# Nonnegative solution of a class of double phase problems with logarithmic nonlinearity

## Abstract

This manuscript proves the existence of a nonnegative, nontrivial solution to a class of double-phase problems involving potential functions and logarithmic nonlinearity in the setting of Sobolev space on complete manifolds. Some applications are also being investigated. The arguments are based on the Nehari manifold and some variational techniques.

## 1 Introduction

The goal of the present work is to prove the existence of nonnegative, nontrivial solutions to the following double-phase problems:

$$\textstyle\begin{cases} -\operatorname{div}( \vert \nabla u (z) \vert ^{p-2}\nabla u(z)+\mu (z) \vert \nabla u(z) \vert ^{q-2} \nabla u(z))+V(z) \vert u(z) \vert ^{p-2} u(z) \\ \quad =\lambda a(z) \vert u(z) \vert ^{r-2}u(z) \log ( \vert u(z) \vert )& \text{in \mathcal{E}}, \\ u = 0 & \text{on \partial \mathcal{E}}, \end{cases}$$
(1)

where $$\mathcal{E} \subset \mathcal{M}$$ is an open bounded set with a smooth boundary $$\partial \mathcal{E}$$, $$( \mathcal{M}, \mathfrak{g} )$$ is a smooth complete compact Riemannian N-manifold, $$\lambda > 0$$ is a parameter specified later, and the functions $$a(\cdot )$$ and $$V(\cdot )$$ satisfy the following assumptions:

$$(H_{1})$$:

The function $$a \in C^{+}_{b}(\mathcal{M} )\cap L^{1}(\mathcal{M} )$$.

$$(H_{2})$$:

The positive continuous function $$V : \mathcal{M} \rightarrow \mathbb{R}$$ and $$V\in L^{p'}(\mathcal{M} )$$, with $$p' = \frac{p}{p -1}$$ and $$1< r< p< q< p^{*}=:\frac{Np}{N-p}$$.

$$(H_{3})$$:

$$\mu \in L^{1}_{+}(\mathcal{M})$$ and $$\min_{z\in \mathcal{M}}\mu (z)=\mu _{0}>0$$.

Double-phase differential operators have been attracting the attention of several researchers in the last years due to their applicability in several areas of science, especially in physical processes. For example, in the elasticity theory, Zhikov  has shown that the modulation coefficient $$\mu (\cdot )$$ determines the geometry of composites formed from two different materials with distinct curing exponents q and p. See also the work of Benkhira et al. . For quantum physics, we refer to Benci et al. , and for reaction–diffusion systems, we refer to the pertinent work of Cherfils–Il’yasov .

We start our motivation by briefly going over the previous work. On the one hand, we were inspired by the work of Zhikov , who has introduced and investigated functionals with integrands that change ellipticity as a function of a point to give models of strongly anisotropic materials. As a kind of prototype, he took the function

$$u \mapsto \int _{\Omega} \bigl( \vert \nabla u \vert ^{p} + \mu (x) \vert \nabla u \vert ^{q} \bigr) \,dx ,$$

where $$1 < p < q$$, and the weight $$\mu \in L^{\infty} ( \Omega )$$. After that, several studies were done in this direction, we mention the famous works of Baroni et al. [7, 8], Colombo et al. [15, 16], Marcellini , Bahrouni et al. , Liu et al. , Farkas et al. , and Papageorgiou et al. [29, 30]. For more results, readers may refer to [1, 13, 17, 22, 23, 26, 27, 31, 33] for ideas and techniques developed to prove the existence of two nontrivial positive solutions to double-phase problems. On the other hand, the second motivation is the work of Aubin  who studied the qualitative properties of the Lebesgue space on Riemannian manifolds. This work was followed by Hebey  who developed this space and proved some new embedding results.

A nice overview of the recent work on such equations with variable exponents can be found in  by Ragusa et al.,  by Shi et al., [20, 21] by Gaczkowski, et al., and  by Aberqi et al. in the context of Sobolev spaces on complete manifolds. We refer to Benslimane et al. [11, 12] for more results.

Concerning regularity results for this kind of problem, we recommend the relevant work of De Filippis and Mingione , which gives optimal regularity criteria for different types of nonuniform ellipticity.

The contributions to the paper are as follows. We prove a new embedding result for Sobolev space on complete manifolds. We also show the existence of nonnegative, nontrivial solution to the problem (1), which is a combined potential with vanishing behavior at infinity and a logarithmic nonlinearity, as an application using the Nehari manifold and some variational techniques. The idea behind this approach is as follows: Let $$J \in C( \mathcal{X}, \mathbb{R} )$$ be an energy functional, with $$\mathcal{X}$$ being a real Banach space, so, if $$u \neq 0$$ is a critical point of J, then u is included in the following set:

$$\mathcal{N} = \bigl\{ u \in \mathcal{X} \backslash \{0\}: \bigl\langle J'(u), u\bigr\rangle = 0 \bigr\} ,$$

where $$\langle \cdot , \cdot \rangle$$ is the duality pairing between $$\mathcal{X}$$ and its dual space $$\mathcal{X}^{\ast}$$. Hence, $$\mathcal{N}$$ is a suitable constraint for funding nontrivial critical points of J. While $$\mathcal{N}$$ is not a manifold in general, it is called the Nehari manifold. Thus, we search for nontrivial minimizers of the functional J in a subset of the entire space that contains the nontrivial critical points of J, namely $$\mathcal{N}$$. Here, we have treated the minimum of the energy functional of the type

$$w \mapsto \int _{\Omega} \bigl[ G\bigl( x, \vert \nabla w \vert \bigr) - f \cdot w \bigr] \,dx ,$$

with

$$G( x, t ) = t^{p} + a(x) t^{q}.$$

When looking forward to treating it for a general functional of type,

$$w \mapsto \int _{\Omega} \bigl[ G_{1} \bigl(x, \vert \nabla w \vert \bigr) - G_{2} \bigl(x , \vert \nabla w \vert \bigr) - f \cdot w \bigr] \,dx ,$$

where $$G_{i}$$, $$i = 1, 2$$, are two functions satisfying

$$p < \frac{G'_{i} (x, t ) \cdot t}{G_{i}( x, t )} < q\quad \text{for every fixed } x.$$

To the best of our knowledge, this is the first paper that treats this kind of problem in the context of Sobolev spaces on Riemannian manifolds. This work will be of great interest to researchers working in this area.

The primary outcome of our paper can be presented as follows.

### Theorem 1

Let $$( \mathcal{M}, \mathfrak{g} )$$ satisfy the $$B_{\mathrm{vol}} ( \alpha , v )$$ property. If assumptions $$(H_{1})$$$$(H_{3})$$ hold, then there exists a positive constant $$\lambda _{\ast}$$ such that, if $$0<\lambda <\lambda _{\ast}$$, problem (1) has at least one nontrivial solution.

