Skip to main content

A new type of solutions for a nonlinear Schrödinger system with \(\chi ^{(2)}\) nonlinearities

Abstract

We are concerned with the question of constructing a new type of solution to the problem with \(\chi ^{(2)}\) nonlinearities

{ Δ u + P ( x ) u = α u v , in R N , Δ v + Q ( x ) v = α 2 u 2 + β v 2 , in R N ,
(0.1)

where \(P(x)=P(|x|)\) and \(Q(x)=Q(|x|)\) are positive bounded radial potentials, \(3\leq N<6\), \(\alpha >0\) and \(\alpha >\beta \). Assuming that the potentials \(P(x)\) and \(Q(x)\) satisfy certain conditions, the existence of a new type of solutions is proved.

Introduction

This paper deals with the questions of the existence of a new type of solution of the following systems of coupled elliptic equations with \(\chi ^{(2)}\) nonlinearities

{ Δ u + P ( x ) u = α u v , in R N , Δ v + Q ( x ) v = α 2 u 2 + β v 2 , in R N ,
(1.1)

where \(P(x)=P(|x|)\) and \(Q(x)=Q(|x|)\) are positive bounded radial potentials, \(3\leq N<6\), \(\alpha >0\) and \(\alpha >\beta \).

The system (1.1) has strongly attracted researchers’ attention and has been extensively studied because it arises from nonlinear optical theory. In the nonlinear optical theory, the following cubic nonlinear Schrödinger equation

$$ i\frac{\partial \phi}{\partial z}+r\nabla ^{2}\phi +\chi \vert \phi \vert ^{2} \phi =0 $$
(1.2)

is the basic equation that can be used to describe the formation and propagation of optical solutions in Kerr-type materials [6, 15]. Here, the slowly varying envelope of electric field ϕ represents the relative strength, the real-valued parameter r is concerned with the sign of dispersion/diffraction, and χ represents the nonlinearity. z describes the propagation distance coordinate. The Laplacian operator \(\nabla ^{2}\) can either be \(\frac{\partial ^{2}}{\partial \tau ^{2}}\) for temporal solitons, where τ is the normalized retarded time, or \(\nabla ^{2}=\sum_{i=1}^{N}\frac{\partial ^{2}}{\partial x_{i}^{2}}\), where \(x=(x_{1},\ldots ,x_{N})\) is in the direction orthogonal to z. Solitary wave solutions to (1.2) and its generations have been proved in [2, 14].

As the optical material has a \(\chi ^{(2)}\) (i.e., quadratic) nonlinear response instead of a conventional \(\chi ^{(3)}\) material for which the problem (1.2) is based on (see [3, 4]), the nonlinear optical effects such as Second Harmonic Generation were discovered. As is known, the \(\chi ^{(3)}\) nonlinear Schrödinger system is well studied and has been explored by many authors in recent years, one can refer to [1, 7, 9, 10, 12, 13, 18] and the references therein. For the \(\chi ^{(2)}\) nonlinear Schrödinger system, in the case \(\alpha =1\), \(\beta =0\), \(N=1\), Zhao, Zhao and Shi in [22] proved the existence of a ground-state solution for (1.1). Very recently, using the finitely dimensional reduction method, Wang and Zhou in [17] studied the existence of infinitely many nonradial positive synchronized solutions of the system (1.1) under radial potentials satisfying some algebraic decay. Using the same method in [19], Yang and Zhou proved the existence of a single peak solution for (1.1). For more results, we refer the readers to [16, 20, 21] and the references therein.

In this paper, we construct a new type of solutions for the \(\chi ^{(2)}\) nonlinear Schrödinger system (1.1). The new type of solutions that were first introduced by Duan and Musso recently in [8] have polygonal symmetry in the \((x_{1}, x_{2})\)-plane, even symmetry in the \(x_{3}\) direction, and radial symmetry in other variables. Due to the \(\chi ^{(2)}\) nonlinearity that appears in our paper, we need to improve some estimates and give precise computing techniques. To the best of our knowledge, there is no result on such a question in the current the literature.

First, we will give some notations.

Let

$$ \overline{y}_{j}=r \biggl(\sqrt{1-h^{2}} \cos \frac{2(j-1)\pi}{m},\sqrt{1-h^{2} } \sin \frac{2(j-1)\pi}{m},h, \mathbf{0} \biggr),\quad j=1,\ldots ,m $$

and

$$ \underline{y}_{j}=r \biggl(\sqrt{1-h^{2}} \cos \frac{2(j-1)\pi}{m}, \sqrt{1-h^{2} } \sin \frac{2(j-1)\pi}{m},-h, \mathbf{0} \biggr),\quad j=1, \ldots ,m, $$

where k is an integer and 0 is the zero vector in R N 3 , \(r\in [r_{1} m\ln m,r_{2} m\ln m]\) for some \(r_{2}>r_{1}>0\), \(h\in [h_{1}\frac{1}{m},h_{2}\frac{1}{m}]\) for some \(h_{2}>h_{1}>0\).

It is well known that the following equation

{ Δ u + u = u 2 , u > 0 , in R N , u ( 0 ) = max u ( x ) , u H 1 ( R N ) , in R N ,

has a unique positive ground state W that satisfies:

$$ W(x)=W\bigl( \vert x \vert \bigr),\qquad \lim_{ \vert x \vert \rightarrow \infty} \vert x \vert ^{\frac{N-1}{2}}e^{ \vert x \vert }W(x)= \lambda >0,\qquad \lim _{ \vert x \vert \rightarrow \infty}\frac{W'}{W}=-1.$$

By direct computation, we know that \((U,V)=(\mu W,\gamma W)\) solves the following limit system for (1.1):

{ Δ u + u = α u v , in R N , Δ v + v = α 2 u 2 + β v 2 , in R N ,
(1.3)

where \(\mu =\frac{1}{\alpha}\sqrt{\frac{2(\alpha -\beta )}{\alpha}}\), \(\gamma = \frac{1}{\alpha}\).

