In this section we prove the existence and uniqueness of the weak solution. The main technique is the Faedo–Galerkin approximation method, which allows to exhibit an approximating sequence that converges to the desired solution. The following gives the definition of weak solutions, that is, solutions in a variational sense.
Definition 4.1
A pair of functions \(\{ u,\theta \}\) is called a weak solution of system (3.3) if \(u\in L^{2}(0, T; V_{g})\) and \(\theta \in L^{2}(0, T; W_{g})\) satisfy the following equations:
$$ \begin{aligned} &\partial ^{\alpha}_{t}(u,v)_{g}+ b_{g}(u,u,v)+\nu (\nabla u,\nabla v )_{g}+ \nu (C_{g}u,v)_{g}= (\xi \theta ,v)_{g}+(f_{1},v)_{g}, \\ &\partial ^{\alpha}_{t} (\theta ,\tau )_{g}+ \widetilde{b}_{g}(u, \theta ,\tau )+\kappa ( \nabla \theta ,\nabla \tau )_{g}+\kappa \widetilde{b}_{g} \biggl( \frac{\nabla g}{g}, \tau ,\theta \biggr)=( f_{2},v)_{g} \end{aligned} $$
(4.1)
for all \(v_{2} \in V_{g}\) and \(\tau \in W_{g}\).
The following theorem contains the main result of this paper.
Theorem 4.2
If \(f_{1}\in L^{\frac{2}{\alpha _{1}}}(0, T; L^{2}(\Omega , g))\) and \(f_{2}\in L^{\frac{2}{\alpha _{2}}}(0, T; L^{2}(\Omega , g))\) (\(\alpha _{1}, \alpha _{2}<\alpha \)), \(u_{0} \in H_{g}\), \(\theta _{0} \in L^{2}(\Omega , g)\) and g is a smooth function satisfying the conditions given in (3.1) defined on \(\Omega _{2}\), then there exists a unique weak solution \(\{ u,\theta \} \) of system (3.3) satisfying the periodic boundary conditions.
Proof
Since \(V_{g}\) is separable and \(\mathcal{V}_{1}\) is dense in \(V_{g}\), there exists a sequence forming a complete orthonormal system in \(H_{g}\) and a basis in \(V_{g}\). Similarly, there exists a sequence forming a complete orthonormal system in \(L^{2}(\Omega , g)\) and a basis in \(W_{g}\). Let m be an arbitrary but fixed nonnegative integer. For each m, we define the following approximate solution \(\{u^{(m)}(t), \theta ^{(m)}(t)\}\) of (3.3):
$$ u^{(m)}(t)=\sum ^{m}_{j=1} f_{j}^{(m)}(t)u_{j}, \qquad \theta ^{(m)}(t)=\sum^{m}_{j=1} g_{j}^{(m)}(t)\theta _{j}, $$
(4.2)
and we consider the following approximate problem (4.3)–(4.5):
$$\begin{aligned}& \begin{aligned} &\partial ^{\alpha}_{t} \bigl(u^{(m)},u_{k}\bigr)_{g}+ b_{g} \bigl(u^{(m)},u^{(m)},u_{k}\bigr)+ \nu \bigl( \bigl(u^{(m)},u_{k} \bigr) \bigr)_{g} +\nu b_{g}\biggl( \frac{\nabla g}{g} ,u^{(m)},u_{k} \biggr) \\ & \quad = \bigl(\xi \theta ^{(m)},u_{k} \bigr)_{g}+(f_{1},u_{k})_{g}, \end{aligned} \end{aligned}$$
(4.3)
$$\begin{aligned}& \begin{aligned} &\partial ^{\alpha}_{t} \bigl(\theta ^{(m)} ,\theta _{k}\bigr)_{g}+ \widetilde{b}_{g}\bigl(u^{(m)},\theta ^{(m)},\theta _{k}\bigr)+\kappa \bigl(\bigl( \theta ^{(m)},\theta _{k} \bigr)\bigr)_{g} +\kappa \widetilde{b}_{g} \biggl( \frac{\nabla g}{g},\theta _{k},\theta ^{(m)}\biggr) \\ & \quad =( f_{2},\theta _{k})_{g} \end{aligned} \end{aligned}$$
(4.4)
and
$$ u^{(m)}(0)=u_{m_{0}}=\sum ^{m}_{j=1} (a_{0},u_{j})u_{j}, \qquad \theta ^{(m)}(0)=\theta _{m_{0}}=\sum ^{m}_{j=1} (\tau _{0}, \theta _{j})\theta _{j}. $$
(4.5)
This system forms a nonlinear fractional order system of ordinary differential equations for the functions \(f_{j}^{(m)}(t)\) and \(g_{j}^{(m)}(t)\) and has a maximal solution on some interval \([0, T ]\) (cf. [6]). We multiply (4.3) and (4.4) by \(f_{j}^{(m)}(t)\) and \(g_{j}^{(m)}(t)\), respectively, and add these equations for \(k = 1,\ldots , m\). Taking into account \(b_{g}(u^{(m)}, u^{(m)}, u^{(m)}) = 0\) and \(\widetilde{b}g(u^{(m)}, \theta ^{(m)},\theta ^{(m)}) =0\), we get
$$ \begin{aligned} &\bigl(D^{\alpha}_{t}u^{(m)},u^{(m)} \bigr)_{g}+ \nu \bigl\Vert u^{(m)} (t) \bigr\Vert ^{2}_{g} + \nu b_{g}\biggl( \frac{\nabla g}{g} ,u^{(m)}(t),u^{(m)}(t)\biggr) \\ &\quad = \bigl(\xi \theta ^{(m)},u^{(m)}(t) \bigr)_{g}+\bigl(f_{1},u^{(m)}(t)\bigr) \end{aligned} $$
(4.6)
and
$$ \bigl(D^{\alpha}_{t}\theta ^{(m)}(t) ,\theta ^{(m)}(t)\bigr)_{g}+ \kappa \bigl\Vert \theta ^{(m)}(t) \bigr\Vert ^{2}_{g} + \kappa \widetilde{b}_{g}\biggl( \frac{\nabla g}{g},\theta ^{(m)}(t),\theta ^{(m)}(t)\biggr)=\bigl( f_{2},\theta ^{(m)}(t)\bigr)_{g}. $$
(4.7)
Using Schwarz and Young inequalities in (4.6) and (4.7),