The paper consists of two sections. Section 2 contains some background on Sobolev spaces on Riemannian manifolds, as well as the proof of a new embedding result. Section 3 shows the existence of a nonnegative, nontrivial solution to a class of double-phase problems involving a potential that is allowed to have vanishing behavior at infinity and logarithmic nonlinearity.

## 2 Preliminaries

In what follows, we give some definitions and properties of Sobolev spaces on complete manifolds, which we will use to prove our main results. For more details, see [5, 24] and the references given therein.

### Definition 1

()

Let $$( \mathcal{M}, \mathfrak{g} )$$ be a smooth, compact Riemannian N-manifold. For an integer K, and a smooth $$u : \mathcal{M} \rightarrow \mathbb{R}$$, we denote by $$\nabla ^{K} u$$ the Kth covariant derivative of u and by $$| \nabla ^{K} u |$$ the norm of $$\nabla ^{K} u$$ defined in a local chart by

$$\bigl\vert \nabla ^{K} u \bigr\vert = \mathfrak{g}^{i_{1} j_{1}} \cdots \mathfrak{g}^{i_{K} j_{K}} \bigl( \nabla ^{K} u \bigr)_{i_{1} \cdots i_{K}} \bigl( \nabla ^{K} u \bigr)_{j_{1} \cdots j_{K}}.$$

Since $$( \nabla u )_{i} = \partial _{i} u$$,

$$\bigl( \nabla ^{2} u \bigr)_{ij} = \partial _{ij} u - \Gamma ^{K}_{ij} \partial _{K} u,$$

where $$\Gamma ^{K}_{ij}$$ is the Christoffel symbol defined as follows:

$$\Gamma _{ij}^{K} ( z ) = \frac{1}{2} \biggl( \biggl( \frac{\partial \mathfrak{g}_{mj}}{\partial z_{i}} \biggr)_{z} + \biggl( \frac{\partial \mathfrak{g}_{mi}}{\partial z_{j} } \biggr)_{z} - \biggl( \frac{\partial \mathfrak{g}_{ij}}{\partial z_{m} } \biggr)_{z} \biggr) \cdot \mathfrak{g}( z )^{mk} ,$$

with the $$g^{ij}$$’s representing the inverse matrix of $$g_{ij}$$ such that $$g_{im} g^{mj} = \delta _{i}^{j}$$.

And for a real number $$p \geq 1$$ and a positive integer K, we define the Sobolev space as follows:

$$L^{p} ( \mathcal{M} ) = \biggl\{ u: \mathcal{M} \rightarrow \mathbb{R} \text{ measurable} \Bigm| \int _{\mathcal{M}} \vert u \vert ^{p} \,dv _{\mathfrak{g}}( z ) < \infty \biggr\} .$$

And the function space is

$$\mathcal{C}_{K}^{p} ( \mathcal{M} ) = \biggl\{ u \in C^{\infty} \Bigm| \forall j = 0, \dots , K, \int _{\mathcal{M}} \bigl\vert \nabla ^{j} u \bigr\vert ^{p} \,dv _{\mathfrak{g}}( z ) < + \infty \biggr\} ,$$

where $$\mathcal{M}$$ is compact. By default, $$\mathcal{C}_{K}^{p} ( \mathcal{M} ) = C^{\infty} ( \mathcal{M} )$$ for every k and every $$p \geq 1$$.

### Definition 2

$$(\mathcal{M}, \mathfrak{g} )$$ has property $$B_{vol} (\alpha , v)$$ if the Ricci tensor of $$\mathfrak{g}$$, denoted by $$Rc(\mathfrak{g} )$$, satisfies $$Rc(\mathfrak{g}) \geq \alpha ( N - 1 ) \mathfrak{g}$$, for some α and, for every $$z \in \mathcal{M}$$, there exists $$v > 0$$ such as $$| B_{1} (z) |_{\mathfrak{g}} \geq v$$, where $$B_{1} (z)$$ are balls of radius 1 centered at some point z in terms of the volume of smaller concentric balls.

### Definition 3

()

The Sobolev space $$W^{K, p} ( \mathcal{M} )$$ is the completion of $$\mathcal{C}_{K}^{p} ( \mathcal{M} )$$ with respect to $$\| \cdot \|_{W^{K, p}}$$, where

$$\Vert u \Vert _{W^{K, p}} = \Vert \nabla u \Vert _{p} + \Vert u \Vert _{p}.$$

### Proposition 1

()

Let $$\| \cdot \|_{p}$$ be the norm of $$L^{p} ( \mathcal{M} )$$ defined by

$$\Vert u \Vert _{p} = \biggl( \int _{\mathcal{M}} \vert u \vert ^{p} \,dv _{\mathfrak{g}}( z ) \biggr)^{\frac{1}{p}}.$$

Then:

1. 1.

Any Cauchy sequence in $$( \mathcal{C}_{K}^{p} ( \mathcal{M} ), \| \cdot \|_{W^{K, p}} )$$ is a Cauchy sequence in the Lebesgue space $$( L^{p} ( \mathcal{M} ), \| \cdot \|_{p} )$$.

2. 2.

Any Cauchy sequence in $$( \mathcal{C}_{K}^{p} ( \mathcal{M} ), \| \cdot \|_{W^{K, p}} )$$ that converges to 0 in the Lebesgue space $$( L^{p} ( \mathcal{M} ), \| \cdot \|_{p} )$$ also converges to 0 in $$( \mathcal{C}_{K}^{p} ( \mathcal{M} ), \| \cdot \|_{W^{K, p}} )$$.

We note that $$W^{K, p} ( \mathcal{M} )$$ is a reflexive Banach space, and the set $$\mathcal{D} ( \mathcal{M} )$$ of smooth functions with compact support in $$\mathcal{M}$$ is dense in $$W^{1, p} ( \mathcal{M} )$$ for $$p \geq 1$$; see .

