Let \(\lambda > 0\) be fixed. In what follows, C denotes various constants independent of λ. Following the idea of (3.1)–(3.3), we look for the solution of the form
$$ u_{\lambda}(x) = t w_{r}(x) = t\lambda ^{-1/(r-1)}W_{r}(x). $$
(4.1)
If (4.1) is the solution of (1.1) with \(A(\Vert u_{\lambda}'\Vert _{p}^{p}) = e^{\Vert u_{\lambda}'\Vert _{p}^{p}}\) and \(B(\Vert u_{\lambda}'\Vert _{q}^{q}) = \Vert u_{\lambda}'\Vert _{q}^{q}\), then we have
$$ -\exp \bigl(t^{p}\lambda ^{-p/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p} \bigr) W_{r}''(x) = t^{q+r-1} \lambda ^{-q/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{q}^{q} W_{r}(x)^{r}. $$
(4.2)
This implies that
$$ \exp \bigl(t^{p}\lambda ^{-p/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p} \bigr) = t^{q+r-1}\lambda ^{-q/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{q}^{q}. $$
(4.3)
We put \(s:= t^{q+r-1}\). By taking log of the both side of (4.3), we have
$$ C_{1}s^{p/(q+r-1)} = \log s + C_{2}, $$
(4.4)
where
$$ C_{1}:= \lambda ^{-p/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p}, \qquad C_{2}:= - \frac{q}{r-1}\log \lambda + \log \bigl\Vert W_{r}' \bigr\Vert _{q}^{q}. $$
(4.5)
We put
$$ g(s):= C_{1}s^{p/(q+r-1)} - \log s - C_{2}. $$
(4.6)
We look for \(s > 0\) satisfying \(g(s) = 0\). To do this, we consider the graph of \(g(s)\). We know that
$$ g'(s) = \frac{p}{q+r-1}C_{1}s^{(p-q-r+1)/(q+r-1)} - \frac{1}{s}. $$
(4.7)
By this, we find that \(g'(s_{0}) = 0\), where
$$ s_{0}:= \biggl(\frac{q+r-1}{pC_{1}} \biggr)^{(q+r-1)/p} = \biggl( \frac{q+r-1}{p \Vert W_{r}' \Vert _{p}^{p}} \biggr)^{(q+r-1)/p}\lambda ^{(q+r-1)/(r-1)}. $$
(4.8)
By an elementary calculation, we see that if \(0 < s < s_{0}\) (resp. \(s > s_{0}\)), then \(g(s)\) is strictly decreasing (resp. strictly increasing) and \(g(s_{0})\) is the minimum value of \(g(s)\). By (4.5), (4.6), (4.8), and direct calculation, we have
$$\begin{aligned} g(s_{0}) =& -\log \lambda + \frac{q+r-1}{p} \biggl(1 - \log \frac{q+r-1}{p} + \log \bigl\Vert W_{r}' \bigr\Vert _{p}^{p} - \frac{p}{q+r-1} \log \bigl\Vert W_{r}' \bigr\Vert _{q}^{q} \biggr) \\ =& -\log \lambda + C_{0}. \end{aligned}$$
(4.9)
We put \(\lambda _{1}:= e^{C_{0}}\). Then, \(g(s_{0}) > 0\) if \(0 < \lambda < \lambda _{1}\), \(g(s_{0}) = 0\) if \(\lambda = \lambda _{1}\) and \(g(s_{0}) < 0\) if \(\lambda > \lambda _{1}\). Then, we see that if \(0 < \lambda < \lambda _{1}\), then (4.6) (namely, (4.3) and (4.4)) has no solution, and if \(\lambda = \lambda _{1}\), then (4.6) (namely, (4.3) and (4.4)) has a unique solution \(s_{0}\), and if \(\lambda > \lambda _{1}\), then (4.6) (namely, (4.3) and (4.4)) has exactly two solutions \(s_{1}\), \(s_{2}\) with \(s_{1} < s_{0} < s_{2}\).
We see from the argument above that Theorem 1.3(i), (ii) hold. Moreover, let \(t_{\lambda ,j}:= s_{j}^{1/(q+r-1)}\) (\(j = 1,2\)). By this and (4.1), we obtain Theorem 1.3(iii).
Now, we consider the case (iv). Since it is difficult to obtain \(t_{\lambda ,j}:= s_{j}^{1/(q+r-1)}\) (\(j = 1,2\)) exactly, we first establish the asymptotic formula for \(t_{\lambda ,j}\) for \(\lambda \gg 1\).
