- Research
- Open access
- Published:
The partial boundary value conditions of nonlinear degenerate parabolic equation
Boundary Value Problems volume 2022, Article number: 27 (2022)
Abstract
The stability of the solutions to a parabolic equation
with homogeneous boundary condition is considered. Since the set \(\{s: A'(s)=a(s)=0\}\) may have an interior point, the equation is with strong degeneracy and the Dirichlet boundary value condition is overdetermined generally. How to find a partial boundary value condition to match up with the equation is studied in this paper. By choosing a suitable test function, the stability of entropy solutions is obtained by Kruzkov bi-variables method.
1 The boundary condition
We consider the equation
and assume that
where \(\Omega \subset \mathbb{R}^{N}\) is an appropriately smooth bounded domain, \(D_{i}=\frac{\partial }{\partial x_{i}}\), \(b_{i}(x,t)\in C^{1}(\overline{Q}_{T})\), \(c(x,t), f(x,t)\in C(\overline{Q}_{T})\). Equation (1) has a widely applied background, for example, the reaction diffusion problem [10] and the spread of an epidemic disease in heterogeneous environments.
For the Cauchy problem of equation (1), the paper [2] by Vol’pert and Hudjaev was the first one to study its solvability. Since then there have been many papers to study its well-posedness ceaselessly, one can refer to book [18] and references [1–6, 8, 9, 11, 13–20], and [25, 26].
If we want to consider the initial boundary value problem of equation (1), the initial value condition
is always necessary. But the Dirichlet homogeneous boundary value condition
may be overdetermined generally. In [21, 22, 24], a version of equation (1)
was studied. Instead of it, a partial boundary value
is enough, where \(\Sigma _{1}\subset \partial \Omega \) is a relative open subset. One can refer to [21, 22, 24] for details, in which the equation \(\Sigma _{1}\subset \partial \Omega \) was depicted out in some special ways. Such a fact was found firstly in [19], in which the non-Newtonian fluid equation
was considered. Here \(p> 1\), \(D_{i} =\frac{\partial }{\partial x_{i}}\), \(0\leq a(x) \in C(\overline{\Omega })\), \(b_{i}(x) \in C^{1}(\overline{\Omega })\), \(c(x,t)\) and \(f(x,t)\) are continuous functions on \(\overline{Q}_{T}\).
However, in [21] and [22], because there are two parameters including in \(\Sigma _{1}\), the expression \(\Sigma _{1}\) seems very complicated and hard to be verified, and the stability of entropy solutions is proved under the assumptions
Here \(d(x)=\text{dist}(x,\partial \Omega )\) and \(\Omega _{\lambda }=\{x\in \Omega , d(x)<\lambda \}\), λ is small enough, while [24] considered the case of Ω being unbounded and satisfying some harsh terms. Moreover, all partial boundary value conditions appearing in [19, 21, 22] and [24] are with the form as (6).
The dedications of this paper lie in that, for any given bounded domain Ω, due to the fact that the coefficient \(b_{i}(x,t)\) depends on the time variable t, we find that, unlike (6), the partial boundary value condition matching up with equation (1) must be of the following form:
where \(\Sigma _{p}\) is just a submanifold of \(\partial \Omega \times (0,T)\) and it cannot be a cylinder as \(\Sigma _{1}\times (0,T)\). By choosing some technical test functions, the stability of entropy solutions is established by Kruzkov’s bi-variables method.
2 The definition and the main results
For small \(\eta >0\), let
Obviously, \(h_{\eta }(s)\in C(\mathbb{R})\) and
Let
Define that \(u\in \operatorname{BV}(Q_{T})\) if and only if \(u\in L_{\mathrm{loc}}^{1}(Q_{T})\) and
where \(h=(h_{1},h_{2},\ldots, h_{N},h_{N+1})\). This is equivalent to that the generalized derivatives of every function in \(\operatorname{BV}(\Omega )\) are regular measures on Ω. Under the norm
\(\operatorname{BV}(\Omega )\) is a Banach space.
A basic property of BV function is that (see [17, 18]): if \(f\in \operatorname{BV}(Q_{T})\), then there exists a sequence \(\{f_{n}\}\subset C^{\infty }(Q_{T})\) such that
So, we can define the trace of the functions in a BV space as in a Sobolev space i.e. the trace of \(f(x)\in \operatorname{BV}(Q_{T})\) on the boundary ∂Ω is defined as the limit of a sequence \(f_{n}(x)\) as follows:
Then it is well known that the BV function space is the weakest space such that the trace of \(u\in \operatorname{BV}(Q_{T})\) can be defined as (11) and the integration by parts can be used. Also, one can refer to [7] for the definition of the trace of \(u\in \operatorname{BV}(Q_{T})\) on the boundary value in another way.