### Lemma 1

([5, 24])

Let $$( \mathcal{M}, \mathfrak{g} )$$ be a smooth, compact Riemannian N-manifold. For every real $$q \in [ 1, N )$$ with $$\frac{1}{p} \geq \frac{1}{q} - \frac{1}{N}$$, we have that $$W^{1, q} ( \mathcal{M} ) \subset L^{p} ( \mathcal{M} )$$. So there exists a positive constant c such that, for any $$u \in \mathcal{D} ( \mathbb{R}^{N} )$$,

$$\Vert u \Vert _{p} \leq c \Vert u \Vert _{W^{1, q}}.$$

### Remark 1

(See [5, Proposition 2.11])

Suppose that $$W^{1, 1} ( \mathcal{M} ) \subset L^{\frac{N}{N -1}} ( \mathcal{M} )$$. Then there exists $$c > 0$$ such that, for all $$u \in W^{1, 1} ( \mathcal{M} )$$,

$$\biggl( \int _{\mathcal{M}} \vert u \vert ^{\frac{N}{N - 1}} \,dv _{ \mathfrak{g}}( z ) \biggr)^{\frac{N - 1}{N}} \leq c \int _{ \mathcal{M}} \bigl( \vert \nabla u \vert + \vert u \vert \bigr) \,dv _{\mathfrak{g}}( z ).$$

### Proposition 2

([5, 24])

• Since $$\mathcal{M}$$ is compact, $$\mathcal{M}$$ can be covered by finite numbers of charts $$( \mathcal{E}_{m}, \varphi _{m} )_{m = 1, \dots , N}$$ such that, for all m, the components $$g_{ij}^{m}$$ of g in $$( \mathcal{E}_{m}, \varphi _{m} )$$ satisfy

$$\frac{1}{2} \delta _{ij} \leq g_{ij}^{m} \leq 2 \delta _{ij}$$

as bilinear forms.

• Since $$\mathcal{M}$$ is assumed to be compact, $$( \mathcal{M}, \mathfrak{g} )$$ has finite volume. Hence for $$1 \leq q \leq q'$$, we have $$L^{q'} ( \mathcal{M} ) \subset L^{q} ( \mathcal{M} )$$.

### Lemma 2

()

Let $$( \mathcal{M}, \mathfrak{g} )$$ be a smooth, compact, N-dimensional Riemannian manifold. Given p, q, two real numbers with $$1 \leq q < N$$ and $$p \geq 1$$ such that $$\frac{1}{p} > \frac{1}{q} - \frac{1}{N}$$, $$W^{1, q} ( \mathcal{M} ) \subset L^{p} ( \mathcal{M} )$$ is compact.

The weighted Lebesgue space $$L_{\mu}^{q} (\mathcal{M})$$ is defined as follows:

$$L_{\mu}^{q} ( \mathcal{M}) = \biggl\{ u : \mathcal{M} \rightarrow \mathbb{R} \text{ is measurable such that } \int _{\mathcal{M}} \mu (z) \bigl\vert u(z) \bigr\vert ^{q} \,dv _{\mathfrak{g}} (z) < \infty \biggr\} ,$$

endowed with the following seminorm:

$$\Vert u \Vert _{q, \mu} = \biggl( \int _{\mathcal{M}} \mu (z) \bigl\vert u(z) \bigr\vert ^{q} \,dv _{\mathfrak{g}} (z) \biggr)^{\frac{1}{q}} < \infty .$$

We define

$$\rho (u) = \int _{\mathcal{M}} \vert \nabla u \vert ^{q} \,dv _{ \mathfrak{g}} (z)$$

and

$$\varrho (u)= \int _{\mathcal{M}} \vert \nabla u \vert ^{p}\,dv _{ \mathfrak{g}} (z) + \int _{\mathcal{M}} \mu (z) \vert \nabla u \vert ^{q} \,dv _{\mathfrak{g}} (z).$$

### Lemma 3

Let $$u\in W_{0}^{1, q}(\mathcal{M})$$. Then:

1. (i)

$$\Vert u\Vert =a \Longleftrightarrow \rho (\frac{u}{a} )=1$$.

2. (ii)

$$\Vert u\Vert < 1$$ (resp., >1, =1) $$\Longleftrightarrow \rho (u)< 1$$ (resp., >1, =1).

3. (iii)

$$\Vert u\Vert < 1 \Rightarrow \Vert u\Vert ^{q}\leq \rho (u)\leq \Vert u\Vert ^{p}$$ and $$\Vert u\Vert > 1 \Longrightarrow \Vert u\Vert ^{p}\leq \rho (u)\leq \Vert u\Vert ^{q}$$.

4. (vi)

$$\Vert u\Vert \rightarrow 0 \Longleftrightarrow \rho (u)\rightarrow 0$$ and $$\Vert u\Vert \rightarrow \infty \Longleftrightarrow \rho (u) \rightarrow \infty$$.

### Proof

We pursue the same steps as in the proof of Proposition 2.1 in . □

### Theorem 2

Let $$( \mathcal{M}, \mathfrak{g} )$$ be a smooth, compact, N-dimensional Riemannian manifold. Given r, q, two real numbers with $$1 \leq q < N$$ and $$r \geq 1$$ such that $$\frac{1}{r} > \frac{1}{q} - \frac{1}{N}$$, $$W^{1, q}_{0} ( \mathcal{M} ) \hookrightarrow L^{r} ( \mathcal{M} )$$ is compact.

### Proof

We adopt the same technique as when proving [24, Theorem 2.6]. □

### Theorem 3

Let $$( \mathcal{M}, \mathfrak{g} )$$ be a smooth, compact, N-dimensional Riemannian manifold. Given p, q, two real numbers with $$1 \leq q < N$$ and $$p \geq 1$$ such that $$\frac{1}{p} > \frac{1}{q} - \frac{1}{N}$$, $$W^{1, q}_{0} ( \mathcal{M} ) \hookrightarrow L^{p}_{\mu} ( \mathcal{M} )$$.

### Proof

Let $$u \in W^{1, q}_{0} ( \mathcal{M} )$$. Then using the Poincaré inequality, we obtain

\begin{aligned} \frac{1}{c} \int _{\mathcal{M}} \bigl\vert u(z) \bigr\vert ^{q} \,dv _{\mathfrak{g}} (z) &\leq \mu _{0} \int _{\mathcal{M}} \bigl\vert \nabla u(z) \bigr\vert ^{q} \,dv _{ \mathfrak{g}} (z) \\ &\leq \int _{\mathcal{M}} \bigl( \bigl\vert \nabla u(z) \bigr\vert ^{p} + \mu (z) \bigl\vert \nabla u(z) \bigr\vert ^{q} \bigr) \,dv _{\mathfrak{g}} (z) = \varrho ( u ). \end{aligned}

Hence, if $$u \neq 0$$, we have

$$\frac{1}{c} \int _{\mathcal{M}} \biggl( \frac{u}{ \Vert u \Vert _{q}} \biggr)^{q} \,dv _{\mathfrak{g}} (z) < 1.$$

Then, we get

$$\Vert u \Vert _{q, \mu} \leq c \Vert u \Vert _{E}.$$

□

### Remark 2

The result of Theorem 3 can be considered as a particular case of Theorem 2.22 in .

## 3 Nehari manifold and fibering maps

In the following, we suppose that $$E = W_{0}^{1, q}(\mathcal{M})\setminus \lbrace 0\rbrace$$ is endowed with $$\|u\|_{E} = ( \int _{\mathcal{M}} | \nabla u |^{q} \,dv _{\mathfrak{g}} (z) )^{\frac{1}{q}}$$.