Remark 1.1

If \((U,V)\) is a solution of the system (1.3), so is \((-U,V)\).

Remark 1.2

From the proposition 2.2 in [17], \((U,V)\) is nondegenerate for system (1.3), which is important in the proof of our result.

For any function \(P(x)>0\), we define the norm of H P 1 ( R N ) as follows

u P = ( R N | u | 2 + P ( x ) u 2 ) 1 2 ,

with the inner product

u , v P = R N ( u v + P ( x ) u v ) .

We define the product space H P 1 ( R N )× H Q 1 ( R N ) that is denoted by H with the norm

$$ \bigl\Vert (u,v) \bigr\Vert ^{2}= \Vert u \Vert _{P}^{2}+ \Vert v \Vert _{Q}^{2}. $$

Set

Ω j : = { x = ( x 1 , x 2 , x 3 , x ) R 3 × R N 3 : ( x 1 , x 2 ) | ( x 1 , x 2 ) | , ( cos 2 ( j 1 ) π m , sin 2 ( j 1 ) π m ) R 2 cos π m } ,

where \(j=1,2,\ldots ,m\) and , R 2 denote the dot product in R 2 .

We see that R N can be divided into k parts: \(\Omega _{1},\ldots ,\Omega _{k}\). For \(\Omega _{j}\), we divided it into two parts:

$$\begin{aligned} &\Omega _{j}^{+}= \bigl\{ x:x=\bigl(x_{1},x_{2},x_{3},x'' \bigr)\in \Omega _{j},x_{3} \geq 0 \bigr\} , \\ & \Omega _{j}^{-}= \bigl\{ x:x=\bigl(x_{1},x_{2},x_{3},x'' \bigr)\in \Omega _{j},x_{3}< 0 \bigr\} . \end{aligned}$$

We know the interior of \(\Omega _{j}\cap \Omega _{i}\), \(\Omega _{j}^{+}\cap \Omega _{j}^{-} \) are empty sets for \(i\neq j\).

Define

H P , s = { u : u H P 1 ( R N ) , u  is even in  x l , l = 2 , 4 , 5 , , N , u ( x 1 2 + x 2 2 cos θ , x 1 2 + x 2 2 sin θ , x 3 , x ) = u ( x 1 2 + x 2 2 cos ( θ + 2 j π m ) , x 1 2 + x 2 2 sin ( θ + 2 j π m ) , x 3 , x ) } ,
(1.4)

where \(\theta =\arctan \frac{x_{2}}{x_{1}}\).

We define \(H_{Q,s}\) similarly.

Denote

$$ U_{r,h}(x)=\sum_{j=1}^{m}U_{\overline{y}_{j}}(x)+ \sum_{j=1}^{m}U_{ \underline{y}_{j}}(x),\qquad V_{r,h}(x)=\sum_{j=1}^{m}V_{\overline{y}_{j}}(x)+ \sum_{j=1}^{m}V_{\underline{y}_{j}}(x), $$

where

$$\begin{aligned}& U_{\overline{y}_{j}}(x)=U(x-\overline{y}_{j}),\qquad U_{\underline{y}_{j}}(x)=U(x- \underline{y}_{j}),\\& V_{\overline{y}_{j}}(x)=V(x-\overline{y}_{j}),\qquad V_{ \underline{y}_{j}}(x)=V(x- \underline{y}_{j}). \end{aligned}$$

In what follows, we make some assumptions:

\((P)\) There exist constants \(a>0\), \(s>1\) and \(\theta >0\), such that as \(r\rightarrow +\infty \),

$$ P=1+\frac{a}{{r}^{s}}+O \biggl(\frac{1}{r^{s+\theta}} \biggr).$$

\((Q)\) There exist constants \(b>0\), \(t>1\) and \(\varepsilon >0\), such that as \(r\rightarrow +\infty \),

$$ Q=1+\frac{b}{r^{t}}+O \biggl(\frac{1}{r^{t+\varepsilon}} \biggr).$$

In this paper, we always assume

$$ \begin{aligned}[b] (r,h)\in \Lambda _{m}=:{}& \biggl[ \biggl(\frac{\min \{s,t\}}{\pi}-\beta \biggr)m \ln m, \biggl(\frac{\min \{s,t\}}{\pi}+\beta \biggr)m \ln m \biggr] \\ &{}\times \biggl[ \biggl(\frac{\pi (\min \{s,t\}+2)}{\min \{s,t\}}-\alpha \biggr) \frac{1}{m}, \biggl(\frac{\pi (\min \{s,t\}+2)}{\min \{s,t\}}+\alpha \biggr) \frac{1}{m} \biggr], \end{aligned} $$
(1.5)

for some \(\alpha ,\beta >0\) small.

Our main result can be stated as follows:

Theorem 1.3

Suppose that \(P(x)\) and \(Q(x)\) satisfy \((P)\) and \((Q)\), \(3\leq N<6\), \(\alpha >0\) and \(\alpha >\beta \), the parameters \((r,h)\) satisfy (1.5). Then, there is an integer \(m_{0}\), such that for any integer \(m\geq m_{0}\), (1.1) has a solution \((u_{m},v_{m})\) of the form

$$ (u_{m},v_{m})=\bigl(U_{r_{m},h_{m}}(x)+\varphi _{m},V_{r_{m},h_{m}}(x)+ \psi _{m}\bigr), $$

where ( φ m , ψ m ) H P 1 ( R N )× H Q 1 ( R N ), \((r_{m},h_{m})\in \Lambda _{m}\) and as \(m\rightarrow +\infty \), \(\|(\varphi _{m},\psi _{m})\|\rightarrow 0\).