Definition 1
A function u is said to be the entropy solution of equation (1) with the initial value condition (3) and with the boundary value condition (9) if
1. u satisfies
2. For any \(\varphi \in C_{0}^{2}(Q_{T})\), \(\varphi \geq 0\), for any \(k\in \mathbb{R}\), for any small \(\eta >0\), u satisfies
3. The partial homogeneous boundary value condition (9) is true in the sense of trace.
4. The initial value condition (3) is true in the sense that
If \(a(0)=0\), \(b_{i}(x,t)\in C^{1}(\overline{Q}_{T})\), \(c(x,t)\) and \(f(x,t)\) are bounded functions, the existence of the entropy solution in the sense of Definition 1 can be proved by a similar way as that in [21, 26], we omit the details here.
In this paper, we study the stability of the entropy solutions of equation (1) without condition (8). In order to display the method used in our paper, the unite n-dimensional cube
is considered firstly. By choosing special test functions, we can prove the following theorem.
Theorem 2
Let \(u(x,t)\), \(v(x,t)\) be solutions of equation (1) with the initial values \(u_{0}(x)\), \(v_{0}(x)\in L^{\infty }(D_{1})\), respectively, and with the same partial boundary value condition
Then
Here, if
then \(\Sigma _{p}=\emptyset \). While if
is true, then
Secondly, we generalize Theorem 2 to a general bounded domain Ω.
The main result of this paper is the following stability theorem.
Theorem 3
Suppose that Ω is a bounded smooth domain in \(\mathbb{R}^{N}\), and when x is near to the boundary ∂Ω, the distance function \(\rho (x)\) is a \(C^{2}\) function, \(A(s)\) is a Lipschitz function, and \(a(0)=0\). Let \(u(x,t)\) and \(v(x,t)\) be the solutions of equation (1) with the initial values \(u_{0}(x)\in L^{\infty }(\Omega )\) and \(v_{0}(x)\in L^{\infty }(\Omega )\), respectively, and with the same partial boundary value condition
Then we have
Here,
where \(\vec{n}=\{n_{i}\}\) \((i=1,2,\ldots,N)\) is the outer normal vector of Ω.
We give a simple comment. For a linear degenerate parabolic equation
where \(a(x)\), \(b(x)\), \(c(x,t)\), and \(f(x,t)\) are continuous functions, if
which implies equation (21) is only degenerate on the boundary ∂Ω, according to the Fichera–Oleinik theory [12], the optimal boundary value condition matching up with equation (21) is
with
For the nonlinear degenerate parabolic equation (1), the most important characteristic lies in that the set \(\{s\in \mathbb{R}: a(s)=0\}\) may have interior points, and so it is a strongly degenerate parabolic equation. In addition, when the Dirichlet boundary value condition (4) is imposed, \(a(0)=0\) exactly implies that equation (1) is degenerate on the boundary \(\Sigma _{T}=\partial \Omega \times (0,T)\). On the other hand, when a partial boundary value condition (9) is imposed, we only know that (1) is degenerate on the boundary \(\Sigma _{p}\), while on \(\Sigma _{T}\setminus \Sigma _{p}\), whether equation (1) is degenerate or not is uncertain. To the best knowledge of the author, this is the first paper to study the stability of entropy solutions to equation (1) when the partial boundary value condition is imposed on a submanifold \(\Sigma _{p}\subset \Sigma _{T}\).
3 An important inequality
In this section, we use the Kruzkov bi-variables method to deduce an important inequality. Such a method was used in [18, 21, 26] and many other references. We begin with some basic denotations. For \(u\in \operatorname{BV}(Q_{T})\), we denote by that \(\Gamma _{u}\) is the set of all jump points, ν is the normal of \(\Gamma _{u}\) at \(X=(x,t)\), \(u^{+}(X)\) and \(u^{-}(X)\) are the approximate limits of u at \(X\in \Gamma _{u}\) with respect to \((\nu ,Y-X)>0\) and \((\nu ,Y-X)<0\), respectively. For a continuous function \(f(u)\), the composite mean value of f is defined as
When \(f(s)\in C^{1}( \mathbb{R})\), \(u\in BV(Q_{T})\), by [17, 18], we know \(f(u)\in \operatorname{BV}(Q_{T})\) and
where \(x_{N+1}=t\).
