9p}{4p-9}}}^{3} \leqslant C \Vert \nabla \textbf {u}\Vert _{L^{3}}^{\frac {5p-18}{p}} \Vert \nabla \textbf {u}\Vert _{L^{6}}^{\frac {18-2p}{p}}\leqslant C \bigl(1+ \Vert \nabla \textbf {u}\Vert _{L^{3}}^{2} \bigr) \bigl(1+ \Vert \nabla \textbf {u}\Vert _{H^{1}}^{2} \bigr). $$
(2.76)
Since it holds that
$$ \Vert \nabla \textbf {u}\Vert _{L^{p}}\leqslant C \bigl( \Vert \operatorname{div} \textbf {u}\Vert _{L^{p}}+ \Vert \operatorname{curl} \textbf {u}\Vert _{L^{p}} \bigr), \quad \forall p>1, $$
together with (2.7), (2.45), (2.75), (2.76), we have
$$ \begin{aligned} \sup_{0\leqslant t \leqslant T} \Vert \nabla \textbf {u}\Vert _{L^{3}}^{3}\leqslant{}& C\sup _{0\leqslant t \leqslant T} \bigl( \Vert \operatorname {div}\textbf {u}\Vert _{L^{3}}^{3}+ \Vert \operatorname{curl} \textbf {u}\Vert _{L^{3}}^{3} \bigr) \\ \leqslant{}& C+C \int _{0}^{T} \bigl( \bigl\Vert \nabla ^{2}\textbf {B}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2}\textbf {u}\bigr\Vert _{L^{2}}^{2} \bigr) \bigl(1+ \Vert \nabla \textbf {u}\Vert _{L^{3}}^{2} \bigr)\,dt \\ &{} +C \int _{0}^{T} \bigl(1+ \Vert \nabla \textbf {u}\Vert _{L^{3}}^{2} \bigr) \bigl(1+ \Vert \nabla \textbf {u}\Vert _{H^{1}}^{2} \bigr)\,dt \\ \leqslant{}& C+C \int _{0}^{T} \bigl( \bigl\Vert \nabla ^{2}\textbf {B}\bigr\Vert _{L^{2}}^{2}+ \bigl\Vert \nabla ^{2}\textbf {u}\bigr\Vert _{L^{2}}^{2} \bigr) \Vert \nabla \textbf {u}\Vert _{L^{3}}^{2}\,dt, \end{aligned} $$
(2.77)
so that, combined with (2.7), (2.45), (2.77), and Gronwall’s inequality, this leads to (2.49). □