Lemma 4.1
Assume that \(\lambda \gg 1\). Then,
$$ t_{\lambda ,2} = \bigl\Vert W_{r}' \bigr\Vert _{q}^{-1}\lambda ^{1/(r-1)}( \log \lambda )^{1/p} \biggl\{ 1 + \frac{p^{2}}{(q+r-1)^{3}} \frac{\log (\log \lambda )}{\log \lambda}\bigl(1 + o(1)\bigr) \biggr\} . $$
(4.10)
Proof
We put \(s_{\lambda ,2}:= t_{\lambda ,2}^{q+r-1}\). By (4.3), we have
$$ \exp \bigl(s_{\lambda ,2}^{p/(q+r-1)}\lambda ^{-p/(r-1)} \Vert W_{r}' \Vert _{p}^{p} \bigr)= s_{\lambda ,2}\lambda ^{-q/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{q}^{q}. $$
(4.11)
By this, we have
$$ \frac{q}{r-1}\log \lambda + s_{\lambda ,2}^{p/(q+r-1)}\lambda ^{-p/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p} = \log s_{\lambda ,2} + q\log \bigl\Vert W_{r}' \bigr\Vert _{q}. $$
(4.12)
Then, three cases should be considered.
Case 1. Assume that there exists a subsequence of \(\{\lambda \}\), which is denoted by \(\{\lambda \}\) again, such that as \(\lambda \to \infty \),
$$ \log \lambda \gg s_{\lambda ,2}^{p/(q+r-1)}{\lambda ^{-p/(r-1)}} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p}. $$
(4.13)
Then, by this and (4.12), we have
$$ \frac{q}{r-1}\bigl(1 + o(1)\bigr)\log \lambda = \log s_{\lambda ,2}. $$
(4.14)
This implies that
$$ s_{\lambda ,2} = \lambda ^{q/(r-1)}\bigl(1 + o(1)\bigr). $$
(4.15)
By this and (4.8), we have \(s_{0} > s_{\lambda ,2}\). This is a contradiction.
Case 2. Assume that there exists a subsequence of \(\{\lambda \}\), which is denoted by \(\{\lambda \}\) again, such that as \(\lambda \to \infty \),
$$ \log \lambda \ll s_{\lambda ,2}^{p/(q+r-1)}{\lambda ^{-p/(r-1)}} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p}. $$
(4.16)
Then, by (4.12), we have
$$ s_{\lambda ,2}^{p/(q+r-1)}{\lambda ^{-p/(r-1)}} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p} = \bigl(1 + o(1)\bigr)\log s_{\lambda ,2}. $$
(4.17)
This implies that
$$\begin{aligned} s_{\lambda ,2} =& \bigl( \bigl\Vert W_{r}' \bigr\Vert _{p}^{-p}\bigl(1 + o(1)\bigr) \lambda ^{p/(r-1)}\log s_{\lambda ,2} \bigr)^{(q+r-1)/p} \\ =& \bigl\Vert W_{r}' \bigr\Vert _{p}^{-(q+r-1)}\bigl(1 + o(1)\bigr)\lambda ^{(q+r-1)/(r-1)}( \log s_{\lambda ,2})^{(q+r-1)/p} \\ =& \bigl\Vert W_{r}' \bigr\Vert _{p}^{-(q+r-1)}\bigl(1 + o(1)\bigr)\lambda ^{(q+r-1)/(r-1)} \biggl(\frac{q+r-1}{r-1}\log \lambda \biggr)^{(q+r-1)/p} \\ =& \biggl(\frac{q+r-1}{r-1} \biggr)^{(q+r-1)/p} \bigl\Vert W_{r}' \bigr\Vert _{p}^{-(q+r-1)} \lambda ^{(q+r-1)/(r-1)}(\log \lambda )^{(q+r-1)/p}\bigl(1 + o(1)\bigr). \end{aligned}$$
(4.18)
By this, (4.12), and (4.18), we have
$$ \frac{q}{r-1}\log \lambda + \frac{q+r-1}{r-1}\bigl(1 + o(1)\bigr) \log \lambda = \frac{q+r-1}{r-1}\bigl(1 + o(1)\bigr) \log \lambda . $$
(4.19)
This is a contradiction.