$$\begin{aligned} &D^{\alpha}_{t} \bigl\vert u^{(m)}(t) \bigr\vert ^{2}_{g} +\nu \bigl\Vert u^{(m)}(t) \bigr\Vert ^{2}_{g} \leq \frac{ M_{0} \vert \xi \vert ^{2}_{\infty}}{\pi ^{2} m_{0}\nu} \bigl\vert \theta ^{(m)}(t) \bigr\vert ^{2}_{g} +\frac{4}{\nu} \bigl\Vert f_{1}(t) \bigr\Vert ^{2}_{V'_{g}}+ \frac{ 2\nu \vert \nabla g \vert ^{2}_{\infty}}{m^{2}_{0}} \bigl\vert u^{(m)}(t) \bigr\vert ^{2}_{g}, \\ &D^{\alpha}_{t} \bigl\vert \theta ^{(m)}(t) \bigr\vert ^{2}_{g} +\kappa \bigl\Vert \theta ^{(m)}(t) \bigr\Vert ^{2}_{g} \leq \frac{ 2}{\kappa} \bigl\Vert f_{2}(t) \bigr\Vert ^{2}_{W'_{g}} +\frac{2\kappa \vert \nabla g \vert ^{2}_{\infty}}{m^{2}_{0}} \bigl\vert \theta ^{(m)}(t) \bigr\vert ^{2}_{g}. \end{aligned}$$
By using the fact that \(|\nabla g |^{2}_{\infty}< \frac{\pi ^{2} m^{3}_{0}}{M_{0}}\) and noting \(\nu '=\nu (1- \frac{ M_{0}|\nabla g|^{2}_{\infty}}{2\pi ^{2} m^{3}_{0}} )\), \(\kappa '=\kappa (1- \frac{ M_{0}|\nabla g|^{2}_{\infty}}{2\pi ^{2} m^{3}_{0}} )\) and \(c'= \frac{ M^{2}_{0}\|\xi \|^{2}_{\infty}}{4\pi ^{4} m^{2}_{0}}\), we get the inequalities
$$ D^{\alpha}_{t} \bigl\vert u^{(m)}(t) \bigr\vert ^{2}_{g} +\nu ' \bigl\Vert u^{(m)}(t) \bigr\Vert ^{2}_{g} \leq \frac{ c'}{\nu} \bigl\Vert \theta ^{m}(t) \bigr\Vert ^{2}_{g} + \frac{4}{\nu} \bigl\Vert f_{1}(t) \bigr\Vert ^{2}_{V'_{g}} $$
(4.8)
and
$$ D^{\alpha}_{t} \bigl\vert \theta ^{(m)}(t) \bigr\vert ^{2}_{g} +\kappa ' \bigl\Vert \theta ^{(m)}(t) \bigr\Vert ^{2}_{g} \leq \frac{ 2}{\kappa} \bigl\Vert f_{2}(t) \bigr\Vert ^{2}_{W'_{g}}. $$
(4.9)
Integrating (4.9) from 0 to T, in the fractional sense, we obtain
$$\begin{aligned}& \bigl\vert \theta ^{(m)}(t) \bigr\vert _{g}^{2} + \frac{\kappa '}{\Gamma (\alpha )} \int _{0}^{t} (t-s)^{\alpha -1} \bigl\Vert \theta ^{(m)}(s) \bigr\Vert _{g}^{2}\,ds \\& \quad \leq \vert \theta _{0m} \vert _{g}^{2}+ \frac{2}{\kappa \Gamma (\alpha )} \int _{0}^{t}(t-s)^{\alpha -1} \bigl\Vert f_{2}(s) \bigr\Vert _{W_{g}'}^{2}\,ds \\& \quad \leq \vert \theta _{0m} \vert _{g}^{2}+ \frac{2}{\kappa \Gamma (\alpha )} \int _{0}^{t} \bigl\Vert f_{2}(s) \bigr\Vert _{W_{g}'}^{2/\alpha _{2}}\,ds+ \frac{2}{\kappa \Gamma (\alpha )} \int _{0}^{t}(t-s)^{ \frac{\alpha -1}{1-\alpha _{2}}}\,ds \\& \quad \leq \vert \theta _{0m} \vert _{g}^{2}+ \frac{2}{\kappa \Gamma (\alpha )} \int _{0}^{T} \bigl\Vert f_{2}(s) \bigr\Vert _{W_{g}'}^{2/\alpha _{2}}\,ds+C_{2}, \end{aligned}$$
where \(b_{2}=\frac{\alpha -1}{1-\alpha _{2}}\) and \(C_{2}=\frac{2T^{1+b_{2}}}{\kappa (1+b_{2})\Gamma (\alpha )}\). It follows that
$$ \int _{0}^{t} (t-s)^{\alpha -1} \bigl\Vert \theta ^{(m)}(s) \bigr\Vert _{g}^{2}\,ds\leq \frac{\Gamma (\alpha )}{\kappa '} \vert \theta _{0m} \vert _{g}^{2}+ \frac{2}{\kappa \kappa '} \int _{0}^{T} \bigl\Vert f_{2}(s) \bigr\Vert _{W_{g}'}^{2/ \alpha _{2}}\,ds+\frac{\Gamma (\alpha )}{\kappa '}C_{2}. $$
(4.10)
On the other hand, integrating (4.8) from 0 to T, in the fractional sense, we obtain
$$\begin{aligned}& \bigl\vert u^{(m)}(t) \bigr\vert _{g}^{2} + \frac{\nu '}{\Gamma (\alpha )} \int _{0}^{t} (t-s)^{ \alpha -1} \bigl\Vert u^{(m)}(s) \bigr\Vert _{g}^{2}\,ds \\& \quad \leq \vert u_{0m} \vert _{g}^{2}+ \frac{c'}{\nu \Gamma (\alpha )} \int _{0}^{t} (t-s)^{\alpha -1} \bigl\Vert \theta ^{(m)}(s) \bigr\Vert _{g}^{2}\,ds+ \frac{4}{\nu \Gamma (\alpha )} \int _{0}^{t}(t-s)^{\alpha -1} \bigl\Vert f_{1}(s) \bigr\Vert _{V_{g}'}^{2}\,ds \\& \quad \leq \vert u_{0m} \vert _{g}^{2}+ \frac{c'}{\nu \kappa '} \vert \theta _{0m} \vert _{g}^{2}+ \frac{2c'}{\nu \kappa \kappa '\Gamma (\alpha )} \int _{0}^{t} \bigl\Vert f_{2}(s) \bigr\Vert _{W_{g}'}^{2/\alpha _{2}}\,ds+\frac{c'}{\nu \kappa '}C_{2} \\& \qquad {} +\frac{4}{\nu \Gamma (\alpha )} \int _{0}^{t} \bigl\Vert f_{1}(s) \bigr\Vert _{V_{g}'}^{2/ \alpha _{1}}\,ds+\frac{4}{\nu \Gamma (\alpha )} \int _{0}^{t}(t-s)^{ \frac{\alpha -1}{1-\alpha _{1}}}\,ds \\& \quad \leq \vert u_{0m} \vert _{g}^{2}+ \frac{c'}{\nu \kappa '} \vert \theta _{0m} \vert _{g}^{2}+ \frac{2c'}{\nu \kappa \kappa '\Gamma (\alpha )} \int _{0}^{t} \bigl\Vert f_{2}(s) \bigr\Vert _{W_{g}'}^{2/\alpha _{2}}\,ds+\frac{4}{\nu \Gamma (\alpha )} \int _{0}^{t} \bigl\Vert f_{1}(s) \bigr\Vert _{V_{g}'}^{2/\alpha _{1}}\,ds \\& \qquad {} +C_{1}, \end{aligned}$$