Remark 1.4

The results in [22] show that \(N=6\) is a critical dimension, that is to say, the positive solutions do not exist when \(N \geq 6\). At the same time, by the structure of the new type of solution in our paper, the dimension N must be greater than or equal to 3.

Remark 1.5

The solutions of the system (1.1) has a large number of bumps near infinity, which causes the energy to become very large.

Finite-dimensional reduction

Define

E = { ( u , v ) H P 1 ( R N ) × H Q 1 ( R N ) , ( U x j r , V x j r ) , ( u , v ) = 0 , ( U x j h , V x j h ) , ( u , v ) = 0 , ( U x _ j h , V x _ j h ) , ( u , v ) = 0 , and  ( U x _ j r , V x _ j r ) , ( u , v ) = 0 , j = 1 , , m } .
(2.1)

Set

I ( u , v ) = 1 2 R N ( | u | 2 + P ( x ) u 2 + | v | 2 + Q ( x ) v 2 ) α 2 R N u 2 v β 3 R N v 3 , ( u , v ) H
(2.2)

and

K(φ,ψ)=I( U r , h +φ, V r , h +ψ),(φ,ψ)E.

It is standard to see that I C 2 (H,R).

We expand the functional \(K(\varphi ,\psi )\) as follows

K(φ,ψ)=K(0,0)+l(φ,ψ)+ 1 2 L(φ,ψ)+R(φ,ψ),(φ,ψ)E,

where

l ( φ , ψ ) = R N U r , h φ + R N P ( x ) U r , h φ + R N V r , h ψ + R N Q ( x ) V r , h ψ α 2 R N U r , h 2 ψ α R N U r , h V r , h φ β R N V r , h 2 ψ ,
(2.3)
L ( φ , ψ ) = R N | φ | 2 + R N P ( x ) φ 2 + R N | ψ | 2 + R N Q ( x ) ψ 2 2 α R N U r , h φ ψ α R N φ 2 V r , h 2 β R N V r , h ψ 2
(2.4)

and

R ( φ , ψ ) = α 2 R N [ ( U r , h + φ ) 2 ( V r , h + ψ ) U r , h 2 V r , h U r , h 2 ψ 2 U r , h V r , h φ 2 U r , h φ ψ V r , h φ 2 ] β 3 R N [ ( V r , h + ψ ) 3 V r , h 3 3 V r , h 2 ψ 3 V r , h ψ 2 ] .
(2.5)

Here, L is a linear operator from E to E, that satisfies

L ( u , v ) , ( φ , ψ ) = R N ( u φ + P ( x ) u φ α V r , h u φ ) + R N ( v ψ + Q ( x ) v ψ 2 β V r , h v ψ ) α R N U r , h v φ α R N U r , h u ψ , ( u , v ) , ( φ , ψ ) E .

\(l(\varphi ,\psi )\) is a bounded linear operator defined on E, thus there exists l m E such that \(l(\varphi ,\psi )=\langle l_{m},(\varphi ,\psi )\rangle \).

We have the following important results that have been proved in [8].

Lemma 2.1

(Lemma 3.1, [8])

For r, h as parameters in \(\Lambda _{m}\) and any \(\eta \in (0,1]\), there is a constant \(C>0\), such that

$$\begin{aligned}& \sum_{j=2}^{m}W_{\overline{y}_{j}}(x) \leq Ce^{-\eta \sqrt{1-h^{2}}r \frac{\pi}{m}} e^{-(1-\eta )|x-\overline{y}_{1}|},\quad \forall x \in \Omega _{1}^{+},\\& \sum_{j=2}^{m}W_{\underline{y}_{j}}(x) \leq Ce^{-\eta \sqrt{1-h^{2}}r \frac{\pi}{m}} e^{-(1-\eta )|x-\overline{y}_{1}|},\quad \forall x \in \Omega _{1}^{+} \end{aligned}$$

and

$$ W_{\underline{y}_{1}}(x)\leq Ce^{-\eta hr}e^{-(1-\eta )|x- \overline{y}_{1}|},\quad \forall x \in \Omega _{1}^{+}. $$

By the same argument as that of Lemma 2.2 in [8], we can prove:

Lemma 2.2

There exists a constant \(C>0\), independent of m, such that for any \((r,h)\in \Lambda _{m}\),

L ( u , v ) C ( u , v ) ,(u,v)E.

The following important Proposition can be found in [17], we only need to use the contraction theorem to prove it. Meanwhile, the new type of solution is not weighing on the proof of this Proposition. Hence, we omit it for conciseness.

Proposition 2.3

There exists an integer \(m_{0}>0\), such that for any \(m\geq m_{0}\), there is a unique \(C^{1}\) map: (φ,ψ)E(φ(r,h),ψ(r,h)) H P × H Q and

K ( φ , ψ ) ( φ , ψ ) , ( g , h ) =0,(g,h)E.

Moreover, there is a positive constant C, such that

$$ \bigl\Vert (\varphi ,\psi ) \bigr\Vert \leq C m \biggl( \frac{1}{r^{s}}+\frac{1}{r^{t}}+m^{ \frac{1}{2}} e^{-(2-\tau )\frac{\pi \sqrt{1-h^{2}}}{m}r}+m^{ \frac{1}{2}}e^{-(2-\tau )rh} \biggr), $$
(2.6)

where \(\tau >0\) is small enough.

Next, we will give the estimate for \(l_{m}\).