### Definition 4

We say that a function $$u\in E$$ is a weak solution to problem (1), if

\begin{aligned}& \int _{\mathcal{M}} \bigl( \vert \nabla u \vert ^{p-2} \nabla u + \mu (z) \vert \nabla u \vert ^{q-2}\nabla u \bigr)\nabla \varphi \,dv _{ \mathfrak{g}} (z) + \int _{\mathcal{M}}V(z) \vert u \vert ^{p-2}u \varphi \,dv _{\mathfrak{g}} (z) \\& \quad = \lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r-2}u\log \bigl( \vert u \vert \bigr)\varphi \,dv _{\mathfrak{g}} (z), \end{aligned}

for all $$\varphi \in D( \mathcal{M})$$.

Consider the functional $$J_{\lambda}: E\rightarrow \mathbb{R}$$ defined by

\begin{aligned} J_{\lambda}(u)={}&\frac{1}{p} \int _{\mathcal{M}} \vert \nabla u \vert ^{p}\,dv _{ \mathfrak{g}}(z)+ \frac{1}{q} \int _{\mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{\mathfrak{g}}(z)+ \frac{1}{p} \int _{ \mathcal{M}}V(z) \vert u \vert ^{p} \,dv _{\mathfrak{g}}(z) \\ &{} -\frac{\lambda}{r} \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}}(z)+\frac{\lambda}{r^{2}} \int _{ \mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z) \end{aligned}

for all $$u\in E$$.

Then $$J_{\lambda}$$ is well defined and belongs to $$C^{1}(E)$$. Furthermore, we have

\begin{aligned} \bigl\langle J'_{\lambda}(u), \varphi \bigr\rangle ={}& \int _{\mathcal{M}} \bigl( \vert \nabla u \vert ^{p-2} \nabla u+\mu (z) \vert \nabla u \vert ^{q-2} \nabla u \bigr) \nabla \varphi \,dv _{\mathfrak{g}} (z) \\ &{} + \int _{\mathcal{M}}V(z) \vert u \vert ^{p-2} u \varphi \,dv _{ \mathfrak{g}} (z) -\lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r-2} u \log \bigl( \vert u \vert \bigr) \varphi \,dv _{\mathfrak{g}} (z) \end{aligned}

for all $$u, \varphi \in E$$.

Consider the Nehari set defined by

$$\mathcal{N}= \bigl\{ u\in E: \bigl\langle J'_{\lambda}(u), u \bigr\rangle =0 \bigr\} .$$

We can deduce that the critical points of $$J_{\lambda}$$ lie on $$\mathcal{N}$$ and further that $$u\in \mathcal{N}$$ if and only if u is a weak solution to problem (1). Let us define the maps $$\psi _{u}: \mathbb{R}^{+}\rightarrow \mathbb{R}$$ by $$\psi _{u}(t)=J_{\lambda}(tu)$$ and analyze $$\mathcal{N}$$ in terms of the stationary points of fibering maps $$\psi _{u}$$.

We have

\begin{aligned} \psi '_{u}(t) = {}& t^{p-1} \int _{\mathcal{M}} \vert \nabla u \vert ^{p} \,dv _{\mathfrak{g}}(z) + t^{q-1} \int _{\mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{\mathfrak{g}} (z)+ t^{p-1} \int _{\mathcal{M}}V(z) \vert u \vert ^{p} \,dv _{\mathfrak{g}} (z) \\ &{} -\lambda t^{r-1} \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}} (z) -\lambda t^{r-1} \log (t) \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{ \mathfrak{g}} (z) \end{aligned}

and

\begin{aligned} \psi ''_{u}(t) ={} & (p-1) t^{p-2} \int _{\mathcal{M}} \vert \nabla u \vert ^{p} \,dv _{\mathfrak{g}} (z) + (q-1) t^{q-2} \int _{ \mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{\mathfrak{g}} (z) \\ &{} + (p-1) t^{p-2} \int _{\mathcal{M}}V(z) \vert u \vert ^{p} \,dv _{ \mathfrak{g}} (z) -\lambda (r-1) t^{r-2} \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}} (z) \\ &{} -\lambda (r-1) t^{r-2} \log (t) \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z) -\lambda t^{r-2} \int _{ \mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z). \end{aligned}

It is easy to verify that $$tu\in \mathcal{N} \Longleftrightarrow \psi ^{\prime }_{u}(t)=0$$ for any $$u\in E$$ and $$t>0$$.

We shall split $$\mathcal{N}$$ into three subsets which correspond to local minima, local maxima, and points of inflection of fibering maps, that is,

\begin{aligned}& \begin{aligned} \mathcal{N}^{+}&=\bigl\lbrace u\in \mathcal{N}:\psi ''_{u}(1)>0 \bigr\rbrace \\ &= \biggl\lbrace u\in E: (q-p) \int _{\mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{\mathfrak{g}} (z) +\lambda (p-r) \int _{ \mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{ \mathfrak{g}} (z) \\ &\quad {}> \lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z) \biggr\rbrace , \end{aligned} \\& \begin{aligned}\mathcal{N}^{0}&=\bigl\lbrace u\in \mathcal{N}:\psi ''_{u}(1) =0 \bigr\rbrace \\ &= \biggl\lbrace u\in E: (q-p) \int _{\mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{\mathfrak{g}} (z) +\lambda (p-r) \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}} (z) \\ &\quad {}= \lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{ \mathfrak{g}} (z) \biggr\rbrace , \end{aligned} \\& \begin{aligned}\mathcal{N}^{-}&=\bigl\lbrace u\in \mathcal{N}:\psi ^{\prime \prime }_{u}(1) < 0 \bigr\rbrace \\ &= \biggl\lbrace u\in E: (q-p) \int _{\mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{\mathfrak{g}} (z) + \lambda (p-r) \int _{ \mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{ \mathfrak{g}} (z) \\ &\quad {}< \lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z) \biggr\rbrace . \end{aligned} \end{aligned}

### Lemma 4

Let $$u_{0}\notin \mathcal{N}^{0}$$. Then $$u_{0}$$ is a critical point of $$J_{\lambda}$$ if $$u_{0}$$ is a local minimizer of $$J_{\lambda}$$ on $$\mathcal{N}$$.