Case 3. Therefore, there exists a subsequence of \(\{\lambda \}\), which is denoted by \(\{\lambda \}\) again, such that as \(\lambda \to \infty \),
$$ C^{-1} < \frac{\log \lambda}{ s_{\lambda ,2}^{p/(q+r-1)}{\lambda ^{-p/(r-1)}} \Vert W_{r}' \Vert _{p}^{p}} \le C. $$
(4.20)
By this and taking a subsequence of \(\{\lambda \}\) again if necessary, we see that there exists a constant \(C_{4} > 0\) such that as \(\lambda \to \infty \),
$$ s_{\lambda ,2} = C_{4}\lambda ^{(q+r-1)/(r-1)}(\log \lambda )^{(q+r-1)/p}(1 + \delta _{1}), $$
(4.21)
where \(\delta _{1} \to 0\) as \(\lambda \to \infty \). By this and (4.12), we have
$$\begin{aligned} &\frac{q}{r-1}\log \lambda + s_{\lambda}^{p/(q+r-1)}\lambda ^{-p/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p} \\ &\quad = \log C_{4} + \frac{q+r-1}{r-1}\log \lambda + \frac{q+r-1}{p}\log ( \log \lambda ) + \log (1 + \delta _{0}) + q\log \bigl\Vert W_{r}' \bigr\Vert _{q}. \end{aligned}$$
(4.22)
This implies that
$$ s_{\lambda ,2}^{p/(q+r-1)}\lambda ^{-p/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p} = (1 + \delta _{1})\log \lambda , $$
(4.23)
where \(\delta _{1} \to 0\) as \(\lambda \to \infty \). This implies that
$$ s_{\lambda ,2} = \bigl\Vert W_{r}' \bigr\Vert _{p}^{-(q+r-1)}\lambda ^{(q+r-1)/(r-1)}( \log \lambda )^{(q+r-1)/p} (1 + \delta _{0}). $$
(4.24)
Namely, \(C_{4} = \Vert W_{r}'\Vert _{p}^{-(q+r-1)}\). By (4.22) and (4.23), we have
$$ \delta _{1}\log \lambda = \log C_{4} + \frac{q+r-1}{p}\log (\log \lambda ) + \log (1 + \delta _{0}) + q\log \bigl\Vert W_{r}' \bigr\Vert _{q}. $$
(4.25)
By this, we have
$$ \delta _{1} = \frac{q+r-1}{p} \frac{\log (\log \lambda ) }{\log \lambda}\bigl(1 + o(1)\bigr). $$
(4.26)
By this, (4.23), and the Taylor expansion, we have
$$\begin{aligned} s_{\lambda ,2} =& \bigl\Vert W_{r}' \bigr\Vert _{p}^{-(q+r-1)}\lambda ^{(q+r-1)/(r-1)}( \log \lambda )^{(q+r-1)/p} (1 + \delta _{1})^{(q+r-1)/p} \\ =& \bigl\Vert W_{r}' \bigr\Vert _{p}^{-(q+r-1)}\lambda ^{(q+r-1)/(r-1)}(\log \lambda )^{(q+r-1)/p} \\ &{}\times \biggl\{ 1 + \biggl(\frac{p}{q+r-1} \biggr)^{2} \frac{\log (\log \lambda ) }{\log \lambda}\bigl(1 + o(1)\bigr) \biggr\} . \end{aligned}$$
(4.27)
Indeed, we see from (4.27) that \(s_{0} < s_{\lambda ,2}\). Therefore, by (4.27), we obtain (4.10). Thus, the proof is complete. □
Lemma 4.2
Assume that \(\lambda \gg 1\). Then
$$\begin{aligned} t_{1,\lambda} =& \lambda ^{q/((r-1)(q+r-1))} \bigl\Vert W_{r}' \bigr\Vert _{q}^{-q/(q+r-1)} \\ &{}\times \biggl\{ 1 + \frac{1}{q+r-1} \bigl\Vert W_{\lambda}' \bigr\Vert _{p}^{p} \bigl\Vert W_{\lambda}' \bigr\Vert _{q}^{pq/(q+r-1)} \lambda ^{-p/(q+r-1)}\bigl(1 + o(1)\bigr) \biggr\} . \end{aligned}$$
(4.28)
Proof
Since \(s_{\lambda ,1} < s_{0}\), we find from Lemma 4.1 that as \(\lambda \to \infty \),
$$ s_{\lambda ,1}^{p/(q+r-1)}\lambda ^{-p/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p} \ll \log \lambda . $$