Lemma 2.4

There exist constants \(C>0\) independent of m and \(\tau >0\) sufficiently small such that

$$ \Vert l_{m} \Vert \leq C m \biggl(\frac{1}{r^{s}}+ \frac{1}{r^{t}}+m^{\frac{1}{2}} e^{-(2-\tau )\frac{\pi \sqrt{1-h^{2}}}{m}r}+m^{\frac{1}{2}}e^{-(2- \tau )rh} \biggr)$$

provided \(m\geq m_{0}\) for some integer \(m_{0}>0\).

Proof

Recall that

l ( φ , ψ ) = R N U r , h φ + R N P ( x ) U r , h φ + R N V r , h ψ + R N Q ( x ) V r , h ψ α 2 R N U r , h 2 ψ α R N U r , h V r , h φ β R N V r , h 2 ψ = α j = 1 m R N U y _ j V y _ j φ + α j = 1 m R N U y j V y j φ + j = 1 m R N ( P ( x ) 1 ) U y j φ + j = 1 m R N ( P ( x ) 1 ) U y _ j φ + α 2 j = 1 m R N U y j 2 ψ + β j = 1 m R N V y j 2 ψ + α 2 j = 1 m R N U y _ j 2 ψ + β j = 1 m R N V y _ j 2 ψ + j = 1 m R N ( Q ( x ) 1 ) V y j ψ + j = 1 m R N ( Q ( x ) 1 ) V y _ j ψ α 2 R N U r , h 2 ψ α R N U r , h V r , h φ β R N V r , h 2 ψ = j = 1 m R N ( P ( x ) 1 ) U y j φ + j = 1 m R N ( P ( x ) 1 ) U y _ j φ + j = 1 m R N ( Q ( x ) 1 ) V y j ψ + j = 1 m R N ( Q ( x ) 1 ) V y _ j ψ + α R N ( j = 1 m V y _ j U y _ j + j = 1 m U y j V y j U r , h V r , h ) φ + β R N ( j = 1 m V y j 2 + j = 1 m V y _ j 2 V r , h 2 ) ψ + α 2 R N ( j = 1 m U y j 2 + j = 1 m U y _ j 2 U r , h 2 ) ψ .
(2.7)

By symmetry, we have

j = 1 m R N ( P ( x ) 1 ) U y j φ + j = 1 m R N ( P ( x ) 1 ) U y _ j φ = 2 m R N ( P ( x ) 1 ) U y 1 φ 2 m ( R N ( P ( x + y 1 ) 1 ) 2 U 2 ) 1 2 φ C m 1 r s φ .
(2.8)

Similarly, we can obtain

j = 1 m R N ( Q ( x ) 1 ) U y _ j ψ+ j = 1 m R N ( Q ( x ) 1 ) U y _ j ψCm 1 r t ψ.

By using the estimates (3.14) and (3.15) in [8], we obtain

| R N ( j = 1 m V y j 2 + j = 1 m V y _ j 2 V r , h 2 ) ψ | C [ R N ( i j V y i V y j + i j V y _ i V y _ j + 1 i , j m V y i V y _ j ) 2 ] 1 2 ψ C ( i j e ( 2 τ ) | y i y j | ) 1 2 ψ + C ( i j e ( 2 τ ) | y _ i y _ j | ) 1 2 ψ + C ( i j e ( 2 τ ) | y i y _ j | ) 1 2 ψ + C ( i = 1 m e ( 2 τ ) | y _ i y i | ) 1 2 ψ = C ( m i = 2 m e ( 2 τ ) | y 1 y i | ) 1 2 ψ + C ( m i = 2 m e ( 2 τ ) | y _ 1 y _ i | ) 1 2 ψ + C ( m i = 2 m e ( 2 τ ) | y 1 y _ i | ) 1 2 ψ + C ( m e ( 2 τ ) | y _ 1 y 1 | ) 1 2 ψ C m 1 2 e ( 2 τ ) π 1 h 2 m r ψ + C m 1 2 e ( 2 τ ) ( 1 + δ ) π 1 h 2 m r ψ + C m 1 2 e ( 2 τ ) r h ψ + C m 1 2 e ( 2 τ ) ( 1 + δ ) r h ψ C ( m 1 2 e ( 2 τ ) π 1 h 2 m r + m 1 2 e ( 2 τ ) r h ) ψ ,
(2.9)

where \(\tau >0\) is sufficiently small.

Similarly, we have

| R N ( j = 1 m U y j 2 + j = 1 m U y _ j 2 U r , h 2 ) ψ | C ( m 1 2 e ( 2 τ ) π 1 h 2 m r + m 1 2 e ( 2 τ ) r h ) ψ,

where \(\tau >0\) is sufficiently small.

Since \(U=\frac{\mu}{\gamma} V\), we can estimate

| R N ( j = 1 m V y _ j U y _ j + j = 1 m V y j U y j U r , h V r , h ) φ | = μ γ | R N [ j = 1 m ( V y j 2 + V y _ j 2 ) V r , h 2 ] φ | C ( m 1 2 e ( 2 τ ) π 1 h 2 m r + m 1 2 e ( 2 τ ) r h ) φ .
(2.10)

Hence,

$$ \bigl\vert l(\varphi ,\psi ) \bigr\vert \leq C m \biggl( \frac{1}{r^{s}}+\frac{1}{r^{t}}+m^{ \frac{1}{2}} e^{-(2-\tau )\frac{\pi \sqrt{1-h^{2}}}{m}r}+m^{ \frac{1}{2}}e^{-(2-\tau )rh} \biggr) \bigl\Vert ( \varphi ,\psi ) \bigr\Vert . $$