### Proof

We remark that $$u_{0}$$ is a solution to the optimization problem to minimize $$J_{\lambda}$$ subject to $$I(u)=0$$, where

\begin{aligned} I(u) =& \int _{\mathcal{M}} \bigl( \vert \nabla u \vert ^{p} + \mu (z) \vert \nabla u \vert ^{q} \bigr) \,dv _{\mathfrak{g}} (z) + \int _{ \mathcal{M}}V(z) \vert u \vert ^{p} \,dv _{\mathfrak{g}} (z) \\ &{}- \lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}} (z), \end{aligned}

and, since $$u_{0}$$ is a local minimizer of $$J_{\lambda}$$ on $$\mathcal{N}$$, we have

$$I(u_{0})=\bigl\langle J'_{\lambda}(u_{0}),u_{0} \bigr\rangle .$$
(2)

Then, there exists a Lagrange multiplier $$\alpha \in \mathbb{R}$$ such that $$J'_{\lambda}(u_{0})=\alpha I'(u_{0})$$, namely $$0=\langle J'_{\lambda}(u_{0}), u_{0}\rangle =\alpha \langle I'(u_{0}), u_{0}\rangle$$.

Furthermore, $$\langle I'(u_{0}), u_{0}\rangle \neq 0$$ since $$u_{0}\notin \mathcal{N}^{0}$$ which implies $$\alpha =0$$ and, actually, that $$u_{0}$$ is a critical point of $$J_{\lambda}$$. □

### Lemma 5

There exists a positive constant $$\lambda _{0}$$ such that, for any $$0<\lambda <\lambda _{0}$$, the functional $$J_{\lambda}$$ is bounded and coercive on $$\mathcal{N}$$.

### Proof

Letting $$u\in E$$ with $$\Vert u\Vert _{E} > 1$$, we obtain

\begin{aligned} J_{\lambda}(u)\geq {}& \frac{1}{q} \biggl( \int _{\mathcal{M}} \vert \nabla u \vert ^{p} \,dv _{\mathfrak{g}} (z) + \int _{\mathcal{M}} \mu (z) \vert \nabla u \vert ^{q} \,dv _{\mathfrak{g}} (z) + V_{0} \int _{\mathcal{M}} \vert u \vert ^{p} \,dv _{\mathfrak{g}} (z) \biggr) \\ &{} -\frac{\lambda}{r} \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}} (z) + \frac{\lambda}{r^{2}} \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z), \end{aligned}

and we know that

$$\log (s)\leq \frac{s^{\alpha}}{\alpha e} \quad \text{for all } \alpha >0 \text{ and } s>0,$$
(3)

thus

$$J_{\lambda}(u)\geq \frac{\mu _{0}}{q} \Vert u \Vert _{E}^{q}- \frac{\lambda \Vert a \Vert _{\infty}}{r(q-r) e} \int _{\mathcal{M}} \vert u \vert ^{q} \,dv _{\mathfrak{g}} (z)$$

with $$\alpha =q-r$$.

According to Theorem 2 and Poincaré inequality, there exists a positive constant $$C_{q}$$ such that

$$J_{\lambda}(u) \geq \frac{\mu _{0}}{q} \Vert u \Vert _{E}^{q}- \frac{\lambda \Vert a \Vert _{\infty}}{r(q-r) e}C_{q} \Vert u \Vert _{E}^{q} \geq \biggl( \frac{\mu _{0}}{q}- \frac{\lambda \Vert a \Vert _{\infty}}{r(q-r) e}C_{q} \biggr) \Vert u \Vert _{E}^{q}.$$

Choosing $$0<\lambda <\lambda _{0}= \frac{r(q-r) e}{qC_{q}\Vert a\Vert _{\infty}}$$ implies that $$J_{\lambda}$$ is coercive.

Moreover, we have

\begin{aligned} J_{\lambda}(u)& \leq \frac{1}{p} \biggl(\varrho (u)+ \int _{\mathcal{M}}V(z) \vert u \vert ^{p} \,dv _{\mathfrak{g}} (z) -\lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}} (z) \biggr) \\ &\quad {}+ \frac{\lambda}{r^{2}} \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z) \\ & =\frac{\lambda}{r^{2}} \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z) \leq \frac{\lambda}{r^{2}} \Vert a \Vert _{ \infty} \int _{\mathcal{M}} \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z). \end{aligned}

Thanks to Theorem 2, there exists $$C_{r} > 0$$ such that

$$J_{\lambda}(u)\leq C_{r} \frac{\lambda}{r^{2}} \Vert a \Vert _{ \infty} \Vert u \Vert _{E}^{r}.$$

□

### Lemma 6

Let $$\lambda _{1} = \frac{(q-p) \mu _{0} }{\Vert a\Vert _{L^{\infty}}C_{1}}$$ where $$C_{1} (r, q, \mathcal{M} )$$ is a constant to be specified later. Then, for any λ such that $$0<\lambda <\lambda _{1}$$, we have $$\mathcal{N}^{0}\cup \mathcal{N}^{-}= \emptyset$$ and $$\mathcal{N}^{+}\neq \emptyset$$.

### Proof

We proceed by contradiction to prove that $$\mathcal{N}^{0}\cup \mathcal{N}^{-}\neq \emptyset$$.

Indeed, let $$u\in \mathcal{N}^{0}\cup \mathcal{N}^{-}$$, then we get

\begin{aligned}& (q-p) \int _{\mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{ \mathfrak{g}} (z) +\lambda (p-r) \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}} (z) \\& \quad \leq \lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{ \mathfrak{g}} (z), \end{aligned}

thus

$$(q-p) \int _{\mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{ \mathfrak{g}} (z) \leq \lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z) \leq \lambda \Vert a \Vert _{L^{ \infty}} \int _{\mathcal{M}} \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z).$$

Using the fact that $$L^{q}(\mathcal{\mathcal{M}})\subset L^{r}(\mathcal{\mathcal{M}})$$ and Poincaré inequality, there exists a positive constant $$C_{1} (r, q, \mathcal{M} )$$ such that

$$\int _{\mathcal{M}} \vert \nabla u \vert ^{q} \,dv _{\mathfrak{g}} (z) \geq C_{1} \biggl( \int _{\mathcal{M}} \vert u \vert ^{r} \,dv _{ \mathfrak{g}} (z) \biggr)^{\frac{q}{r}},$$

hence

\begin{aligned} (q-p) \mu _{0} C_{1} \biggl( \int _{\mathcal{M}} \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z) \biggr)^{\frac{q}{r}}&\leq (q-p) \int _{ \mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{\mathfrak{g}} (z) \\ &\leq \lambda \Vert a \Vert _{L^{\infty}} \int _{\mathcal{M}} \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z), \end{aligned}

thus

$$\biggl( \int _{\mathcal{M}} \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z) \biggr)^{\frac{q}{r}-1}\leq \lambda \frac{ \Vert a \Vert _{L^{\infty}} }{(q-p) \mu _{0} C_{1}},$$

and, when $$\lambda \rightarrow 0$$, we have $$u=0$$, which is a contradiction.