(4.29)
By this and (4.12), we have
$$ \bigl(1 + o(1)\bigr)\frac{q}{r-1}\log \lambda = \log s_{\lambda}. $$
(4.30)
This implies that
$$ s_{\lambda ,1} = \lambda ^{q/(r-1)(1+o(1))}. $$
(4.31)
By this and (4.8), we see that \(s = s_{\lambda ,1}\) is determined by (4.31). By (4.31), we have
$$ s_{\lambda ,1}^{p/(q+r-1)}{\lambda ^{-p/(r-1)}} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p} \le Cs_{1}^{-p(r-1)(1 + o(1))/(q(q+r-1))} \to 0 $$
(4.32)
as \(\lambda \to \infty \). Now, we calculate \(s_{1}\). By (4.30) and (4.12), we have
$$ \frac{q}{r-1}\log \lambda = \log s_{\lambda ,1} + \bigl(1 + o(1) \bigr)q\log \bigl\Vert W_{r}' \bigr\Vert _{q}. $$
(4.33)
By this, for \(\lambda \gg 1\), we have
$$ \lambda = \bigl\Vert W_{r}' \bigr\Vert _{q}^{r-1}s_{1}^{(r-1)/q}(1 + \eta ), $$
(4.34)
where \(\eta \to 0\) as \(\lambda \to \infty \). By this, (4.12), and the Taylor expansion, we have
$$ \frac{q}{r-1}\bigl(1 + o(1)\bigr)\eta + s_{\lambda ,1}^{p/(q+r-1)} \lambda ^{-p/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{p}^{p} = 0. $$
(4.35)
By this and (4.34), we have
$$ \eta = -\frac{r-1}{q} \bigl\Vert W_{\lambda}' \bigr\Vert _{p}^{p} \bigl\Vert W_{\lambda}' \bigr\Vert _{q}^{-pq/(q+r-1)} \lambda ^{-p/(q+r-1)}\bigl(1 + o(1)\bigr). $$
(4.36)
By this, (4.20), and the Taylor expansion, we have
$$\begin{aligned} s_{\lambda ,1} =& \lambda ^{q/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{q}^{-q} \biggl(1 - \frac{q}{r-1}\eta \biggr) \\ =& \lambda ^{q/(r-1)} \bigl\Vert W_{r}' \bigr\Vert _{q}^{-q} \bigl\{ 1 + \bigl\Vert W_{ \lambda}' \bigr\Vert _{p}^{p} \bigl\Vert W_{\lambda}' \bigr\Vert _{q}^{-pq/(q+r-1)} \lambda ^{-p/(q+r-1)}\bigl(1 + o(1)\bigr) \bigr\} . \end{aligned}$$
(4.37)
By this, we have
$$\begin{aligned} t_{\lambda ,1} =& \lambda ^{q/((r-1)(q+r-1))} \bigl\Vert W_{r}' \bigr\Vert _{q}^{-q/(q+r-1)} \\ &{}\times \biggl\{ 1 + \frac{1}{q+r-1} \bigl\Vert W_{\lambda}' \bigr\Vert _{p}^{p} \bigl\Vert W_{\lambda}' \bigr\Vert _{q}^{-pq/(q+r-1)} \lambda ^{-p/(q+r-1)}\bigl(1 + o(1)\bigr) \biggr\} . \end{aligned}$$
(4.38)
Thus, we obtain (4.28). □
Proof of Theorem 1.3
By Lemma 4.2, for \(\lambda \gg 1\), we obtain
$$\begin{aligned} u_{1,\lambda}(x) =& \lambda ^{-1/(q+r-1)} \bigl\Vert W_{r}' \bigr\Vert _{q}^{-q/(q+r-1)} \\ &{}\times \biggl\{ 1 + \frac{1}{q+r-1} \bigl\Vert W_{\lambda}' \bigr\Vert _{p}^{p} \bigl\Vert W_{\lambda}' \bigr\Vert _{q}^{pq/(q+r-1)} \lambda ^{-p/(q+r-1)}\bigl(1 + o(1)\bigr) \biggr\} W_{r}(x). \end{aligned}$$
(4.39)
This implies (1.14). Further, by Lemma 4.1, we obtain
$$ u_{2,\lambda}(x) = \bigl\Vert W_{r}' \bigr\Vert _{q}^{-1}(\log \lambda )^{1/p} \biggl\{ 1 + \frac{p^{2}}{(q+r-1)^{3}} \frac{\log (\log \lambda )}{\log \lambda}\bigl(1 + o(1)\bigr) \biggr\} W_{r}(x). $$
(4.40)
This implies (1.16). To obtain (1.15) and (1.17), we just put \(x = 1/2\) in (4.39) and (4.40). Thus, the proof is complete. □