- Research
- Open access
- Published:
Stability for generalized Caputo proportional fractional delay integro-differential equations
Boundary Value Problems volume 2022, Article number: 14 (2022)
Abstract
A scalar nonlinear integro-differential equation with time-variable and bounded delays and generalized Caputo proportional fractional derivative is considered. The main goal of this paper is to study the stability properties of the zero solution. Results are given concerning stability, exponential stability, asymptotic stability, and boundedness of solutions. The investigations are based on an application of a quadratic Lyapunov function, its generalized Caputo proportional derivative, and a modification of the Razumikhin approach. Some auxiliary properties of the generalized Caputo proportional derivative are proved. Five illustrative examples are included.
1 Introduction
In this paper, we study stability for a very general class of fractional delay integro-differential equations. We use a recently introduced concept [11] of the so-called generalized Caputo proportional fractional derivative. This derivative is a generalization of the Caputo fractional derivative. For the study of various types of fractional differential equations, we refer the reader to the classical book [19]. In [4, 6, 7, 9, 13, 14, 20], Lyapunov functions and functionals are used to study the stability of various fractional-order nonlinear dynamic systems with classical Caputo and Riemann–Liouville fractional derivatives and for ordinary differential equations with state delays in [21]. Following the introduction [11] of the generalized Caputo proportional fractional derivative, some studies concerning this derivative were contained in [1–3, 5, 10, 15–18].
In this paper, we apply Lyapunov functions to study some stability properties of integro-differential delay equations with generalized Caputo proportional fractional derivatives. We consider the case of bounded delays that are variable in time. We develop some necessary tools for generalized Caputo proportional fractional derivatives, starting with an important inequality concerning an estimate of that derivative of quadratic functions. A modified Razumikhin condition is developed and used to show the main result, conditions that guarantee the stability of the zero solution with zero initial function. From there, we give results concerning the boundedness of all solutions, as well as results about exponential stability and asymptotic stability.
The organization of the paper is as follows. In Sect. 2, the problem is stated and essential assumptions and definitions are given. In Sect. 3, we prove several auxiliary results about generalized Caputo proportional fractional derivatives. Section 4 contains the main results as well as a comparison with the recent paper [8]. The paper concludes with Sect. 5, in which five detailed examples are offered.
2 Problem statement
Consider the fractional delay integro-differential equation with generalized Caputo proportional fractional derivative
where we assume throughout this paper
- \((\mathrm{C}_{0})\):
-
\(t_{0}\geq 0\), \(\alpha \in (0,1)\), \(\rho \in (0,1]\),
\({}_{t_{0}}^{\mathrm{C}}\!{\mathcalligra{D}}^{\alpha ,\rho }x\) is the generalized Caputo proportional fractional derivative of \(x\in \mathrm{C}^{1}([t_{0},\infty ),\mathbb{R})\),
-
\(g_{k}:[t_{0},\infty )\to [0,\tau _{k}]\), \(\tau _{k}\geq 0\), \(k=1,2,\ldots ,n\),
-
\(\phi \in \mathrm{C}([-\tau ,0],\mathbb{R})\), \(\tau =\max_{k=1,2,\ldots ,n}\tau _{k}\),
-
\(F:[t_{0},\infty )\times \mathbb{R}\to \mathbb{R}\), and
-
\(f_{k}:[t_{0}-\tau ,\infty )\times \mathbb{R}\to \mathbb{R}\), \(C_{k}:[t_{0},\infty )\times [t_{0}-\tau ,\infty )\to \mathbb{R}\), \(\psi _{k}:[t_{0},\infty )\times \mathbb{R}^{2}\to \mathbb{R}\) for \(k=1,2,\ldots ,n\).
Remark 2.1
Everywhere in this paper, rather than giving conditions that imply the existence and uniqueness of solutions of (2.1), we will assume that for any initial function \(\phi \in \mathrm{C}([-\tau ,0],\mathbb{R})\), the initial value problem (2.1) has a unique solution defined for \(t\geq t_{0}\).