Just as that in [23, 26], we have the following lemma.
Lemma 4
Let u be an entropy solution of (1). Then
where \(I(\alpha ,\beta )\) denotes the closed interval with endpoints α and β, and (23) is in the sense of Hausdorff measure \(H_{N}(\Gamma ^{u})\).
Let \(u(x,t)\), \(v(x,t)\) be two entropy solutions of equation (1.1) with the initial value conditions
and
respectively.
From Definition 1, for any \(\varphi \in C_{0}^{2}(Q_{T})\), we have
Let \(\omega _{h}\) be the mollifier which is defined as
Define \(\psi (x,t,y,\tau )=\phi (x,t)j_{h}(x-y,t-\tau )\), where \(\phi (x,t)\geq 0\), \(\phi (x,t)\in C_{0}^{\infty }(Q_{T})\), and
Now, we choose \(\varphi =\psi \) in (24) and (25), then we have
Since
we have
Meanwhile, we have
where
By that
and using Lemma 4, we obtain the facts
and
Then we have
as \(\eta \rightarrow 0\).
Once more,
we have
Also, we clearly have
Letting \(\eta \rightarrow 0\), \(h\rightarrow 0\) in (26) and combining (27)–(34), we get
This is the most important inequality to prove Theorem 2 and Theorem 3.
4 Proof of Theorem 2
The proof of Theorem 2
Let
For small enough λ, we set
Let \(0\leq \eta (t)\in C_{0}^{2}(t)\) and
Then
When λ is small enough, \(0\leq d_{i}(x_{i})\leq \frac{\pi \lambda }{2}<\frac{1}{2}\),
Then (36) yields
We now substitute these formulas into (35), if \(b_{i}(x,t)\geq 0\), by (38), we have
Accordingly, we have
If \(b_{i}(x,t)\leq 0\), we have
where \(\Omega _{\lambda }=\{(x\in \Omega : d_{i}(x_{i})< \frac{\lambda \pi }{2}\}\). According to the definition of the trace of BV functions (see [7]), when \(x\in \Sigma _{1t}= \{ \partial \Omega : \sum_{i=1}^{N}b_{i}(x,t)< 0 \} \), \(u(x,t)=v(x,t)=0\), let \(\lambda \rightarrow 0\) in (41). We also have (40).
Let \(0< s<\tau <T\), and
where \(\alpha _{\varepsilon }(t)\) is the kernel of mollifier with \(\alpha _{\varepsilon }(t)=0\) for \(t\notin (-\varepsilon ,\varepsilon )\). Then
Let \(\varepsilon \rightarrow 0\). Then
Let \(s \rightarrow 0\), then the desired result follows by Gronwall’s inequality. □
Thus, by the Kruzkov bi-variables method, we have proved Theorem 2.
5 Proof of Theorem 3
Proof of Theorem 3
Let \(u(x,t)\) and \(v(x,t)\) be two entropy solutions of equation (1) with the initial values
Recalling (35), for any \(\phi (x,t)\in C^{2}_{0}(Q_{T})\), we have
Since when x is near to the boundary ∂Ω, the distance function \(\rho (x)\) is a \(C^{2}\) function, we can define
where \(0\leq \eta (t)\in C_{0}^{2}(t)\) and
Then we have
and
where \(0\leq \rho (x)< \frac{\pi \lambda }{2}\) for small λ.
We define \(\Omega _{\lambda }= \{ x\in \Omega : \rho (x)< \frac{\pi \lambda }{2} \} \). Since
we have
Notice that
We denote
and derive that
where \(\vec{n}=\{n_{i}\}\) (\(i=1,2,\ldots,N\)) is the outer normal vector of Ω.
At the same time, we have
Processing in an analogous manner as we did in the discussion of (40), letting \(\lambda \rightarrow 0\) in (42), we arrive at the desired result. □
Thus, we have proved Theorem 3 by the Kruzkov bi-variables method. One can see that the partial boundary value condition is imposed on a submanifold \(\Sigma _{p}\subset \partial \Omega \times (0,T)\). Such a conclusion reflects how the time variable t affects the well-posedness problem of a degenerate parabolic equation. By the way, the assumption that, when x is near to the boundary ∂Ω, the distance function \(\rho (x)\) is a \(C^{2}\) function can be weakened as follows: there is a subdomain \(\Omega _{\lambda }=\{x\in \Omega : \rho (x)<\lambda \}\), \(\rho (x)\) is an almost everywhere \(C^{2}\) function on \(\Omega _{\lambda }\), and \(\int _{\Omega _{\lambda }}|\Delta \rho |\,dx\leq c\).