where \(b_{1}=\frac{\alpha -1}{1-\alpha _{1}}\) and \(C_{1}=\frac{c'}{\nu \kappa '}C_{2}+ \frac{4T^{1+b_{1}}}{\nu (1+b_{1})\Gamma (\alpha )}\). By using the fact that
$$ \int _{0}^{t} (t-s)^{\alpha -1} \bigl\Vert u^{(m)}(s) \bigr\Vert _{g}^{2}\,ds\geq T^{ \alpha -1} \int _{0}^{t} \bigl\Vert u^{(m)}(s) \bigr\Vert _{g}^{2}\,ds $$
(4.11)
and similarly
$$ \int _{0}^{t} (t-s)^{\alpha -1} \bigl\Vert \theta ^{(m)}(s) \bigr\Vert _{g}^{2}\,ds\geq T^{ \alpha -1} \int _{0}^{t} \bigl\Vert \theta ^{(m)}(s) \bigr\Vert _{g}^{2}\,ds, $$
(4.12)
it follows that
$$\begin{aligned} &\bigl\vert u^{(m)}(t) \bigr\vert _{g}^{2} + \frac{\nu ' T^{\alpha -1}}{\Gamma (\alpha )} \int _{0}^{t} \bigl\Vert u^{(m)}(s) \bigr\Vert _{g}^{2}\,ds \\ &\quad \leq \vert u_{0m} \vert _{g}^{2}+ \frac{c'}{\nu \kappa '} \vert \theta _{0m} \vert _{g}^{2} \end{aligned}$$
(4.13)
$$\begin{aligned} &\qquad {}+ \frac{2c'}{\nu \kappa \kappa '\Gamma (\alpha )} \int _{0}^{T} \bigl\Vert f_{2}(s) \bigr\Vert _{W_{g}'}^{2/\alpha _{2}}\,ds+\frac{4}{\nu \Gamma (\alpha )} \int _{0}^{T} \bigl\Vert f_{1}(s) \bigr\Vert _{V_{g}'}^{2/\alpha _{1}}\,ds +C_{1}, \\ &\bigl\vert \theta ^{(m)}(t) \bigr\vert _{g}^{2} + \frac{\kappa 'T^{\alpha -1}}{\Gamma (\alpha )} \int _{0}^{t} \bigl\Vert \theta ^{(m)}(s) \bigr\Vert _{g}^{2}\,ds\leq \vert \theta _{0m} \vert _{g}^{2}+ \frac{2}{\kappa \Gamma (\alpha )} \int _{0}^{T} \bigl\Vert f_{2}(s) \bigr\Vert _{V_{g}'}^{2/ \alpha _{2}}\,ds+C_{2}. \end{aligned}$$
(4.14)
Consequently,
$$\begin{aligned} &\sup_{t\in [0,T]} \bigl\vert u^{(m)}(t) \bigr\vert _{g}^{2} \leq \vert u_{0m} \vert _{g}^{2}+ \frac{c'}{\nu \kappa '} \vert \theta _{0m} \vert _{g}^{2}+ \frac{2c'}{\nu \kappa \kappa '\Gamma (\alpha )} \int _{0}^{T} \bigl\Vert f_{2}(s) \bigr\Vert _{W_{g}'}^{2/\alpha _{2}}\,ds \end{aligned}$$
(4.15)
$$\begin{aligned} &\hphantom{\sup_{t\in [0,T]} \bigl\vert u^{(m)}(t) \bigr\vert _{g}^{2} \leq}{}+\frac{4}{\nu \Gamma (\alpha )} \int _{0}^{T} \bigl\Vert f_{1}(s) \bigr\Vert _{V_{g}'}^{2/ \alpha _{1}}\,ds +C_{1}, \\ &\sup_{t\in [0,T]} \bigl\vert \theta ^{(m)}(t) \bigr\vert ^{2}_{g} \leq \vert \theta _{0m} \vert _{g}^{2}+ \frac{2}{\kappa \Gamma (\alpha )} \int _{0}^{T} \bigl\Vert f_{2}(s) \bigr\Vert _{V_{g}'}^{2/\alpha _{2}}\,ds+C_{2}, \end{aligned}$$
(4.16)
which implies that the sequences \(\{u^{(m)}\}_{m}\) and \(\{\theta ^{(m)}\}_{m}\) remain in a bounded set of \(L^{\infty}(0, T ; H_{g})\) and \(L^{\infty}(0, T ; L^{2}(\Omega , g))\), respectively. Moreover, for \(t=T\), one obtains
$$\begin{aligned} &\int _{0}^{T} \bigl\Vert u^{(m)}(s) \bigr\Vert _{g}^{2}\,ds \\ &\quad \leq \frac{\Gamma (\alpha )}{\nu ' T^{\alpha -1}} \vert u_{0m} \vert _{g}^{2}+ \frac{c'}{\nu \nu '\kappa 'T^{\alpha -1}} \vert \theta _{0m} \vert _{g}^{2}+ \frac{2c'}{\nu \nu '\kappa \kappa 'T^{\alpha -1}} \int _{0}^{T} \bigl\Vert f_{2}(s) \bigr\Vert _{W_{g}'}^{2/\alpha _{2}}\,ds \end{aligned}$$
(4.17)
$$\begin{aligned} &\qquad {}+\frac{4}{\nu \nu 'T^{\alpha -1}} \int _{0}^{T} \bigl\Vert f_{1}(s) \bigr\Vert _{V_{g}'}^{2/ \alpha _{1}}\,ds +\frac{\Gamma (\alpha )}{\nu ' T^{\alpha -1}}C_{1}, \\ &\int _{0}^{T} \bigl\Vert \theta ^{(m)}(s) \bigr\Vert _{g}^{2}\,ds\leq \frac{\Gamma (\alpha )}{\kappa 'T^{\alpha -1}} \vert \theta _{0m} \vert _{g}^{2}+ \frac{2}{\kappa \kappa 'T^{\alpha -1}} \int _{0}^{T} \bigl\Vert f_{2}(s) \bigr\Vert _{V_{g}'}^{2/ \alpha _{2}}\,ds+\frac{\Gamma (\alpha )}{\kappa 'T^{\alpha -1}}C_{2}, \end{aligned}$$
(4.18)
which implies that the sequences \(\{u^{(m)}\}_{m}\) and \(\{\theta ^{(m)}\}_{m}\) remain in a bounded set of \(L^{2}(0, T ; V_{g})\) and \(L^{2}(0, T ; W_{g})\), respectively. Consequently, we can assert the existence of elements \(u \in L^{2}(0, T ; V_{g}) \cap L^{\infty}(0, T ; H_{g})\) and \(\theta \in L^{2}(0, T ; W_{g}) \cap L^{\infty}(0, T ; L^{2}(\Omega , g))\) and the subsequences \(\{u^{(m)}\}_{m}\) and \(\{\theta ^{(m)}\}_{m}\) such that \(u^{(m)} \rightarrow u \in L^{2}(0, T ; V_{g})\) and \(\theta ^{(m)} \rightarrow \theta \in L^{2}(0, T ; W_{g})\) weakly and \(u^{(m)}\rightarrow u \in L^{\infty}(0, T ; H_{g})\) and \(\theta ^{(m)} \rightarrow \theta \in L^{\infty}(0, T ; L^{2}(\Omega , g))\) weakly-star as \(m \rightarrow \infty \).