We recall that the generalized proportional fractional integral and the generalized Caputo proportional fractional derivative of a function \(u:[a,\infty )\to \mathbb{R}\) are defined, respectively, by (as long as all integrals are well defined, see [11])
and
where
Remark 2.2
The generalized proportional fractional integral \({}_{a}\!{\mathcalligra{I}}^{\beta ,\rho }u\) is defined also for \(\beta \in (-1,0)\) since \(\Gamma (\beta )<0\) exists.
Remark 2.3
If \(\rho =1\), then the generalized Caputo proportional fractional derivative is reduced to the classical Caputo fractional derivative.
Remark 2.4
If \(u(t)=e^{\frac{\rho -1}{\rho }(t-c)}\) for \(t\geq a\), where \(c\in \mathbb{R}\), then the relation
is known from [11, Remark 3.2].
3 Auxiliary results
The next result about the generalized Caputo proportional fractional derivative is new, and it is used twice in the remainder of the paper. It also will be of valuable use any time the generalized Caputo proportional fractional derivative is studied.
Lemma 3.1
If there exists \(t>a\) such that \(u\in \mathrm{C}^{1}([a,t],\mathbb{R})\) satisfies \(u(t)=0\), then
Proof
Let \(u\in \mathrm{C}^{1}([a,t],\mathbb{R})\) and \(u(t)=0\). We denote
Now, we integrate by parts to obtain
where we used L’Hôpital’s rule to find
completing the proof. □
Now, we prove three results that will be used in the derivation of our main results in the next section.
Lemma 3.2
If \(u\in \mathrm{C}^{1}([a,\infty ),\mathbb{R})\), then
Proof
We fix \(t>a\) and define the function \(v:[a,t]\to [0,\infty )\) by
Note that \(v\in \mathrm{C}^{1}([a,t],\mathbb{R})\) and \(v(t)=0\), so v satisfies the assumptions of Lemma 3.1, and therefore, from (3.1) and the inequalities \(v(s)\geq 0\) and \(\Gamma (-\alpha )<0\) for \(\alpha \in (0,1)\), it follows \(({}_{a}^{\mathrm{C}}\!{\mathcalligra{D}}^{\alpha ,\rho }v )(t)\leq 0\). Thus, since
we obtain
where the last inequality follows from Lemma 3.1 because \(v(s)\geq 0\) and since \(\Gamma (-\alpha )<0\) for \(\alpha \in (0,1)\). □
Lemma 3.3
Let \(\phi \in \mathrm{C}([-\tau ,0],\mathbb{R})\) and assume that
is a solution of (2.1). If for any \(t\geq t_{0}\) such that
the inequality
holds, then
Proof
Let \(x=x(\cdot ,t_{0},\phi )\) be a solution of (2.1). We define
where
Observe that
We claim
from which (3.5) would follow. Assuming that (3.6) is not true, there exists \(t>t_{0}\) such that
Note that \(\eta \in \mathrm{C}^{1}([t_{0},t],\mathbb{R})\) and \(\eta (t)=0\), hence η satisfies the assumptions of Lemma 3.1. According to Lemma 3.1 and the choice of the point t, we have \(({}_{t_{0}}^{\mathrm{C}}\!{\mathcalligra{D}}^{\alpha ,\rho }\eta )(t)>0\). For any \(\theta \in [-\tau ,0]\), we have
so for this t, (3.3) holds, and thus
where the last inequality follows from Lemma 3.1, contradicting (3.7), proving (3.6), and hence implying (3.5). □
Remark 3.4
The condition “if for a point t such that (3.3) holds, then (3.4) is satisfied” is a (modified) Razumikhin condition. In the case of the Caputo fractional derivative, i.e., \(\rho =1\), this condition reduces to the classical Razumikhin condition (see, for example [12]).
Remark 3.5
The main characteristic of Lyapunov functions applied to delay differential equations is the condition for its derivative, the so-called Razhumikhin condition (for example, the negativity of the derivative). It allows us to assume a restriction on their derivatives only at some point, not for all values of t. This is different from the applications to ordinary differential equations and to Caputo fractional differential equations without delays.