Availability of data and materials
Not applicable.
References
Bendahamane, M., Karlsen, K.H.: Reharmonized entropy solutions for quasilinear anisotropic degenerate parabolic equations. SIAM J. Math. Anal. 36(2), 405–422 (2004)
Brezis, H., Crandall, M.G.: Uniqueness of solutions of the initial value problem for \(u_{t}-\Delta \varphi (u)=0\). J. Math. Pures Appl. 58, 564–587 (1979)
Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147, 269–361 (1999)
Chen, G.Q., DiBenedetto, E.: Stability of entropy solutions to Cauchy problem for a class of nonlinear hyperbolic-parabolic equations. SIAM J. Math. Anal. 33(4), 751–762 (2001)
Chen, G.Q., Perthame, B.: Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20(4), 645–668 (2003)
Cockburn, B., Gripenberg, G.: Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differ. Equ. 151, 231–251 (1999)
Enrico, G.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Bosten (1984)
Evans, L.C.: Weak convergence methods for nonlinear partial differential equations. Conference Board of the Mathematical Sciences, Regional Conferences Series in Mathematics Number 74 (1998)
Karlsen, K.H., Risebro, N.H.: On the uniqueness of entropy solutions of nonlinear degenerate parabolic equations with rough coefficient. Discrete Contain. Dye. Sys. 9(5), 1081–1104 (2003)
Kobayasi, K., Ohwa, H.: Uniqueness and existence for anisotropic degenerate parabolic equations with boundary conditions on a bounded rectangle. J. Differ. Equ. 252, 137–167 (2012)
Kružkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sb. 10, 217–243 (1970)
Oleinik, O.A., Radkevic, E.V.: Second order differential equations with nonnegative characteristic form Rhode Island: American Mathematical Society, Plenum Press, New York (1973)
Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theorem. Chapman and Hall/CRC, London (1999)
Volpert, A.I.: BV space and quasilinear equations. Mat. Sb. 73, 255–302 (1967)
Volpert, A.I., Hudjaev, S.I.: On the problem for quasilinear degenerate parabolic equations of second order. Mat. Sb. 3, 374–396 (1967) (Russian)
Volpert, A.I., Hudjaev, S.I.: Analysis of class of discontinuous functions and the equations of mathematical physics. Izda. Nauka Moskwa (1975) (Russian)
Wu, Z., Yin, J.: Some properties of functions in \(\mathrm{BV} _{x}\) and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations. Northeast. Math. J. 5(4), 395–422 (1989)
Wu, Z., Zhao, J., Yin, J., Li, H.: Nonlinear Diffusion Equations. Word Scientific Publishing, Singapore (2001)
Yin, J., Wang, C.: Evolutionary weighted p-Laplacian with boundary degeneracy. J. Differ. Equ. 237, 421–445 (2007)
Zhan, H.: The study of the Cauchy problem of a second order quasilinear degenerate parabolic equation and the parallelism of a Riemannian manifold. Doctor Thesis, Xiamen University (2004)
Zhan, H.: On the stability of the equation with a partial boundary value condition. Bound. Value Probl. 2018, 30 (2018)
Zhan, H., Feng, Z.: Stability of hyperbolic-parabolic mixed type equations with partial boundary condition. J. Differ. Equ. 264(12), 7384–7411 (2018)
Zhan, H., Feng, Z.: Partial boundary value condition for a nonlinear degenerate parabolic equation. J. Differ. Equ. 267(5), 2874–2890 (2019)
Zhan, H., Li, Y.: The entropy solution inequality method of a reaction-diffusion equation on an unbounded domain. J. Inequal. Appl. 2019, 3 (2019)
Zhao, J.: Uniqueness of solutions of quasilinear degenerate parabolic equations. Northeast. Math. J. 1(2), 153–165 (1985)
Zhao, J., Zhan, H.: Uniqueness and stability of solution for Cauchy problem of degenerate quasilinear parabolic equations. Sci. China Ser. A 48, 583–593 (2005)
Acknowledgements
The authors would like to thank everyone for their kind help!
Funding
The paper is supported by NSFC-52171308, China.
Author information
Authors and Affiliations
Contributions
The authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zhi, Y., Zhan, H. The partial boundary value conditions of nonlinear degenerate parabolic equation. Bound Value Probl 2022, 27 (2022). https://doi.org/10.1186/s13661-022-01608-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-022-01608-y