Now, according to Lemma 5, the set $$\mathcal{N}^{+}\neq \emptyset$$. □

## 4 Existence of weak solutions

### Lemma 7

If the sequence $$\{u_{n}\}$$ is bounded, hence weakly converges to u in the space $$W_{0}^{1, q}(\mathcal{\mathcal{M}})$$, then we have

$$\lim_{n\rightarrow +\infty} \int _{\mathcal{M}} a(z) \vert u_{n} \vert ^{r}u_{n}\log \bigl( \vert u_{n} \vert \bigr) \,dv _{\mathfrak{g}} (z) = \int _{\mathcal{M}} a(z) \vert u \vert ^{r} u\log \bigl( \vert u \vert \bigr) \,dv _{ \mathfrak{g}} (z).$$
(4)

### Proof

We know that for $$\alpha , \beta > 0$$, there exists a constant $$C(\alpha ,\beta )$$ such that

$$\log (t) \leq C(\alpha ,\beta ) \bigl(t^{\alpha}+t^{-\beta} \bigr), \quad \text{for every } t>0.$$

Thus

$$\int _{\mathcal{M}} a(z) \vert u_{n} \vert ^{r} \log \bigl( \vert u_{n} \vert \bigr) \,dv _{\mathfrak{g}} (z) \leq C(p-r,\delta ) \int _{\mathcal{M}} \bigl\vert a(z) \bigr\vert \bigl( \vert u_{n} \vert ^{p} + \vert u_{n} \vert ^{r- \delta}\bigr) \,dv _{\mathfrak{g}} (z),$$

for some $$\delta \in (1,r-1)$$. Furthermore, since $$\{u_{n}\}$$ is bounded, we get $$u_{n}\rightarrow u$$ a.e. in $$\mathcal{M}$$, and then

$$a(z) \vert u_{n} \vert ^{r}\log \bigl( \vert u_{n} \vert \bigr)\rightarrow a(z) \vert u \vert ^{r}\log \bigl( \vert u \vert \bigr) \quad \text{ a.e. in } \mathcal{M} \text{ as } n \to + \infty .$$

Then, thanks to Lebesgue’s theorem, we get the required result. □

### Lemma 8

There exist two positive constants $$\lambda _{2}$$, $$\lambda _{3}$$ such that, for any $$\lambda \in (0, \min ( \lambda _{2}, \lambda _{3} ))$$, we have

1. 1.

$$m^{+}_{\lambda} = \inf_{u \in \mathcal{N}^{+}} J_{ \lambda ( u )} < 0$$,

2. 2.

There exists $$u^{+}\in \mathcal{N}^{+}$$ such that $$J_{\lambda}(u^{+})=m^{+}_{\lambda}$$.

### Proof

1. Let $$u\in \mathcal{N}^{+}$$, then $$\psi ''_{u}(1)>0$$, thus

\begin{aligned}& \int _{\mathcal{M}} \vert \nabla u \vert ^{p} \,dv _{\mathfrak{g}} (z) + \int _{\mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{ \mathfrak{g}} (z) + \int _{\mathcal{M}}V(z) \vert \nabla u \vert ^{p} \,dv _{\mathfrak{g}} (z) \\& \quad {}- \lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}} (z) = 0, \end{aligned}

and

$$(q-p) \int _{\mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{ \mathfrak{g}} (z) + (p-r) \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}} (z) > \lambda \int _{ \mathcal{M}} a(z) \vert u \vert ^{r} \,dv _{\mathfrak{g}} (z).$$

Combining the definition of $$J_{\lambda}(u)$$ with the above, we get

\begin{aligned} J_{\lambda}(u) &\leq \frac{1}{p} \biggl( \int _{\mathcal{M}} \vert \nabla u \vert ^{p} \,dv _{\mathfrak{g}} (z) + \int _{\mathcal{M}}V(z) \vert \nabla u \vert ^{p} \,dv _{\mathfrak{g}} (z) \biggr) \\ &\quad {}+ \biggl( \frac{1}{q}+ \frac{q-p}{r^{2}} \biggr) \int _{\mathcal{M}}\mu (z) \vert \nabla u \vert ^{q} \,dv _{\mathfrak{g}} (z) \\ &\quad {} + \biggl(\frac{p-r}{r^{2}}-\frac{1}{r} \biggr) \lambda \int _{ \mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{ \mathfrak{g}} (z) \\ & = \biggl(\frac{1}{p}-\frac{1}{q}-\frac{q-p}{r^{2}} \biggr) \biggl( \int _{ \mathcal{M}} \vert \nabla u \vert ^{p} \,dv _{\mathfrak{g}} (z) + \int _{ \mathcal{M}}V(z) \vert \nabla u \vert ^{p} \,dv _{\mathfrak{g}} (z) \biggr) \\ &\quad {} + \biggl(\frac{1}{q}+\frac{q-p}{r^{2}} +\frac{p-r}{r^{2}}- \frac{1}{r} \biggr) \lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}} (z) \\ & =\frac{(q-p)(r^{2}-pq)}{pqr^{2}} \biggl( \int _{\mathcal{M}} \vert \nabla u \vert ^{p} \,dv _{\mathfrak{g}} (z)+ \int _{\mathcal{M}}V(z) \vert u \vert ^{p} \,dv _{\mathfrak{g}} (z) \biggr) \\ &\quad {} + \frac{(q-r)^{2}}{qr^{2}} \lambda \int _{\mathcal{M}} a(z) \vert u \vert ^{r} \log \bigl( \vert u \vert \bigr) \,dv _{\mathfrak{g}} (z). \end{aligned}

Using (3) and Poincaré inequality, we obtain that there exists a positive constant $$C_{2}$$ such that

$$J_{\lambda}(u)\leq \frac{(q-p)(r^{2}-pq)}{pqr^{2}} C_{2} \int _{ \mathcal{M}} \vert u \vert ^{p} \,dv _{\mathfrak{g}} (z) +\lambda \frac{(q-r)^{2}}{(p-r) eqr^{2}} \Vert a \Vert _{L^{\infty}} \int _{ \mathcal{M}} \vert u \vert ^{p} \,dv _{\mathfrak{g}} (z).$$

Taking $$\lambda _{2}= \frac{(q-p)(pq-r^{2})}{pqr^{2}}C_{2} \cdot \frac{(p-r) eqr^{2}}{(q-r)^{2}\Vert a\Vert _{L^{\infty}}}$$, we conclude that $$m^{+}_{\lambda}< 0$$, since $$u\neq 0$$.

2. Consider a minimizing sequence $$\lbrace u_{n}\rbrace \subset \mathcal{N}^{+}$$ such that $$\lim_{n\rightarrow +\infty}J_{\lambda}(u_{n})=\inf_{u \in \mathcal{N}^{+}} J_{\lambda}(u)$$.