Corollary 3.6
If the conditions of Lemma 3.3are satisfied, then
Proof
This follows from (3.5), \((\mathrm{C}_{0})\), and \(e^{\frac{\rho -1}{\rho }(s-t_{0})}\leq 1\) for \(s\geq t_{0}\). □
4 Stability and boundedness properties
We introduce the following assumptions.
- \((\mathrm{C}_{1})\):
-
\(F\in \mathrm{C}([t_{0},\infty )\times \mathbb{R},\mathbb{R})\), and for \(k=1,2,\ldots ,n\),
-
\(\psi _{k}\in \mathrm{C}([t_{0},\infty )\times \mathbb{R}^{2}, \mathbb{R})\),
-
\(f_{k}\in \mathrm{C}([t_{0}-\tau _{k},\infty )\times \mathbb{R},[0, \infty ))\),
-
\(C_{k}\in \mathrm{C}([t_{0},\infty )\times [t_{0}-\tau ,\infty ), \mathbb{R})\).
-
- \((\mathrm{C}_{2})\):
-
\(F(t,0)=0\), and for \(k=1,2,\ldots ,n\),
-
\(\psi _{k}(t,0,0)=0\) for \(t\geq t_{0}\),
-
\(f_{k}(t,0)=0\) for \(t\geq t_{0}-\tau _{k}\).
-
- \((\mathrm{C}_{3})\):
-
There exist \(b\in \mathrm{C}((t_{0},\infty ),[0,\infty ))\) and, for \(k=1,2,\ldots ,n\), \(A_{k},B_{k}\in \mathrm{C}((t_{0},\infty ),[0,\infty ))\), \(\ell _{k}\in \mathrm{C}((t_{0}-\tau _{k},\infty ),[0,\infty ))\) such that
-
\(xF(t,x)\geq b(t)x^{2}\) for \(t\geq t_{0}\), \(x\in \mathbb{R}\),
-
\(|\psi _{k}(t,x,y)|\leq A_{k}(t)|x|+B_{k}(t)|y|\) for \(t\geq t_{0}\), \(x,y\in \mathbb{R}\),
-
\(|f_{k}(t,x)|\leq \ell _{k}(t)|x|\) for \(t\geq t_{0}-\tau _{k}\), \(x\in \mathbb{R}\).
-
- \((\mathrm{C}_{4})\):
-
The inequality
$$\begin{aligned} b(t)\geq {}&\sum_{k=1}^{n} \biggl[A_{k}(t)+ \frac{1+e^{\frac{1-\rho }{\rho }g_{k}(t)}}{2}B_{k}(t) \\ &{}+ \int _{t-g_{k}(t)}^{t} \frac{1+e^{\frac{1-\rho }{\rho }(t-s)}}{2} \bigl\vert C_{k}(t,s) \bigr\vert \ell _{k}(s) \,\mathrm{d}s \biggr] \end{aligned}$$holds for all \(t\geq t_{0}\).
Our first main result is concerned with stability. Note that, in contrast to ordinary derivatives, fractional derivatives depend significantly on the initial time point \(t_{0}\), which is equal to the lower limit of the derivative. Hence, any change of the initial time leads to a change of the fractional derivative. For this reason, we will not consider the case of uniform stability and study only the cases of stability, exponential stability, and asymptotic stability.
Theorem 4.1
(Stability)
If \((\mathrm{C}_{1})\)–\((\mathrm{C}_{4})\) hold, then the zero solution of (2.1) with zero initial function is stable.
Proof
Let \(x=x(\cdot ,t_{0},\phi )\) be any solution of (2.1). We will show that the assumptions of Lemma 3.3 are satisfied. To this end, suppose \(t\geq t_{0}\) is such that (3.3) is satisfied. If \(s\in [t-g_{k}(t),t]\subset [t-\tau ,t]\), then \(\theta :=s-t\in [-\tau ,0]\), and from (3.3), we obtain
In the calculation below, we also use the “trivial” inequality
Now,
i.e., (3.4) holds. Hence, the assumptions of Lemma 3.3 are satisfied. According to Corollary 3.6, (3.8) holds. This completes the proof. □
Corollary 4.2
(Boundedness)
If \((\mathrm{C}_{1})\), \((\mathrm{C}_{3})\), and \((\mathrm{C}_{4})\) hold, then the solutions of (2.1) are bounded.