Let and be defined as
$$ \widetilde{u}^{(m)}(t)=\textstyle\begin{cases} u^{(m)}(t),&0\leq t\leq T, \\ 0,& \text{otherwise}, \end{cases}\displaystyle \quad \text{and}\quad \widetilde{ \theta}^{(m)}(t)=\textstyle\begin{cases} \theta ^{(m)}(t),&0\leq t\leq T, \\ 0,& \text{otherwise}, \end{cases} $$
and their Fourier transforms be denoted by \(\widehat{u}^{(m)}\) and \(\widehat{\theta}^{(m)}\), respectively. We show that the sequence \(\{\tilde{u}^{(m)}\}_{m}\) remains bounded in and the sequence \(\{\tilde{\theta}^{(m)}\}_{m}\) remains bounded in . To do so, we need to verify that
$$ \int _{-\infty}^{+\infty} \vert \tau \vert ^{2\gamma} \bigl\vert \widehat{u}^{(m)}(\tau ) \bigr\vert ^{2}\,d\tau \leq \mathrm{const.} \quad \text{for some }\gamma >0 $$
(4.19)
and
$$ \int _{-\infty}^{+\infty} \vert \tau \vert ^{2\gamma} \bigl\vert \widehat{\theta}^{(m)}( \tau ) \bigr\vert ^{2} \,d\tau \leq \mathrm{const.}\quad \text{for some }\gamma >0. $$
(4.20)
In order to prove (4.19) and (4.20), we observe that
$$\begin{aligned}& \bigl(D_{t}^{\alpha}\tilde{u}^{(m)},u_{k} \bigr)_{g}=\bigl(\widetilde{F}^{u}_{m},u_{k} \bigr)_{g}+(u_{m0},u_{k})_{g} I_{-,t}^{1-\alpha}\delta _{0}-\bigl( u^{(m)}(T),u_{k} \bigr)_{g} I_{-,t}^{1- \alpha}\delta _{T}, \end{aligned}$$
(4.21)
$$\begin{aligned}& \bigl(D_{t}^{\alpha}\tilde{\theta}^{(m)}, \theta _{k}\bigr)_{g}=\bigl(\widetilde{F}^{ \theta}_{m}, \theta _{k}\bigr)_{g}+(\theta _{m0},\theta _{k})_{g} I_{-,t}^{1- \alpha}\delta _{0}-\bigl( \theta ^{(m)}(T),\theta _{k} \bigr)_{g} I_{-,t}^{1- \alpha}\delta _{T}, \end{aligned}$$
(4.22)
where \(\delta _{0}\), \(\delta _{T}\) are Dirac distributions at 0 and T and \(F_{m}^{u}\) and \(F_{m}^{\theta}\) are defined by
$$ \begin{aligned} &F_{m}^{u}= \xi \theta ^{(m)}+f_{1}-B_{g}\bigl(u^{(m)},u^{(m)} \bigr)-\nu A_{g} u^{(m)}- \nu C_{g}u^{(m)}, \\ &F_{m}^{\theta}= f_{2}-\widetilde{B}_{g} \bigl(u^{(m)},\theta ^{(m)} \bigr)- \kappa \widetilde{A}_{g} \theta ^{(m)}+\kappa \widetilde{C}_{g}\theta ^{(m)}+ \kappa \widetilde{D}_{g}\theta ^{(m)} \end{aligned} $$
for \(k = 1,\ldots , m\). Here \(\widetilde{F}_{m}\) is defined as usual by
$$ \widetilde{F}_{m}(t)= \textstyle\begin{cases} F_{m}(t),& 0\leq t\leq T, \\ 0,& \text{otherwise.} \end{cases} $$
(4.23)
Indeed, it is classical that since \(\widetilde{u}^{(m)}\) and \(\widetilde{\theta}^{(m)}\) have two discontinuities at 0 and T, the Caputo derivative of \(\widetilde{u}^{(m)}\) is given by
$$\begin{aligned} D_{-,t}^{\alpha}\tilde{u}^{(m)}&= I_{-,t}^{1-\alpha} \biggl( \frac{d}{dt}\tilde{u}^{(m)} \biggr) \end{aligned}$$
(4.24)
$$\begin{aligned} &= I_{-,t}^{1-\alpha} \biggl(\frac{d}{dt} u^{(m)}+u^{(m)}(0) \delta _{0}-u^{(m)}(T) \delta _{T} \biggr) \end{aligned}$$
(4.25)
$$\begin{aligned} &= D_{t}^{\alpha }u^{(m)}+I_{-,t}^{1-\alpha} \bigl(u^{(m)}(0)\delta _{0}-u^{(m)}(T) \delta _{T} \bigr) \end{aligned}$$
(4.26)
and the one of \(\widetilde{\theta}^{(m)}\) is given by
$$ D_{-,t}^{\alpha}\widetilde{\theta}^{(m)}= D_{t}^{\alpha }\theta ^{(m)}+I_{-,t}^{1- \alpha} \bigl(\theta ^{(m)}(0)\delta _{0}-\theta ^{(m)}(T) \delta _{T} \bigr). $$
(4.27)
By the Fourier transform, (4.21) and (4.22) yield
$$\begin{aligned} &(2i\pi \tau )^{\alpha}\bigl(\widehat{u}^{(m)},u_{k} \bigr)_{g}=\bigl(\widehat{F}^{u}_{m},u_{k} \bigr)_{g}+(u_{m0},u_{k})_{g}(2i \pi \tau )^{\alpha -1} \end{aligned}$$
(4.28)
$$\begin{aligned} &\hphantom{(2i\pi \tau )^{\alpha}\bigl(\widehat{u}^{(m)},u_{k} \bigr)_{g}=}{} -\bigl(u^{(m)}(T),u_{k}\bigr)_{g}(2i\pi \tau )^{\alpha -1}e^{-2i \pi T\tau}, \end{aligned}$$
(4.29)
$$\begin{aligned} &(2i\pi \tau )^{\alpha}\bigl(\widehat{\theta}^{(m)}, \theta _{k}\bigr)_{g}=\bigl( \widehat{F}^{\theta}_{m}, \theta _{k}\bigr)_{g}+(\theta _{m0},\theta _{k})_{g}(2i \pi \tau )^{\alpha -1} \end{aligned}$$