 □

Lemma 2.5

There holds,

$$\begin{aligned}& I(U_{r,h},V_{r,h}) \\& \quad = m \biggl(A+\frac{aB}{r^{s}}+\frac{bC}{r^{t}} \biggr)-2m\gamma \biggl(\beta \gamma ^{2}+\frac{3}{2}\alpha \mu ^{2}\biggr) B_{1}e^{-2\pi \sqrt{1-h^{2}} \frac{r}{m}} \\& \qquad {} -m\gamma \biggl(\beta \gamma ^{2}+\frac{3}{2} \alpha \mu ^{2} \biggr)B_{1}e^{-2rh} +m O \bigl(e^{-2(1+\delta )rh} \bigr)+m O \bigl(e^{-2 \pi (1+\delta )\sqrt{1-h^{2}}\frac{r}{m}} \bigr) \\& \qquad {} +m O \biggl(\frac{1}{r^{s+\theta}}+ \frac{1}{r^{t+\varepsilon}} \biggr), \end{aligned}$$

where A= R N ( | U | 2 + | V | 2 + U 2 + V 2 2 β 3 V 3 α U 2 V), B= R N U 2 , C= R N V 2 and \(B_{1}>0\) is defined in [8], \(\delta >0\) is sufficiently small.

Proof

Here, we calculate \(I(U_{r,h},V_{r,h})\):

I ( U r , h , V r , h ) = 1 2 R N ( | U r , h | 2 + P ( x ) U r , h 2 + | V r , h | 2 + Q ( x ) V r , h 2 ) α 2 R N U r , h 2 V r , h β 3 R N V r , h 3 = 1 2 j = 1 m R N | U y j | 2 + 1 2 i j R N U y i U y j + 1 2 j = 1 m R N | U y _ j | 2 + 1 2 i j R N U y _ i U y _ j + 1 i , j m R N U y i U y _ j + 1 2 j = 1 m R N | V y j | 2 + 1 2 i j R N V y i V y j + 1 2 j = 1 m R N | V y _ j | 2 + 1 2 i j R N V y _ i V y _ j + 1 i , j m R N V y i V y _ j α 2 R N U r , h 2 V r , h β 3 R N V r , h 3 + 1 2 j = 1 m R N P ( x ) U y j 2 + 1 2 i j R N P ( x ) U y i U y j + 1 2 j = 1 m R N P ( x ) U y _ j 2 + 1 2 i j R N P ( x ) U y _ i U y _ j + 1 i , j m R N P ( x ) U y i U y _ j + 1 2 j = 1 m R N Q ( x ) V y j 2 + 1 2 i j R N Q ( x ) V y i V y j + 1 2 j = 1 m R N Q ( x ) V y _ j 2 + 1 2 i j R N Q ( x ) V y _ i V y _ j + 1 i , j m R N Q ( x ) V y i V y _ j = m R N | U | 2 + m R N | V | 2 + m R N U 2 + m R N V 2 2 β 3 m R N V 3 α m R N U 2 V + 1 2 R N ( P ( x ) 1 ) U r , h 2 + 1 2 R N ( Q ( x ) 1 ) V r , h 2 α 2 R N U r , h 2 V r , h β 3 R N V r , h 3 + β 3 j = 1 m R N V y j 3 + β 3 j = 1 m R N V y _ j 3 + α 2 i j R N U y i V y i U y j + α 2 i j R N U y _ i V y _ i U y _ j + α 2 j = 1 m R N U y j 2 V y j + α 2 j = 1 m R N U y _ j 2 V y _ j + α 4 i j R N U y i 2 V y j + β 2 i j R N V y i 2 V y j + α 4 i j R N U y _ i 2 V y _ j + β 2 i j R N V y _ i 2 V y _ j + α 2 1 i , j m R N U y i V y i U y _ j + α 4 1 i , j m R N U y _ i 2 V y j + α 2 1 i , j m R N U y _ i V y _ i U y j + α 4 1 i , j m R N U y i 2 V y _ j + β 2 1 i , j m R N V y i 2 V y _ j + β 2 1 i , j m R N V y _ i 2 V y j .
(2.11)

By symmetry and Lemma 3.1 in [8], we have

1 2 R N ( P ( x ) 1 ) U r , h 2 = m Ω 1 + ( P ( x ) 1 ) ( U y 1 + U y _ 1 + j = 2 m U y j + j = 2 m U y _ j ) 2 = m Ω 1 + ( P ( x ) 1 ) ( U y 1 + O ( e 1 2 h r e 1 2 | x y 1 | + e 1 2 1 h 2 r π m e 1 2 | x y 1 | ) ) 2 = m Ω 1 + ( P ( x ) 1 ) U y 1 2 + m O ( 1 r s + θ ) = m a R N U 2 r s + m O ( 1 r s + θ ) .
(2.12)

Analogously,

1 2 R N ( Q ( x ) 1 ) V r , h 2 =m b R N V 2 r t +mO ( 1 r t + ε ) .
(2.13)