Proof
As in the proof of Theorem 4.1, we obtain (3.8) for any solution \(x=x(\cdot ,t_{0},\phi )\) of (2.1), i.e., boundedness is established. □
Remark 4.3
The above-obtained sufficient conditions for stability and boundedness are true for the case of delay Caputo fractional integro-differential equations (\(\rho =1\)). Note that a partial case of (2.1), namely F in a special form, \(\psi _{1}\) not depending on the third variable, \(\psi _{k}=0\) for all \(2\leq k\leq n\), constant delays, and the Caputo fractional derivative is studied in [8], and the stability of the zero solution and boundedness of solutions are proved. A modified Razhumikhin condition and results known in the literature (see [8, Lemma 1, Lemma 4]) are used. However, this condition is not applied adequately in the proof of the result for stability (see [8, Theorem 1]). In the proof of the boundedness [8, Theorem 2], the negativeness of the Caputo fractional derivative of the Lyapunov function is applied for all points t instead of only for those for which the Razhumikhin condition is true (compare with Remark 3.5). Hence, our results do not only generalize theorems from [8], they also remove the inconsistencies in the case of regular Caputo fractional differential equations.
In connection with the above-mentioned remarks and for future reference, we state our results for delay integro-differential equations with Caputo fractional derivative (with \(\rho =1\))
As a partial case of Theorem 4.1 and Corollary 4.2, we obtain the following result.
Corollary 4.4
Assume \((\mathrm{C}_{1})\)–\((\mathrm{C}_{3})\) hold and
Then,
-
the solutions of (4.3) are bounded and the bound depends on the initial function;
-
the zero solution of (4.3) with zero initial function is stable.
From Theorem 4.1 and Corollary 4.2, we obtain the following results.
Corollary 4.5
(Exponential Stability)
Let \(\rho \in (0,1)\). If \((\mathrm{C}_{1})\)–\((\mathrm{C}_{4})\) hold, then the zero solution of (2.1) is exponentially stable.
Proof
Let \(x=x(\cdot ,t_{0},\phi )\) be any solution of (2.1), and suppose the point \(t\geq t_{0}\) is such that (3.3) holds. If \(s\in [t-g_{k}(t),t]\subset [t-\tau ,t]\), then
and from (3.3), we obtain (4.1), i.e.,
holds. Following the ideas of the proof of Theorem 4.1, we obtain
i.e., (3.4) holds. Therefore, the assumptions of Lemma 3.3 are satisfied, and thus
holds, i.e., since \(\rho \in (0,1)\), exponential stability is established. □
Corollary 4.6
(Asymptotic Stability)
Let \(\rho \in (0,1)\). If \((\mathrm{C}_{1})\)–\((\mathrm{C}_{4})\) hold, then the zero solution of (2.1) is asymptotically stable.
Proof
The proof follows from \(\rho \in (0,1)\) and (4.5). □
Remark 4.7
The above-proved results about exponential stability and asymptotic stability are true only for \(\rho \in (0,1)\), i.e., we do not provide sufficient conditions for the case of the Caputo fractional derivative (with \(\rho =1\)). For Caputo fractional derivatives, results concerning the asymptotic stability [8, Theorem 3] and Mittag-Leffler stability [8, Theorem 4] are studied, but the negativeness of the Caputo fractional derivative of the Lyapunov function is applied for all points instead of only for those for which the Razumikhin condition holds (compare with Remark 3.5). Hence, the question about asymptotic stability and Mittag-Leffler stability is still open for delay Caputo fractional integro-differential equations.
5 Examples
We first look at [8, Example 1] with appropriate modifications.
Example 5.1
Consider
Problem (5.1) is a special case of (2.1) with
It is easy to check that
Therefore, \((\mathrm{C}_{1})\)–\((\mathrm{C}_{3})\) are satisfied. Moreover, we have (recall that \(B_{1}(t)\equiv 0\))
so that (4.4) is fulfilled. According to Corollary 4.4, the zero solution is stable.