According to Lemma 5, $$\lbrace u_{n}\rbrace$$ is bounded in $$W_{0}^{q}(\mathcal{\mathcal{M}})$$. Then, up to a subsequence still denoted $$\lbrace u_{n}\rbrace$$, there exists $$u^{+}\in W_{0}^{q}(\mathcal{\mathcal{M}})$$ such that

$$u_{n}\rightharpoonup u^{+} \quad \text{weakly in } W_{0}^{q}( \mathcal{\mathcal{M}}),$$
(5)

and, by the compact embedding,

$$u_{n}\rightarrow u^{+} \quad \text{in } L^{r}(\mathcal{\mathcal{M}}) \text{ strongly for every } 1< r< p^{\ast},$$
(6)

and

$$u_{n}\rightarrow u^{+} \quad \text{a.e. in } \mathcal{M}.$$
(7)

So, $$\int _{\mathcal{M}} V(z) \vert u^{+}\vert ^{p} \,dv _{ \mathfrak{g}} (z) = \lim_{n\longrightarrow +\infty} \int _{ \mathcal{M}} V(z) \vert u_{n}\vert ^{p} \,dv _{\mathfrak{g}} (z)$$, $$\int _{\mathcal{M}} a(z)\vert u^{+}\vert ^{p} \,dv _{ \mathfrak{g}} (z) = \lim_{n\longrightarrow +\infty} \int _{ \mathcal{M}} a(z) \vert u_{n}\vert ^{p} \,dv _{\mathfrak{g}} (z)$$, and by Lemma 7, we have

$$\int _{\mathcal{M}} a(z) \bigl\vert u^{+} \bigr\vert ^{r} \log \bigl( \bigl\vert u^{+} \bigr\vert \bigr) \,dv _{\mathfrak{g}} (z) =\lim_{n\longrightarrow +\infty} \int _{\mathcal{M}} a(z) \vert u_{n} \vert ^{r} \log \bigl( \vert u_{n} \vert \bigr) \,dv _{\mathfrak{g}} (z).$$

Thus, it remains shown that $$\varrho (u^{+}) = \liminf_{n\rightarrow +\infty} \varrho (u_{n})$$.

By contradiction, let $$\varrho (u^{+}) < \liminf_{n\rightarrow +\infty} \varrho (u_{n})$$. Then, since $$u_{n}\in \mathcal{N}^{+}$$, we obtain

\begin{aligned} J_{\lambda}(u_{n}) &= \frac{1}{p} \int _{\mathcal{M}} \vert \nabla u_{n} \vert ^{p} \,dv _{\mathfrak{g}} (z) + \frac{1}{q} \int _{\mathcal{M}} \mu (z) \vert \nabla u_{n} \vert ^{q} \,dv _{\mathfrak{g}} (z) + \frac{1}{p} \int _{\mathcal{M}}V(z) \vert u_{n} \vert ^{p} \,dv _{ \mathfrak{g}} (z) \\ &\quad {} -\frac{\lambda}{r} \int _{\mathcal{M}} a(z) \vert u_{n} \vert ^{r} \log \bigl( \vert u_{n} \vert \bigr) \,dv _{\mathfrak{g}} (z) + \frac{\lambda}{r^{2}} \int _{\mathcal{M}} a(z) \vert u_{n} \vert ^{r} \,dv _{\mathfrak{g}} (z) \\ & \geq \frac{1}{q} \varrho (u_{n}) - \frac{\lambda}{r} \int _{ \mathcal{M}} a(z) \vert u_{n} \vert ^{r} \log \bigl( \vert u_{n} \vert \bigr) \,dv _{\mathfrak{g}} (z). \end{aligned}

Passing to the limit as $$n\rightarrow +\infty$$, we get

$$\liminf_{n\rightarrow +\infty} J_{\lambda}(u_{n})> \frac{1}{q} \varrho \bigl(u^{+}\bigr)- \frac{\lambda}{r} \int _{\mathcal{M}} a(z) \bigl\vert u^{+} \bigr\vert ^{r} \log \bigl( \bigl\vert u^{+} \bigr\vert \bigr) \,dv _{\mathfrak{g}} (z).$$

From (3) and Poincaré inequality, there exists a positive constant $$C_{3}$$ such that

$$\liminf_{n\rightarrow +\infty} J_{\lambda}(u_{n}) > \frac{1}{q} \varrho \bigl(u^{+}\bigr)- \frac{\lambda \Vert a \Vert _{L^{\infty}} C_{3}}{r(p-r)e} \varrho \bigl(u^{+}\bigr) = \biggl(\frac{1}{q} - \frac{\lambda \Vert a \Vert _{L^{\infty}} C_{3}}{r(p-r)e} \biggr) \varrho \bigl(u^{+}\bigr),$$

and, since $$\lambda < \lambda _{3} = \frac{r(p-r)e}{q \Vert a\Vert _{L^{\infty}} C_{3}}$$, we obtain $$\liminf_{n\rightarrow +\infty} J_{\lambda}(u_{n})=m^{+}_{ \lambda}>0$$, which is a contradiction.

Then $$\varrho (u^{+}) = \liminf_{n\rightarrow +\infty} \varrho (u_{n})$$, $$u^{+}\in \mathcal{N}$$, and $$J_{\lambda}(u^{+}) = \liminf_{n\rightarrow +\infty} J_{ \lambda}(u_{n})$$.

Finally, to prove that $$u^{+}\in \mathcal{N}^{+}$$, it is sufficient to show that

$$(q-p) \int _{\mathcal{M}}\mu (z) \bigl\vert \nabla u^{+} \bigr\vert ^{q} + (p-r) \lambda \int _{\mathcal{M}} a(z) \bigl\vert u^{+} \bigr\vert ^{r} \log \bigl( \bigl\vert u^{+} \bigr\vert \bigr) \,dv _{\mathfrak{g}} (z) >\lambda \int _{ \mathcal{M}} a(z) \bigl\vert u^{+} \bigr\vert ^{r} \,dv _{\mathfrak{g}} (z).$$

Indeed, suppose that

$$(q-p) \int _{\mathcal{M}} \mu (z) \bigl\vert \nabla u^{+} \bigr\vert ^{q} + (p-r) \lambda \int _{\mathcal{M}} a(z) \bigl\vert u^{+} \bigr\vert ^{r} \log \bigl( \bigl\vert u^{+} \bigr\vert \bigr) \,dv _{\mathfrak{g}} (z) \leq \lambda \int _{ \mathcal{M}} a(z) \bigl\vert u^{+} \bigr\vert ^{r} \,dv _{\mathfrak{g}} (z),$$

then

$$(q-p) \mu _{0} \int _{\mathcal{M}} \bigl\vert \nabla u^{+} \bigr\vert ^{q} \,dv _{ \mathfrak{g}} (z) \leq \lambda \int _{\mathcal{M}} a(z) \bigl\vert u^{+} \bigr\vert ^{r} \,dv _{\mathfrak{g}} (z),$$

and, in the same way as above, we obtain a contradiction. Thus $$u^{+}\in \mathcal{N}^{+}$$. □

### Proof of Theorem 1

For every $$\lambda \in ( 0, \lambda _{\ast} = \min_{i = 0, \dots , 3} ( \lambda _{i} ) )$$, there exists $$u^{+}\in \mathcal{N}^{+}$$ such that $$J_{\lambda}(u^{+})=\inf_{u\in \mathcal{N}^{+}} J_{\lambda}(u)$$. In addition, it easy to show that $$\vert u^{+}\vert \in \mathcal{N}^{+}$$ and $$J_{\lambda}(\vert u^{+}\vert )=J_{\lambda}(u^{+})$$. Hence, our equation (1) admits at least one nonnegative solution $$u^{+} \in E$$. □

Not applicable.

