Consider the nonlocal problem (1.1)–(1.2) with the following assumptions:
- \((\mathcal{H}_{1})\):
-
Let be a nonempty, closed, and convex subset for all such that
- (i):
-
\(\Phi (t,\cdot)\) is upper semicontinuous in for each \(t \in I\).
- (ii):
-
\(\Phi (\cdot,u)\) is measurable in \(t \in I\) for each .
- (iii):
-
There are two integrable functions \(m, k_{1}:I \rightarrow I\) such that
$$ \bigl\vert \Phi (t, u) \bigr\vert =\sup \bigl\{ \vert \phi \vert : \phi \in \Phi (t, u) \bigr\} \leq m(t) + k_{1}(t) \vert u \vert , \quad t \in I $$
with
$$ \int _{0}^{1} \bigl\vert m(\tau ) \bigr\vert \,d \tau = m \quad \text{and} \quad \int _{0}^{1} \bigl\vert k_{1}( \tau ) \bigr\vert \,d\tau = k_{1}. $$
Remark 1
We may derive from assumption \((\mathcal{H}_{1})\) that the set of selections \(S_{\Phi} \) of the set valued function Φ is nonempty and that there exists a Carathéodory function \(\phi \in \Phi \) (see [30] and [31]) that is measurable in \(t\in I\), and continuous in , \(\forall t\in I\),
$$ \bigl\vert \phi (t, u) \bigr\vert \leq m(t) + k_{1}(t) \vert u \vert , \quad t\in I $$
and satisfies the nonlocal problem of the Chandrasekhar hybrid second-order functional integrodifferential equation
$$ -\frac{d^{2}}{dt^{2}} \biggl(\frac{x(t)}{g(t,x(t))} \biggr) = \int _{0}^{1} \frac{s}{t+s}\phi \biggl(s, \int _{0}^{1} \frac{s}{s+\tau}\psi \bigl(\tau ,x( \tau )\bigr) \,d\tau \biggr) \,ds, \quad t\in I $$
(2.1)
with the conditions (1.2).
Hence, any solution of the problem (1.2) and (2.1) is a solution of the problem (1.1)–(1.2).
-
\((\mathcal{H}_{2})\)
:
-
and there exists a continuous function and a continuous nondecreasing map \(\chi : [0,\infty ) \to (0,\infty )\), such that
$$\begin{aligned} \bigl\vert \psi (t,\mu ) \bigr\vert &\leq k_{2}(t)\chi \bigl( \Vert \mu \Vert \bigr), \end{aligned}$$
for all \(t \in I\) and for all and
$$ \int _{0}^{1} \bigl\vert k_{2}(\tau ) \bigr\vert \,d\tau = k_{2}.$$
-
\((\mathcal{H}_{3})\)
:
-
and there is a positive constant ω, such that
$$ \bigl\vert g(t, \mu _{1}) - g(t, \mu _{2}) \bigr\vert \leq \omega \bigl\vert \mu _{1}(t) - \mu _{2}(t) \bigr\vert , $$
for all and \(t \in I\).
-
\((\mathcal{H}_{4})\)
:
-
There is a positive root r of the equation
$$ \bigl(m + k_{1} k_{2} \chi (r)\bigr) ( r \omega +G )\Lambda =r, $$
where \(G = \sup_{t\in I}|g(t,0)|\), \(\Lambda =\lambda +2\).
Remark 2
From assumptions \((\mathcal{H}_{3})\), we have
$$ \bigl\vert g(t,\mu ) \bigr\vert - \bigl\vert g(t,0) \bigr\vert \leq \bigl\vert g(t,\mu )-g(t,0) \bigr\vert \leq \omega \vert \mu -0 \vert ,$$
then,
$$\begin{aligned} \bigl\vert g(t,\mu ) \bigr\vert &\leq \omega \bigl\vert \mu (t) \bigr\vert +G, \quad \text{with } G=\sup_{t\in I} \bigl\vert g(t,0) \bigr\vert . \end{aligned}$$
Here, the existence of the solution \(x \in C(I) \) for the nonlocal problem (1.2) and (2.1) is discussed. We begin by presenting a key lemma.