Example 5.2
Let \(\alpha \in (0,1)\) and let \(\rho \in (0.0247292,1)\). Consider (5.1) with the generalized Caputo proportional fractional derivative instead of the Caputo fractional derivative, i.e., consider
As in Example 5.1, \((\mathrm{C}_{1})\)–\((\mathrm{C}_{3})\) are satisfied. Let us define
We have (recall that \(B_{1}(t)\equiv 0\))
and the first inequality in the last line is due to the fact that the function f defined by \(f(x)=(e^{x}-1)/x\) for \(x\in \mathbb{R}\setminus \{0\}\) and \(f(0)=1\) is strictly increasing. Thus, the condition \((\mathrm{C}_{4})\) is fulfilled. According to Corollary 4.5, the zero solution of (5.2) is exponentially stable.
Example 5.3
Consider
Problem (5.3) is a special case of (2.1) with
It is easy to check that
Therefore, \((\mathrm{C}_{1})\)–\((\mathrm{C}_{3})\) are satisfied. Moreover, we have (recall that \(B_{1}(t)\equiv 0\))
so that (4.4) is fulfilled. According to Corollary 4.4, the zero solution is stable.
Example 5.4
Let \(\alpha \in (0,1)\) and let \(\rho \in (0.3420471,1)\). Consider (5.3) with the generalized Caputo proportional fractional derivative instead of the Caputo fractional derivative, i.e., consider
As in Example 5.3, \((\mathrm{C}_{1})\)–\((\mathrm{C}_{3})\) are satisfied. Let us define
We have for \(t>0\) (recall that \(B_{1}(t)\equiv 0\))
and the last inequality is due to the fact that the function f defined by \(f(x)= ((x-1)e^{x}+1)/x^{2}\) for \(x>0\) is strictly increasing. Thus, the condition \((\mathrm{C}_{4})\) is fulfilled. According to Corollary 4.5, the zero solution of (5.4) is exponentially stable.
Example 5.5
Consider
Problem (5.5) is a special case of (2.1) with
If we put
then \((\mathrm{C}_{1})\)–\((\mathrm{C}_{3})\) are satisfied. We put \(\kappa :=(1-\rho )/\rho =0.25\) and estimate for \(t>0\) (recall that \(A_{1}(t)=A_{2}(t)=C_{2}(t)\equiv 0\))
and thus \((\mathrm{C}_{4})\) is fulfilled. From Corollary 4.5, follows the exponential stability and therefore the asymptotic stability of the zero solution of (5.5), and according to (4.5), any solution of (5.5) satisfies
6 Conclusions
A scalar nonlinear fractional integro-differential equation with time-variable bounded delays and the generalized Caputo proportional fractional derivative is studied. Some qualitative properties such as stability, exponential stability, asymptotic stability, and boundedness are investigated. The main apparatus is the application of Lyapunov functions and a Razumikhin method, modified for our special situation. Five examples are provided to illustrate the usefulness of the obtained sufficient conditions for generalized Caputo proportional fractional delay integro-differential equations, as well as for classical Caputo fractional delay integro-differential equations. Also, the main lemma about the inequality for quadratic functions offers a tool for successful study of stability of various types of models described by generalized Caputo proportional fractional differential equations with and without delays.
Availability of data and materials
Not applicable.