(4.30)
$$\begin{aligned} &\hphantom{(2i\pi \tau )^{\alpha}\bigl(\widehat{\theta}^{(m)}, \theta _{k}\bigr)_{g}=}{} -\bigl(\theta ^{(m)}(T),\theta _{k}\bigr)_{g}(2i \pi \tau )^{ \alpha -1}e^{-2i\pi T\tau}. \end{aligned}$$
(4.31)
Here \(\widehat{u}^{(m)}\) and \(\widehat{F}_{m}\) denote the Fourier transforms of \(\tilde{u}^{(m)}\) and \(\widetilde{F}_{m}\), respectively. We multiply (4.28) and (4.30) by \(\widehat{f}_{j}^{(m)}\) and \(\widehat{g}_{j}^{(m)}\), respectively, and add these equations for \(k= 1,\dots , m\) to get
$$\begin{aligned} &(2i\pi \tau )^{\alpha} \bigl\vert \widehat{u}^{(m)}(\tau ) \bigr\vert _{g}^{2}=\bigl(\widehat{F}^{u}_{m}( \tau ),\widehat{u}^{(m)}(\tau )\bigr)_{g}+ \bigl(u_{m0},\widehat{u}^{(m)}(\tau )\bigr)_{g}(2i \pi \tau )^{\alpha -1} \end{aligned}$$
(4.32)
$$\begin{aligned} &\hphantom{(2i\pi \tau )^{\alpha} \bigl\vert \widehat{u}^{(m)}(\tau ) \bigr\vert _{g}^{2}=}{} -\bigl(u^{(m)}(T),\widehat{u}^{(m)}(\tau ) \bigr)_{g}(2i\pi \tau )^{ \alpha -1}e^{-2i\pi T\tau}, \end{aligned}$$
(4.33)
$$\begin{aligned} &(2i\pi \tau )^{\alpha} \bigl\vert \widehat{\theta}^{(m)}(\tau ) \bigr\vert _{g}^{2}=\bigl( \widehat{F}^{\theta}_{m}( \tau ),\widehat{\theta}^{(m)}(\tau )\bigr)_{g}+\bigl( \theta _{m0},\widehat{\theta}^{(m)}(\tau )\bigr)_{g}(2i\pi \tau )^{\alpha -1} \end{aligned}$$
(4.34)
$$\begin{aligned} &\hphantom{(2i\pi \tau )^{\alpha} \bigl\vert \widehat{\theta}^{(m)}(\tau ) \bigr\vert _{g}^{2}=}{} -\bigl(\theta ^{(m)}(T),\widehat{\theta}^{(m)}(\tau ) \bigr)_{g}(2i \pi \tau )^{\alpha -1}e^{-2i\pi T\tau}. \end{aligned}$$
(4.35)
Since the integrals on the right-hand side of the inequalities
$$\begin{aligned} &\int ^{T}_{0} \bigl\Vert F_{m}^{u}(t) \bigr\Vert _{V'_{g}}\,dt\leq \int ^{T}_{0} c\bigl( \vert \xi \vert _{\infty} \bigl\Vert \theta ^{(m)}(t) \bigr\Vert _{g}+ \bigl\Vert f_{1}(t) \bigr\Vert _{V'_{g}}+ \bigl\vert u^{(m)}(t) \bigr\vert _{g} \bigl\Vert u^{(m)} \bigr\Vert _{g} \end{aligned}$$
(4.36)
$$\begin{aligned} &\hphantom{\int ^{T}_{0} \bigl\Vert F_{m}^{u}(t) \bigr\Vert _{V'_{g}}\,dt\leq}{}+ \bigl\Vert u^{(m)}(t) \bigr\Vert _{g}+ \vert \nabla g \vert _{\infty} \bigl\Vert u^{(m)}(t) \bigr\Vert _{g}\bigr)\,dt, \\ &\int ^{T}_{0} \bigl\Vert F_{m}^{\theta}(t) \bigr\Vert _{W'_{g}}\,dt\leq \int ^{T}_{0} c'\bigl( \bigl\Vert f_{2}(t) \bigr\Vert _{W'_{g}}+ \bigl\vert u^{(m)}(T) \bigr\vert _{g} \bigl\Vert \theta ^{(m)} (t) \bigr\Vert _{g}+ \bigl\Vert \theta ^{(m)} (t) \bigr\Vert _{g} \\ &\hphantom{\int ^{T}_{0} \bigl\Vert F_{m}^{\theta}(t) \bigr\Vert _{W'_{g}}\,dt\leq}{} + \vert \nabla g \vert _{\infty} \bigl\Vert \theta ^{(m)}(t) \bigr\Vert _{g}+ \vert \Delta g \vert _{\infty} \bigl\Vert \theta ^{(m)}(t) \bigr\Vert _{g}\bigr)\,dt \end{aligned}$$
(4.37)
remain bounded, \(\|F_{1}(t) \|_{V'_{g}}\) and \(\|F_{2}(t) \|_{W'_{g}}\) are bounded in \(L^{1}(0, T ; V'_{g})\) and \(L^{1}(0, T ; W'_{g})\), respectively. Therefore, for all m,
Moreover, since \(u^{(m)}(0)\), \(u^{(m)}(T)\), \(\theta ^{(m)}(0)\) and \(\theta ^{(m)}(T )\) are bounded, we get
$$\begin{aligned} &\vert \tau \vert ^{\alpha } \bigl\vert \widetilde{u}^{(m)}( \tau ) \bigr\vert ^{2}_{g} \leq c_{1} \bigl\Vert u^{(m)} \bigr\Vert _{V_{g}}+c_{2} \vert \tau \vert ^{\alpha -1} \bigl\vert u^{(m)} \bigr\vert _{g} \\ &\hphantom{\vert \tau \vert ^{\alpha } \bigl\vert \widetilde{u}^{(m)}( \tau ) \bigr\vert ^{2}_{g}}\leq c_{3} \bigl\Vert u^{(m)} \bigr\Vert _{V_{g}}, \\ &\vert \tau \vert ^{\alpha } \bigl\vert \widetilde{ \theta}^{(m)}(\tau ) \bigr\vert ^{2}_{g} \leq c'_{1} \bigl\Vert \theta ^{(m)} \bigr\Vert _{W_{g}}+c'_{2} \vert \tau \vert ^{\alpha -1} \bigl\vert \theta ^{(m)} \bigr\vert _{g} \end{aligned}$$