Using symmetry, we obtain

R N ( V r , h 3 j = 1 m V y j 3 j = 1 m V y _ j 3 3 2 i j R N V y i 2 V y j 3 2 i j R N V y _ i 2 V y _ j 3 2 1 i , j m V y i 2 V y _ j 3 2 1 i , j m V y _ i 2 V y j ) = 2 m Ω 1 + ( V r , h 3 j = 1 m V y j 3 j = 1 m V y _ j 3 3 2 i j R N V y i 2 V y j 3 2 i j R N V y _ i 2 V y _ j 3 2 1 i , j m V y i 2 V y _ j 3 2 1 i , j m V y _ i 2 V y j ) = 2 m Ω 1 + ( ( V y 1 + j = 2 m V y j + V y _ 1 + j = 2 m V y _ j ) 3 ( V y 1 3 + j = 2 m V y j 3 ) ( V y _ 1 3 + j = 2 m V y _ j 3 ) 3 2 V y 1 2 j = 2 m V y j 3 2 V y 1 j = 2 m V y j 2 3 2 i j 2 V y i 2 V y j 3 2 V y _ 1 2 j = 2 m V y _ j 3 2 V y _ 1 j = 2 m V y _ j 2 3 2 i j 2 V y _ i 2 V y _ j 3 2 V y 1 2 j = 1 m V y _ j 3 2 V y _ 1 j = 2 m V y j 2 3 2 2 i , j m V y i 2 V y _ j 3 2 V y _ 1 2 j = 1 m V y j 3 2 V y 1 ( j = 2 m V y _ j 2 ) 3 2 2 i , j m V y _ i 2 V y j ) = 2 m Ω 1 + [ 3 2 V y 1 2 j = 2 m V y j + 3 2 V y 1 2 ( j = 1 m V y _ j ) + ( j = 2 m V y j ) 3 j = 2 m V y j 3 3 2 i j 2 V y i 2 V y j + ( j = 2 m V y _ j ) 3 j = 2 m V y _ j 3 3 2 i j 2 V y _ i 2 V y _ j + 3 V y 1 ( j = 2 m V y j ) 2 3 2 V y 1 j = 2 m V y j 2 + 3 V y _ 1 ( j = 2 m V y _ j ) 2 3 2 V y _ 1 j = 2 m V y _ j 2 + 3 V y _ 1 ( j = 2 m V y j ) 2 3 2 V y _ 1 j = 2 m V y j 2 + 3 V y 1 ( j = 2 m V y _ j ) 2 3 2 V y 1 ( j = 2 m V y _ j 2 ) + 6 V y 1 ( j = 2 m V y j ) V y _ 1 + 6 V y 1 ( j = 2 m V y j ) ( j = 2 m V y _ j ) + 3 2 V y 1 V y _ 1 2 + 6 V y 1 V y _ 1 ( j = 2 m V y _ j ) + 3 2 V y _ 1 2 ( j = 2 m V y _ j ) + 3 2 ( j = 2 m V y j ) V y _ 1 2 + 6 V y _ 1 ( j = 2 m V y _ j ) ( j = 2 m V y j ) + 3 ( j = 2 m V y j ) 2 ( j = 2 m V y _ j ) + 3 ( j = 2 m V y j ) ( j = 2 m V y _ j ) 2 3 2 2 i , j m V y i 2 V y _ j 3 2 2 i , j m V y _ i 2 V y j ] = 2 m Ω 1 + [ 3 2 V y 1 2 j = 2 m V y j + 3 2 V y 1 2 ( j = 1 m V y _ j ) ] + m O ( Ω 1 + V y 1 ( j = 2 k V y j 2 ) ) + m O ( Ω 1 + V y 1 V y _ 1 ( j = 2 k V y j ) ) + m O ( Ω 1 + V y 1 V y _ 1 2 ) .
(2.14)

Also, we have

R N ( U r , h 2 V r , h j = 1 m U y j 2 V y j j = 1 m U y _ j 2 V y _ j i j U y i V y i U y j i j U y _ i V y _ i U y _ j 1 2 i j U y i 2 V y j 1 2 i j U y _ i 2 V y _ j 1 i , j m U y i V y i U y _ j 1 i , j m U y _ i V y _ i U y j 1 2 1 i , j m U y _ i 2 V y j 1 2 1 i , j m U y i 2 V y _ j ) = 2 m Ω 1 + ( U r , h 2 V r , h j = 1 m U y j 2 V y j j = 1 m U y _ j 2 V y _ j i j U y i V y i U y j i j U y _ i V y _ i U y _ j 1 2 i j U y i 2 V y j 1 2 i j U y _ i 2 V y _ j 1 i , j m U y i V y i U y _ j 1 i , j m U y _ i V y _ i U y j 1 2 1 i , j m U y _ i 2 V y j 1 2 1 i , j m U y i 2 V y _ j ) = 2 m Ω 1 + ( 1 2 U y 1 2 ( j = 2 m V y j ) + 1 2 U y 1 2 ( j = 1 m V y _ j ) + U y 1 V y 1 ( j = 2 m U y j ) + U y 1 V y 1 ( j = 1 m U y _ j ) + ( j = 2 m U y j + U y _ 1 + j = 2 m U y _ j ) 2 ( j = 1 m V y j + j = 1 m V y _ j ) + 2 U y 1 ( j = 2 m U y j + j = 1 m U y _ j ) ( j = 2 m V y j + j = 1 m V y _ j ) U y 1 ( j = 2 m U y j V y j ) i j 2 U y i V y i U y j j = 1 m U y _ j 2 V y _ j j = 2 m U y j 2 V y j 1 i , j m U y _ i V y _ i U y _ j 1 i , j m U y _ i V y _ i U y j 1 2 V y 1 ( j = 2 m U y j 2 ) 1 2 i j 2 U y i 2 V y j 1 2 1 i , j m U y _ i 2 V y _ j U y _ 1 ( j = 2 m U y j V y j ) 2 i , j m U y i V y i U y _ j 1 2 V y _ 1 ( j = 2 m U y j 2 ) 1 2 2 i , j m U y i 2 V y _ j 1 2 1 i , j m U y _ i 2 V y j ) = 2 m Ω 1 + ( 1 2 U y 1 2 ( j = 2 m V y j ) + 1 2 U y 1 2 ( j = 1 m V y _ j ) + U y 1 V y 1 ( j = 2 m U y j ) + U y 1 V y 1 ( j = 1 m U y _ j ) ) + m O ( Ω 1 + U y 1 V y 1 ( j = 2 m U y j ) ) + m O ( Ω 1 + U y 1 V y _ 1 ( j = 2 m V y j ) ) + m O ( Ω 1 + U y _ 1 2 V y 1 + U y _ 1 V y _ 1 U y 1 ) .
(2.15)