Lemma 1
A function \(x \in C[0,1] \) is a solution for the hybrid differential equation
$$ \frac{d^{2}}{dt^{2}} \biggl(\frac{x(t)}{g(t,x(t))} \biggr) + \varphi \bigl(t,x(t)\bigr)=0, \quad t\in I $$
(2.2)
with the nonlocal hybrid condition (1.2) if and only if \(x \in C(I) \) is a solution for the integral equation
$$\begin{aligned} x(t) &=g\bigl(t,x(t)\bigr) \biggl[- \int _{0}^{t} (t-s) \varphi \bigl(s,x(s)\bigr) \,ds\\ &\quad{} + \lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \varphi \bigl(s,x(s)\bigr) \,ds + \int _{0}^{\eta }(\eta -s) \varphi \bigl(s,x(s)\bigr) \,ds \biggr] . \end{aligned}$$
(2.3)
Proof
Let x be a solution for the hybrid fractional equation (2.2), then,
$$\begin{aligned} \frac{d}{dt} \biggl(\frac{x(t)}{g(t,x(t))} \biggr) = \frac{d}{dt} \biggl( \frac{x(t)}{g(t,x(t))} \biggr)\bigg|_{t=0}- \int _{0}^{t} \varphi \bigl(s,y(s)\bigr) \,ds=- \int _{0}^{t} \varphi \bigl(s,y(s)\bigr) \,ds. \end{aligned}$$
(2.4)
Integrating both sides of (2.4), we obtain
$$\begin{aligned} \frac{x(t)}{g(t,x(t))}=c_{\circ} - I^{2}\varphi (t,y), \end{aligned}$$
(2.5)
here, \(c_{\circ}\) is a random constant. Then, at \({t=\eta}\),
$$ \frac{x(t)}{g(t,x(t))}\bigg|_{t=\eta}=c_{\circ} - I^{2}\varphi (t,y)|_{t= \eta}, $$
$$\begin{aligned} \lambda \,{}^{c}\mathcal{D}^{\varrho} \biggl( \frac{x(t)}{g(t,x(t))} \biggr) \bigg|_{t=\sigma}&=\lambda I^{1-\varrho} \frac{d}{dt} \biggl( \frac{x(t)}{g(t,x(t))} \biggr)\bigg|_{t=\sigma} \end{aligned}$$
(2.6)
and
$$\begin{aligned} \lambda \,{}^{c}\mathcal{D}^{\varrho} \biggl( \frac{x(t)}{g(t,x(t))} \biggr) \bigg|_{t=\sigma}&=\lambda I^{2-\varrho} \varphi \bigl(t,y(t)\bigr)|_{t= \sigma}. \end{aligned}$$
(2.7)
Using (2.5) and (2.7) in condition (1.2), we can obtain
$$ \lambda I^{2-\varrho} \varphi \bigl(t,y(t)\bigr)|_{t=\sigma} + \bigl(c_{\circ}-I^{2} \varphi (t,y)|_{t=\eta} \bigr)=0,$$
then,
$$ c_{\circ}=-\lambda I^{2-\varrho} \varphi \bigl(t,y(t) \bigr)|_{t=\sigma} +I^{2} \varphi (t,y)|_{t=\eta}. $$
Substituting the value \(c_{\circ}\) in (2.5), we obtain
$$ {x(t)}=g\bigl(t,x(t)\bigr) \bigl[-\lambda I^{2-\varrho} \varphi \bigl(t,y(t) \bigr)|_{t= \sigma} +I^{2}\varphi (t,y)|_{t=\eta} -I^{2}\varphi \bigl(t,y(t)\bigr) \bigr].$$
Hence,
$$\begin{aligned} x(t) &=g\bigl(t,x(t)\bigr) \biggl[- \int _{0}^{t} (t-s) \varphi \bigl(s,x(s)\bigr) \,ds\\ &\quad{} + \lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \varphi \bigl(s,x(s)\bigr) \,ds + \int _{0}^{\eta }(\eta -s) \varphi \bigl(s,x(s)\bigr) \,ds \biggr] . \end{aligned}$$
This proves that x is a solution of (2.3).