(4.38)
$$\begin{aligned} &\hphantom{\vert \tau \vert ^{\alpha } \bigl\vert \widetilde{ \theta}^{(m)}(\tau ) \bigr\vert ^{2}_{g}}\leq c_{3} \bigl\Vert \theta ^{(m)} \bigr\Vert _{W_{g}}. \end{aligned}$$
(4.39)
For γ fixed, \(\gamma <\alpha /4\), we observe that
$$ \vert \tau \vert ^{2\gamma}\leq c(\gamma ) \frac{1+ \vert \tau \vert ^{\alpha}}{1+ \vert \tau \vert ^{\alpha -2\gamma}}. $$
Then we can write
$$\begin{aligned}& \int _{-\infty}^{+\infty} \vert \tau \vert ^{2\gamma} \bigl\vert \widehat{u}^{(m)}(\tau ) \bigr\vert ^{2}_{g} \leq c_{5}(\gamma ) \int _{-\infty}^{+\infty} \frac{1+ \vert \tau \vert ^{\alpha}}{1+ \vert \tau \vert ^{\alpha -2\gamma}} \bigl\vert \widehat{u}^{(m)}( \tau ) \bigr\vert ^{2}_{g}\,d \tau \\& \hphantom{ \int _{-\infty}^{+\infty} \vert \tau \vert ^{2\gamma} \bigl\vert \widehat{u}^{(m)}(\tau ) \bigr\vert ^{2}_{g}}{}\leq c_{6}(\gamma ) \int _{-\infty}^{+\infty} \frac{1}{1+ \vert \tau \vert ^{\alpha -2\gamma}} \bigl\Vert \widehat{u}^{(m)}(\tau ) \bigr\Vert ^{2}_{V_{g}}\,d\tau \\& \hphantom{ \int _{-\infty}^{+\infty} \vert \tau \vert ^{2\gamma} \bigl\vert \widehat{u}^{(m)}(\tau ) \bigr\vert ^{2}_{g} \leq}{} +c_{7}(\gamma ) \int _{-\infty}^{+\infty} \frac{ \vert \tau \vert ^{\alpha -1}}{1+ \vert \tau \vert ^{\alpha -2\gamma}} \bigl\Vert \widehat{u}^{(m)}( \tau ) \bigr\Vert ^{2}_{V_{g}}\,d \tau, \\& \int _{-\infty}^{+\infty} \vert \tau \vert ^{2\gamma} \bigl\vert \widehat{\theta}^{(m)}( \tau ) \bigr\vert ^{2}_{g} \leq c'_{6}(\gamma ) \int _{-\infty}^{+\infty} \frac{1}{1+ \vert \tau \vert ^{\alpha -2\gamma}} \bigl\Vert \widehat{\theta}^{(m)}(\tau ) \bigr\Vert ^{2}_{W_{g}} \,d\tau \\& \hphantom{\int _{-\infty}^{+\infty} \vert \tau \vert ^{2\gamma} \bigl\vert \widehat{\theta}^{(m)}( \tau ) \bigr\vert ^{2}_{g} \leq}{} +c'_{7}(\gamma ) \int _{-\infty}^{+\infty} \frac{ \vert \tau \vert ^{\alpha -1}}{1+ \vert \tau \vert ^{\alpha -2\gamma}} \bigl\Vert \widehat{\theta}^{(m)}(\tau ) \bigr\Vert ^{2}_{W_{g}} \,d\tau . \end{aligned}$$
By the Parseval inequality, the first integral is bounded as \(m\to \infty \). Applying the Schwarz inequality, the second integrals yield
$$\begin{aligned} &\int _{-\infty}^{+\infty} \frac{ \vert \tau \vert ^{\alpha -1}}{1+ \vert \tau \vert ^{\alpha -2\gamma}} \bigl\Vert \hat{u}^{(m)}( \tau ) \bigr\Vert ^{2}_{g}\,d\tau \leq \biggl( \int _{-\infty}^{+\infty} \frac{d\tau}{(1+ \vert \tau \vert ^{\alpha -2\gamma})^{2}} \biggr)^{1/2} \end{aligned}$$
(4.40)
$$\begin{aligned} &\hphantom{\int _{-\infty}^{+\infty} \frac{ \vert \tau \vert ^{\alpha -1}}{1+ \vert \tau \vert ^{\alpha -2\gamma}} \bigl\Vert \hat{u}^{(m)}( \tau ) \bigr\Vert ^{2}_{g}\,d\tau \leq}{} \times \biggl( \int _{-\infty}^{+\infty} \vert \tau \vert ^{2 \alpha -2} \bigl\Vert \hat{u}^{(m)}(\tau ) \bigr\Vert ^{2}_{g} \,d\tau \biggr)^{1/2}, \end{aligned}$$
(4.41)
$$\begin{aligned} &\int _{-\infty}^{+\infty} \frac{ \vert \tau \vert ^{\alpha -1}}{1 + \vert \tau \vert ^{\alpha -2\gamma}} \bigl\Vert \widehat{\theta}^{(m)}(\tau ) \bigr\Vert ^{2}_{g} \,d\tau \leq \biggl( \int _{- \infty}^{+\infty}\frac{d\tau}{(1+ \vert \tau \vert ^{\alpha -2\gamma})^{2}} \biggr)^{1/2} \end{aligned}$$
(4.42)
$$\begin{aligned} &\hphantom{\int _{-\infty}^{+\infty} \frac{ \vert \tau \vert ^{\alpha -1}}{1 + \vert \tau \vert ^{\alpha -2\gamma}} \bigl\Vert \widehat{\theta}^{(m)}(\tau ) \bigr\Vert ^{2}_{g} \,d\tau \leq}{} \times \biggl( \int _{-\infty}^{+\infty} \vert \tau \vert ^{2 \alpha -2} \bigl\Vert \widehat{\theta}^{(m)}(\tau ) \bigr\Vert ^{2}_{g}\,d\tau \biggr)^{1/2}. \end{aligned}$$
(4.43)