Inserting (2.12)–(2.15) into (2.11) and by Lemma 3.2 in [8], we have

I ( U r , h , V r , h ) = m R N ( | U | 2 + | V | 2 + U 2 + V 2 2 β 3 V 3 α U 2 V ) + m a R N U 2 r s + m b R N V 2 r t β m Ω 1 + ( V y 1 2 ( j = 2 m V y j ) + V y 1 2 ( j = 1 m V y _ j ) ) α m Ω 1 + ( 1 2 U y 1 2 ( j = 2 m V y j ) + 1 2 U y 1 2 ( j = 1 m V y _ j ) + U y 1 V y 1 ( j = 2 m U y j ) + U y 1 V y 1 ( j = 1 m U y _ j ) ) + m O ( Ω 1 + U y 1 V y 1 ( j = 2 m U y j ) ) + m O ( Ω 1 + U y 1 V y _ 1 ( j = 2 m V y j ) ) + m O ( Ω 1 + U y _ 1 2 V y 1 + U y _ 1 V y _ 1 U y 1 ) + m O ( Ω 1 + V y 1 ( j = 2 k V y j 2 ) ) + m O ( Ω 1 + V y 1 V y _ 1 ( j = 2 k V y j ) ) + m O ( Ω 1 + V y 1 V y _ 1 2 ) + m O ( 1 r s + θ + 1 r t + ε ) = m ( A + a B r s + b C r t ) m γ ( β γ 2 + 3 2 α μ 2 ) R N ( W y 1 2 ( j = 2 m W y j ) + W y 1 2 ( j = 1 m W y _ j ) ) + m O ( Ω 1 + U y 1 V y 1 ( j = 2 m U y j ) ) + m O ( Ω 1 + U y 1 V y _ 1 ( j = 2 m V y j ) ) + m O ( Ω 1 + U y _ 1 2 V y 1 + U y _ 1 V y _ 1 U y 1 ) + m O ( Ω 1 + V y 1 ( j = 2 k V y j 2 ) ) + m O ( Ω 1 + V y 1 V y _ 1 ( j = 2 k V y j ) ) + m O ( Ω 1 + V y 1 V y _ 1 2 ) + m O ( 1 r s + θ + 1 r t + ε ) = m ( A + a B r s + b C r t ) m γ ( β γ 2 + 3 2 α μ 2 ) ( j = 2 m B 1 e | y 1 y j | ) m γ ( β γ 2 + 3 2 α μ 2 ) ( j = 1 m B 1 e | y 1 y _ j | ) + m O ( j = 2 m e ( 1 + δ ) | y 1 y j | ) + m O ( j = 1 m e ( 1 + δ ) | y 1 y _ j | ) + m O ( 1 r s + θ + 1 r t + ε ) = m ( A + a B r s + b C r t ) 2 m γ ( β γ 2 + 3 2 α μ 2 ) B 1 e 2 π 1 h 2 r m m γ ( β γ 2 + 3 2 α μ 2 ) B 1 e 2 r h + m O ( e 2 ( 1 + δ ) r h ) + m O ( e 2 π ( 1 + δ ) 1 h 2 r m ) + m O ( 1 r s + θ + 1 r t + ε ) ,
(2.16)

where A= R N ( | U | 2 + | V | 2 + U 2 + V 2 2 β 3 V 3 α U 2 V), B= R N U 2 , C= R N V 2 and \(B_{1}>0\) is defined in [8], \(\delta >0\) is sufficiently small. □

Proof of Theorem 1.3

Let \((\varphi ,\psi )=(\varphi (r,h),\psi (r,h))\) be the map obtained in Proposition 2.3. Define

$$ F(r,h)=I(U_{r,h}+\varphi ,V_{r,h}+\psi ),\quad \forall (r,h)\in \Lambda _{m}. $$

With a similar argument as used in [5, 11], we can prove that for m large, if \((r,h)\) is a critical point of \(F(r,h)\), then \((U_{r,h}+\varphi ,V_{r,h}+\psi )\) is a critical point of I. Next, we will prove that the function \(F(r,h)\) has a critical point that is an interior point of \(\Lambda _{m}\). It follows from Proposition 2.3, and Lemmas 2.4 and 2.5 that

$$\begin{aligned} F(r,h) =&I(U_{r,h},V_{r,h})+\ell (\varphi ,\psi )+ \frac{1}{2}L( \varphi ,\psi )+R(\varphi ,\psi ) \\ =&I(U_{r,h},V_{r,h})+O \bigl( \Vert \ell _{k} \Vert \bigl\Vert (\varphi ,\psi ) \bigr\Vert + \bigl\Vert ( \varphi ,\psi ) \bigr\Vert ^{2}+ \bigl\Vert (\varphi , \psi ) \bigr\Vert ^{3} \bigr) \\ =&m \biggl(A+\frac{aB}{r^{s}}+\frac{bC}{r^{t}} \biggr)-2m\gamma \biggl( \beta \gamma ^{2}+\frac{3}{2}\alpha \mu ^{2} \biggr) B_{1}e^{-2\pi \sqrt{1-h^{2}}\frac{r}{m}} \\ &{} -m\gamma \biggl(\beta \gamma ^{2}+\frac{3}{2}\alpha \mu ^{2} \biggr)B_{1}e^{-2rh} +m O \bigl(e^{-2(1+\delta )rh} \bigr) \\ &{} +m O \bigl(e^{-2\pi (1+\delta )\sqrt{1-h^{2}}\frac{r}{m}} \bigr) +m O \biggl(\frac{1}{r^{s+\theta}}+ \frac{1}{r^{t+\varepsilon}} \biggr) \\ =&m \biggl(A+\frac{aB}{r^{s}}+\frac{bC}{r^{t}}-De^{-2\pi \sqrt{1-h^{2}} \frac{r}{m}}-Ee^{-2rh} \biggr) \\ &{} +m O \bigl(e^{-2(1+\delta )rh} \bigr) +m O \bigl(e^{-2\pi (1+ \delta )\sqrt{1-h^{2}}\frac{r}{m}} \bigr) +m O \biggl( \frac{1}{r^{s+\theta}}+\frac{1}{r^{t+\varepsilon}} \biggr), \end{aligned}$$

where \(D=2\gamma (\beta \gamma ^{2}+\frac{3}{2}\alpha \mu ^{2}) B_{1}\), \(E=\gamma (\beta \gamma ^{2}+\frac{3}{2}\alpha \mu ^{2})B_{1}\).