## References

1. Aberqi, A., Benkirane, A., Elmassoudi, M.: On some nonlinear degenerate elliptic equations having a lower term in Musielak spaces. Adv. Oper. Theory 7, 1–20 (2022)

2. Aberqi, A., Bennouna, J., Benslimane, O., Ragusa, M.A.: Existence results for double phase problem in Sobolev–Orlicz spaces with variable exponents in complete manifold. Mediterr. J. Math. 19, 158 (2022)

3. Aberqi, A., Bennouna, J., Benslimane, O., Ragusa, M.A.: Weak solvability of nonlinear elliptic equations involving variable exponents. Discrete Contin. Dyn. Syst., Ser. S (2022). https://doi.org/10.3934/dcdss.2022105

4. Aberqi, A., Benslimane, O., Ouaziz, A., Repovs̆, D.D.: On a new fractional Sobolev space with variable exponent on complete manifolds. Bound. Value Probl. 2022, 7 (2022)

5. Aubin, T.: Nonlinear Analysis on Manifolds. Monge–Ampere Equations, vol. 252. Springer, Berlin (1982)

6. Bahrouni, A., Rădulescu, V.D., Winkert, P.: Double phase problems with variable growth and convection for the Baouendi–Grushin operator. Z. Angew. Math. Phys. 71, 1–15 (2020)

7. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal., Theory Methods Appl. 121, 206–222 (2015)

8. Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57, 1–48 (2018)

9. Benci, V., d’Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154, 297–324 (2000)

10. Benkhira, E.-H., Essoufi, E.-H., Fakhar, R.: On convergence of the penalty method for a static unilateral contact problem with nonlocal friction in electro-elasticity. Eur. J. Appl. Math. 27, 1–22 (2016)

11. Benslimane, O., Aberqi, A., Bennouna, J.: Existence and uniqueness of weak solution of $$p (x)$$-Laplacian in Sobolev spaces with variable exponents in complete manifolds. Filomat 35, 1453–1463 (2021)

12. Benslimane, O., Aberqi, A., Bennouna, J.: Existence results for double phase obstacle problems with variable exponents. J. Elliptic Parabolic Equ. 7, 875–890 (2021)

13. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

14. Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with $$p\& q$$-Laplacian. Commun. Pure Appl. Anal. 4, 9–22 (2005)

15. Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)

16. Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215, 443–496 (2015)

17. Crespo-Blanco, Á., Gasiński, L., Harjulehto, P., Winkert, P.: A new class of double phase variable exponent problems: existence and uniqueness. J. Differ. Equ. 323, 182–228 (2022)

18. De Filippis, C., Mingione, G.: Lipschitz bounds and nonautonomous integrals. Arch. Ration. Mech. Anal. 242, 973–1057 (2021)

19. Farkas, C., Winkert, P.: An existence result for singular Finsler double phase problems. J. Differ. Equ. 286, 455–473 (2021)

20. Gaczkowski, M., Górka, P.: Sobolev spaces with variable exponents on Riemannian manifolds. Nonlinear Anal., Theory Methods Appl. 92, 47–59 (2013)

21. Gaczkowski, M., Górka, P., Pons, D.J.: Sobolev spaces with variable exponents on complete manifolds. J. Funct. Anal. 270, 1379–1415 (2016)

22. Gasiński, L., Winkert, P.: Existence and uniqueness results for double phase problems with convection term. J. Differ. Equ. 268, 4183–4193 (2020)

23. Goodrich, C.S., Ragusa, M.A., Scapellato, A.: Partial regularity of solutions to $$p(x)$$-Laplacian PDEs with discontinuous coefficients. J. Differ. Equ. 268, 5440–5468 (2020)

24. Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, vol. 5. Am. Math. Soc., Providence (2000)

25. Liu, W., Dai, G.: Existence and multiplicity results for double phase problem. J. Differ. Equ. 265, 4311–4334 (2018)

26. Liu, W., Dai, G., Papageorgiou, N., Winkert, P.: Existence of solutions for singular double phase problems via the Nehari manifold method. Anal. Math. Phys. 12, 75 (2022). https://doi.org/10.1007/s13324-022-00686-6

27. Liu, W., Winkert, P.: Combined effects of singular and superlinear nonlinearities in singular double phase problems in $$\mathbb{R}^{N}$$. J. Math. Anal. Appl. 507, 125762 (2022)

28. Marcellini, P.: Regularity and existence of solutions of elliptic equations with $$p, q$$-growth conditions. J. Differ. Equ. 90, 1–30 (1991)

29. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Existence and multiplicity of solutions for double-phase Robin problems. Bull. Lond. Math. Soc. 52, 546–560 (2020)

30. Papageorgiou, N.S., Repovš, D.D., Vetro, C.: Positive solutions for singular double phase problems. J. Math. Anal. Appl. 501, 1238960 (2021)

31. Radulescu, V.D., Repovs, D.D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, vol. 9. CRC Press, Boca Raton (2015)

32. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9, 710–728 (2019)

33. Růžička, M.: Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math. 49, 565–609 (2004)

34. Shi, X., Rădulescu, V.D., Repovš, D.D., Zhang, Q.: Multiple solutions of double phase variational problems with variable exponent. Adv. Calc. Var. 13, 385–401 (2020)

35. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Ross. Akad. Nauk, Ser. Mat. 50, 675–710 (1986)

36. Zhikov, V.V.: On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. 131, 463–570 (2011)

## Acknowledgements

The authors would like to thank the referees for their suggestions and helpful comments which have improved the presentation of the original manuscript.

## Funding

This paper has been supported by PRIN 2017 n.2017AYM8XW 004.

## Author information

Authors

### Contributions

All contributions of the Authors are equal. Maria Alessandra Ragusa is the corresponding author, as above specified.

### Corresponding author

Correspondence to Maria Alessandra Ragusa.

## Ethics declarations

### Competing interests

The authors declare no competing interests.

## Rights and permissions 