The first integrals are finite due to \(\gamma <\alpha /4\). On the other hand, it follows from the Parseval equality that
$$\begin{aligned} &\int _{-\infty}^{+\infty} \vert \tau \vert ^{2\alpha -2} \bigl\Vert \hat{u}^{(m)}(\tau ) \bigr\Vert ^{2}_{g} \,d\tau= \int _{-\infty}^{+\infty}\| _{-\infty}\mathrm {I}_{t}^{1- \alpha}\tilde{u}^{(m)}(t)\|_{g}^{2} \,dt \\ &\hphantom{\int _{-\infty}^{+\infty} \vert \tau \vert ^{2\alpha -2} \bigl\Vert \hat{u}^{(m)}(\tau ) \bigr\Vert ^{2}_{g} \,d\tau}= \int _{0}^{T}\| _{0}\mathrm {I}_{t}^{1-\alpha} u^{(m)}(t)\|^{2}_{g} \,dt \\ &\hphantom{\int _{-\infty}^{+\infty} \vert \tau \vert ^{2\alpha -2} \bigl\Vert \hat{u}^{(m)}(\tau ) \bigr\Vert ^{2}_{g} \,d\tau}\leq \biggl(\frac{T^{1-\alpha}}{\Gamma (2-\alpha )} \biggr)^{2} \int _{0}^{T} \bigl\Vert u^{(m)}(t) \bigr\Vert _{V_{g}}^{2}\,dt, \\ &\int _{-\infty}^{+\infty} \vert \tau \vert ^{2\alpha -2} \bigl\Vert \widehat{\theta}^{(m)}( \tau ) \bigr\Vert ^{2}_{g}\,d\tau \leq \biggl( \frac{T^{1-\alpha}}{\Gamma (2-\alpha )} \biggr)^{2} \int _{0}^{T} \bigl\Vert \theta ^{(m)}(t) \bigr\Vert _{W_{g}}^{2}\,dt, \end{aligned}$$
which implies that (4.19) and (4.20) hold. We know that there exists a subsequence of \(\{u^{(m)}\}_{m}\) (which we will denote with the same symbols) that converges to some u weakly in \(L^{2}(0,T;V_{g})\) and weakly-star in \(L^{\infty}(0,T;H_{g})\) with \(u\in L^{2}(0,T;V_{g})\cap L^{\infty}(0,T;H_{g})\). Similarly, there exists a subsequence of \(\{\theta ^{(m)}\}_{m}\) (which we will denote with the same symbol) that converges to some θ weakly in \(L^{2}(0,T;W_{g})\) and weakly-star in \(L^{\infty}(0,T;L^{2}(\Omega ,g))\) with \(\theta \in L^{2}(0,T;W_{g})\cap L^{\infty}(0,T;L^{2}(\Omega ,g))\). As \(W^{\gamma}(0,T,V_{g};H_{g})\) is compactly embedded in \(L^{2}(0,T; H_{g})\) and in \(L^{2}(0, T ; L^{2}(\Omega , g))\), then \(\{u^{(m)}\}_{m}\) strongly converges in \(L^{2}(0,T;H_{g})\) and \(\{\theta ^{(m)}\}_{m}\) in \(L^{2}(0, T ; L^{2}(\Omega , g))\), respectively.
In order to pass to the limit, we consider scalar functions \(\Psi _{1}(t)\) and \(\Psi _{2}(t)\) that are continuously differentiable on \([0, T ]\) and such that \(\Psi _{1}(T)=\Psi _{2}(T)=0\). We multiply (4.3) and (4.4) by \(\Psi _{1}(t)\) and \(\Psi _{2}(t)\), respectively, and then integrate by parts. This leads to the equations
$$\begin{aligned}& \int _{0}^{T} \bigl(u^{(m)}(t),\mathrm {D}_{t,T}^{\alpha}\Psi _{1}(t)u_{k} \bigr)_{g}\,dt+ \int _{0}^{T} b_{g}\bigl(u^{(m)}(t),u^{(m)}(t), \Psi _{1} u_{k}\bigr)\,dt \\& \qquad {}+ \nu \int _{0}^{T}\bigl(\bigl(u^{(m)}(t),\Psi _{1} u_{k}\bigr)\bigr)_{g}+\nu \int _{0}^{T}b_{g}\biggl( \frac{\nabla g}{g},u^{(m)}(t),\Psi _{1} u_{k} \biggr)\,dt \\& \quad =\bigl(u_{0m},\mathrm {I}_{0,T}^{1- \alpha}\Psi _{2}(t) u_{k}\bigr)_{g} \\& \qquad {}+ \int ^{T}_{0} \bigl(\xi \theta ^{(m)}(t), \Psi _{1}u_{k}\bigr)_{g}\,dt+ \int _{0}^{T}\bigl(f_{1}(t),u_{k} \bigr)_{g}\,dt, \\& \int _{0}^{T} \bigl(\theta ^{(m)}(t), \mathrm {D}_{t,T}^{\alpha}\Psi _{2}(t) \theta _{k}\bigr)_{g}\,dt+ \int _{0}^{T} \widetilde{b}_{g} \bigl(u^{(m)}(t), \theta ^{(m)}(t),\Psi _{2} \theta _{k}\bigr)\,dt \\& \qquad {}+ \kappa \int _{0}^{T}\bigl(\bigl(\theta ^{(m)}(t), \Psi _{2} \theta _{k}\bigr)\bigr)_{g}\,dt+\kappa \int _{0}^{T}\widetilde{b}_{g}\biggl( \frac{\nabla g}{g},\theta _{k}, \Psi _{2} \theta ^{(m)}(t)\biggr)\,dt \\& \quad =\bigl(\theta _{0m},\mathrm {I}_{0,T}^{1- \alpha}\Psi _{2}(t) \theta _{k} \bigr)_{g} \\& \qquad {}+ \int _{0}^{T}\bigl(f_{2}(t),\Psi _{2}\theta _{k}\bigr)_{g}\,dt. \end{aligned}$$
Following the same lines as in [8, 31], we obtain, as \(m \rightarrow \infty \),