We only prove the Theorem 1.3 for the case \(s< t\), since the other case is similar.

If \(s< t\), then

$$\begin{aligned} F(r,h) =&m \biggl(A+\frac{aB}{r^{s}}-De^{-2\pi \sqrt{1-h^{2}}\frac{r}{m}}-Ee^{-2rh} \biggr) \\ &{} +m O \biggl(e^{-2(1+\delta )rh}+e^{-2\pi (1+\delta )\sqrt{1-h^{2}} \frac{r}{m}} +\frac{1}{r^{s+\theta}} \biggr). \end{aligned}$$

In [8], we know that the same function \(F(r,h)\) has a maximum point \((r_{m},h_{m})\), which is an interior point of \(\Lambda _{m}\). □

Availability of data and materials

No data were used to support this study.

References

  1. Ambrosetti, A., Colorado, F.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    MathSciNet  Article  Google Scholar 

  2. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    MathSciNet  Article  Google Scholar 

  3. Buryak, A.V., Di Trapani, P., Skryabin, D.V., Trillo, S.: Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep. 370, 63–235 (2002)

    MathSciNet  Article  Google Scholar 

  4. Buryak, A.V., Kivshar, Y.S.: Solitons due to second harmonic generation. Phys. Lett. A 197, 407–412 (1995)

    MathSciNet  Article  Google Scholar 

  5. Cao, D., Noussair, E.S., Yan, S.: Solutions with multiple peaks for nonlinear elliptic equations. Proc. R. Soc. Edinb., Sect. A 129, 235–264 (1999)

    MathSciNet  Article  Google Scholar 

  6. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. New York University Courant Insitute of Mathematical Sciences, New York (2003)

    MATH  Google Scholar 

  7. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205, 515–551 (2012)

    MathSciNet  Article  Google Scholar 

  8. Duan, L., Musso, M.: New type of solutions for the nonlinear Schrödinger equation in R N . arXiv:2006.16125v1

  9. Lin, T.C., Wei, J.: Ground state of N coupled nonlinear Schrödinger equations in R N , \(n \leq 3\). Commun. Math. Phys. 255, 629–653 (2005)

    Article  Google Scholar 

  10. Liu, Z., Wang, Z.Q.: Multiple bound states of nonlinear Schrödinger systems. Commun. Math. Phys. 282, 721–731 (2008)

    Article  Google Scholar 

  11. Rey, O.: The role of the Green’s function in a non-linear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89, 1–52 (1990)

    MathSciNet  Article  Google Scholar 

  12. Sato, Y., Wang, Z.Q.: On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30, 1–22 (2013)

    MathSciNet  Article  Google Scholar 

  13. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equation in R N . Commun. Math. Phys. 271, 199–221 (2007)

    Article  Google Scholar 

  14. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    MathSciNet  Article  Google Scholar 

  15. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Applied Mathematical Sciences., vol. 139. Springer, New York (1999)

    MATH  Google Scholar 

  16. Tang, Z., Xie, H.: Multi-spikes solutions for a system of coupled elliptic equations with quadratic nonlinearity. Commun. Pure Appl. Anal. 19, 311–328 (2020)

    MathSciNet  Article  Google Scholar 

  17. Wang, C., Zhou, J.: Infinitely many solitary waves due to the second-harmonic generation in quadratic media. Acta Math. Sci. Ser. B Engl. Ed. 40, 16–34 (2020)

    MathSciNet  Article  Google Scholar 

  18. Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190, 83–106 (2008)

    MathSciNet  Article  Google Scholar 

  19. Yang, J., Zhou, T.: Existence of single peak solutions for a nonlinear Schrödinger system with coupled quadratic nonlinearity. Adv. Nonlinear Anal. 11, 417–431 (2022)

    MathSciNet  Article  Google Scholar 

  20. Yew, A.C.: Multipulses of nonlinearly coupled Schrödinger equations. J. Differ. Equ. 173, 92–137 (2001)

    MathSciNet  Article  Google Scholar 

  21. Yew, A.C., Champneys, A.R., McKenna, P.J.: Multiple solitary waves due to second-harmonic generation in quadratic media. J. Nonlinear Sci. 9, 33–52 (1999)

    MathSciNet  Article  Google Scholar 

  22. Zhao, L., Zhao, F., Shi, J.: Higher dimensional solitary waves generated by second-harmonic generation in quadratic media. Calc. Var. Partial Differ. Equ. 54, 2657–2691 (2015)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their comments that improved the manuscript.

Funding

The authors are partially supported by the Scientific Research and Innovation Team of Hubei Normal University (2019CZ010).

Author information

Authors and Affiliations

Authors

Contributions

The idea of this research was introduced by Weiming Liu. All authors contributed to the main results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Weiming Liu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, M., Liu, W. A new type of solutions for a nonlinear Schrödinger system with \(\chi ^{(2)}\) nonlinearities. Bound Value Probl 2022, 54 (2022). https://doi.org/10.1186/s13661-022-01635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-022-01635-9

MSC

  • 35B99
  • 35J10
  • 35J60

Keywords

  • Lyapunov–Schmidt reduction
  • \(\chi ^{(2)}\) nonlinearities
  • New type of solutions