References
Abbas, M.I.: Investigation of Langevin equation in terms of generalized proportional fractional derivatives with respect to another function. Filomat 35(12), 4073–4085 (2021)
Abbas, M.I., Hristova, S.: Existence results of nonlinear generalized proportional fractional differential inclusions via the diagonalization technique. AIMS Math. 6(11), 12832–12844 (2021)
Abbas, M.I., Ragusa, M.A.: On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 13(2), Article ID 264, 16 (2021)
Agarwal, R., Hristova, S., O’Regan, D.: Lyapunov functions and stability of Caputo fractional differential equations with delays. Differ. Equ. Dyn. Syst. (2018). https://doi.org/10.1007/s12591-018-0434-6
Aljaaidi, T.A., Pachpatte, D.B., Shatanawi, W., Abdo, M.S., Abodayeh, K.: Generalized proportional fractional integral functional bounds in Minkowski’s inequalities. Adv. Differ. Equ. 2021, Article ID 419 (2021)
Baleanu, D., Ranjbar, A., Sadati, S.J., Delavari, H., Abdeljawad, T., Gejji, V.: Lyapunov–Krasovskii stability theorem for fractional systems with delay. Rom. J. Phys. 56(5–6), 636–643 (2011)
Baleanu, D., Sadati, S.J., Ghaderi, R., Ranjbar, A., Abdeljawad, T., Jarad, F.: Razumikhin stability theorem for fractional systems with delay. Abstr. Appl. Anal. 2010, Article ID 124812 (2010)
Bohner, M., Tunç, O., Tunç, C.: Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Comput. Appl. Math. 40(6), Paper No. 214, 17 (2021)
Chen, B., Chen, J.: Razumikhin-type stability theorems for functional fractional-order differential systems and applications. Appl. Math. Comput. 254, 63–69 (2015)
Das, A., Suwan, I., Deuri, B.C., Abdeljawad, T.: On solution of generalized proportional fractional integral via a new fixed point theorem. Adv. Differ. Equ. 2021, Article ID 427 (2021)
Fahd, J., Abdeljawad, T., Alzabut, J.: Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 226(16–18), 3457–3471 (2017)
Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional-Differential Equations. Applied Mathematical Sciences, vol. 99. Springer, New York (1993)
Hristova, S., Tunç, C.: Stability of nonlinear Volterra integro-differential equations with Caputo fractional derivative and bounded delays. Electron. J. Differ. Equ. 2019, Paper No. 30 (2019)
Hu, J.-B., Lu, G.-P., Zhang, S.-B., Zhao, L.-D.: Lyapunov stability theorem about fractional system without and with delay. Commun. Nonlinear Sci. Numer. Simul. 20(3), 905–913 (2015)
Jarad, F., Abdeljawad, T., Rashid, S., Hammouch, Z.: More properties of the proportional fractional integrals and derivatives of a function with respect to another function. Adv. Differ. Equ. 2020, Article ID 303 (2020)
Khaminsou, B., Thaiprayoon, C., Alzabut, J., Sudsutad, W.: Nonlocal boundary value problems for integro-differential Langevin equation via the generalized Caputo proportional fractional derivative. Bound. Value Probl. 2020, Article ID 176 (2020)
Khaminsou, B., Thaiprayoon, C., Sudsutad, W., Jose, S.A.: Qualitative analysis of a proportional Caputo fractional pantograph differential equation with mixed nonlocal conditions. Nonlinear Funct. Anal. Appl. 26(1), 197–223 (2021)
Pleumpreedaporn, S., Sudsutad, W., Thaiprayoon, C., Jose, S.A.: Qualitative analysis of generalized proportional fractional functional integro-differential Langevin equation with variable coefficient and nonlocal integral conditions. Mem. Differ. Equ. Math. Phys. 83, 99–120 (2021)
Podlubny, I.: Fractional differential equations. In: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)
Sadati, S.J., Baleanu, D., Ranjbar, A., Ghaderi, R., Abdeljawad, T.: Mittag-Leffler stability theorem for fractional nonlinear systems with delay. Abstr. Appl. Anal. 2010, Article ID 108651 (2010)
Zhao, H.Y.: Pseudo almost periodic solutions for a class of differential equation with delays depending on state. Adv. Nonlinear Anal. 9(1), 1251–1258 (2020)
Acknowledgements
The authors would like to thank the two anonymous referees and the handling editor for many useful comments and suggestions, leading to a substantial improvement of the presentation of this article.
Funding
S.H. is partially supported by the Bulgarian National Science Fund under Project KP-06-N32/7.
Author information
Authors and Affiliations
Contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bohner, M., Hristova, S. Stability for generalized Caputo proportional fractional delay integro-differential equations. Bound Value Probl 2022, 14 (2022). https://doi.org/10.1186/s13661-022-01595-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-022-01595-0