$$\begin{aligned} &\int _{0}^{T}\bigl(u(t),\mathrm {D}_{t,T}^{\alpha}\Psi _{1}(t)u_{k} \bigr)_{g}\,dt+ \int _{0}^{T} b_{g}\bigl(u(t),u(t),\Psi _{1} u_{k}\bigr)\,dt+\nu \int _{0}^{T}\bigl(\bigl(u(t), \Psi _{1} u_{k}\bigr)\bigr)_{g} \end{aligned}$$
(4.44)
$$\begin{aligned} &\qquad {}+\nu \int _{0}^{T}b_{g}\biggl( \frac{\nabla g}{g},u(t),\Psi _{1} u_{k}\biggr)\,dt \\ &\quad = \bigl(u_{0}, \mathrm {I}_{0,T}^{1-\alpha}\Psi _{1} u_{k}\bigr)_{g}+ \int ^{T}_{0} \bigl(\xi \theta (t),\Psi _{1}v\bigr)_{g}\,dt+ \int _{0}^{T}\bigl(f_{1}(t),u_{k} \bigr)_{g}\,dt, \end{aligned}$$
(4.45)
$$\begin{aligned} &\int _{0}^{T}\bigl(\theta (t),\mathrm {D}_{t,T}^{\alpha}\Psi _{2}(t)\theta _{k} \bigr)_{g}\,dt+ \int _{0}^{T} \widetilde{b}_{g}\bigl(u(t), \theta (t),\Psi _{2} \theta _{k}\bigr)\,dt \\ &\qquad {}+\kappa \int _{0}^{T}\bigl(\bigl(\theta (t),\Psi _{2} \theta _{k}\bigr)\bigr)_{g}\,dt+ \kappa \int _{0}^{T}\widetilde{b}_{g}\biggl( \frac{\nabla g}{g},\theta _{k}, \Psi _{2} \theta (t)\biggr) \,dt \\ &\quad =\bigl(\theta _{0},\mathrm {I}_{0,T}^{1-\alpha} \Psi _{2}(t) \theta _{k}\bigr)_{g} \\ &\qquad {}+ \int _{0}^{T}\bigl(f_{2}(t),\Psi _{2}\theta _{k}\bigr)_{g}\,dt. \end{aligned}$$
(4.46)
These equations hold for v and τ that are finite linear combination of \(u_{k}\) and \(\theta _{k}\), respectively (\(k=1,\dots ,m\)), and by continuity the equations hold for any v in \(V_{g}\) and \(\tau \in H_{g}\). It then follows that \(\{u,\theta \}\) satisfies the two first equations of (3.3). To end the proof, we still need to check that \(\{u,\theta \}\) satisfies the initial conditions \(u(0)=u_{0}\) and \(\theta (0)=\theta _{0}\). To do so, it suffices to multiply the two first equations in (3.3) by \(\Psi _{1}\) and \(\Psi _{2}\), respectively, and then to integrate. By making use of the integration by part and comparing with (4.44) and (4.46), one can find that
$$ \bigl(u_{0}-u(0), v\bigr)_{g} \mathrm {I}_{0,T}^{1-\alpha} \Psi _{2}(t)=0, \quad \text{and}\quad \bigl(\theta _{0}- \theta (0), \tau \bigr)_{g} \mathrm {I}_{0,T}^{1- \alpha} \Psi _{2}(t)=0, $$
which leads to the desired result by taking a particular choice of \(\Psi _{1}\) and \(\Psi _{2}\).
For the uniqueness of the weak solutions, let \((u_{1},\theta _{1})\) and \((u_{2},\theta _{2})\) be two weak solutions with the same initial condition. Let \(w = u_{1}- u_{2}\) and \(\widetilde{w} = \theta _{1} -\theta _{2}\). Then we have
$$ \begin{aligned} &D^{\alpha}_{t}(w,v)_{g}+ b_{g}(u_{1},u_{1},v)- b_{g}(u_{2},u_{2},v)+ \nu (\nabla w,\nabla v )_{g}+\nu (C_{g}w,v)_{g}= (\xi \widetilde{w},v)_{g}, \\ &D^{\alpha}_{t} ( \widetilde{w},\tau )_{g}+ \widetilde{b}_{g}(u_{1}, \theta _{1},\tau )- \widetilde{b}_{g}(u_{2},\theta _{2},\tau ) + \kappa ( \nabla \widetilde{w},\nabla \tau )_{g}+\kappa \widetilde{b}_{g} \biggl( \frac{\nabla g}{g},\tau ,\widetilde{w}\biggr)=0. \end{aligned} $$
Taking \(v = w(t)\) and \(\tau = \widetilde{ w}(t)\), one obtains
$$\begin{aligned}& D^{\alpha}_{t}(w,w)_{g}+b_{g}(w,u_{2},w)+ \nu \bigl\vert A^{1/2}_{g} w \bigr\vert ^{2}_{g}+\nu (C_{g} w,w)_{g}=(\xi \widetilde{w},w)g,\\& D^{\alpha}_{t} ( \widetilde{w},\widetilde{w})_{g}+ \widetilde{b}_{g}(u_{1},\theta _{1}, \widetilde{w})-\widetilde{b}_{g}(u_{2}, \theta _{2},\widetilde{w}) + \kappa \bigl\vert \widetilde{A}^{1/2}_{g} \widetilde{w} \bigr\vert ^{2}_{g}+ \kappa \widetilde{b}_{g} \biggl( \frac{\nabla g}{g},\widetilde{w}, \widetilde{w} \biggr)=0. \end{aligned}$$
By applying the bounds on the terms \(b_{g}\), \(\widetilde{b}_{g}\), it then follows by the Cauchy–Schwarz inequality and Gronwall-like inequality that \(w(t) = 0\) and \(\widetilde{w}(t) = 0\) for all \(t \geq 0\), since we have \(w(0) = 0\) and \(\widetilde{w} (0) = 0\). Thus the theorem is proved. □