Conversely, from (2.3) we have
$$\begin{aligned} & \frac{x(t)}{g(t,x(t))}= -I^{2}\varphi \bigl(t,x(t)\bigr)- \lambda I^{\varrho } \varphi \bigl(\sigma ,x(\sigma )\bigr)+I^{2} \varphi \bigl(\eta ,x(\eta )\bigr), \\ &\frac{d}{dt} \biggl(\frac{x(t)}{g(t,x(t))} \biggr)=-I\varphi \bigl(t,x(t) \bigr) \end{aligned}$$
(2.8)
and
$$\begin{aligned} \frac{d}{dt} \biggl(\frac{x(t)}{g(t,x(t))} \biggr)\bigg|_{t=0}=0. \end{aligned}$$
(2.9)
Also, for \({t=\eta}\) in (2.8), we have
$$\begin{aligned} \frac{x(t)}{g(t,x(t))}\bigg|_{t=\eta}= \lambda I^{\varrho } \varphi \bigl( \sigma ,x(\sigma )\bigr). \end{aligned}$$
(2.10)
Operating by \(\lambda \,{}^{c}\mathcal{D}^{\varrho}\) to (2.8) with \({t=\sigma}\) and to (2.10), we obtain (1.2). □
Corollary 1
If the solution \(x \in C(I) \) of the nonlocal problem (1.2) and (2.1) exists then it is given by the integral equation
$$\begin{aligned} x(t) & = g\bigl(t,x(t)\bigr) \biggl[- \int _{0}^{t} (t-s) \int _{0}^{1} \frac{s}{s+\tau} \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad{}+\lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \frac{s}{s+\tau} \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad{}+ \int _{0}^{\eta }(\eta -s) \int _{0}^{1} \frac{s}{s+\tau} \phi \biggl( \tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x( \varsigma )\bigr) \,d\varsigma \biggr) \,d\tau \,ds \biggr] . \end{aligned}$$
(2.11)
Proof
From Lemma 1, with
$$ - \varphi \bigl(t,x(t)\bigr) = \int _{0}^{1} \frac{t}{t+s}\phi \biggl(s, \int _{0}^{1} \frac{s}{s+\tau} \psi \bigl(\tau ,x( \tau )\bigr) \,d\tau \biggr) \,ds, \quad t\in I, $$
we obtain the result. □
For the existence of solutions \(x \in C(I) \) of (1.2) and (2.1), we have the following theorem.
Theorem 1
Assume that the assumptions (\(\mathcal{H}_{1}\))–(\(\mathcal{H}_{4}\)) are satisfied, if \(\omega (m + k_{1} k_{2} \chi (r))\Lambda <1\). Then, there is at least one solution to the nonlocal problems (1.2), (2.1).
Proof
Allow the operator \(\mathcal{A} \) to be defined as follows:
$$\begin{aligned} (\mathcal{A} x) (t) & = g\bigl(t,x(t)\bigr) \biggl[- \int _{0}^{t} (t-s) \int _{0}^{1} \frac{s}{s+\tau} \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad{}+\lambda \int _{0}^{\sigma} \frac{(\sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \frac{s}{s+\tau} \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad{}+ \int _{0}^{\eta }(\eta -s) \int _{0}^{1} \frac{s}{s+\tau} \phi \biggl( \tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x( \varsigma )\bigr) \,d\varsigma \biggr) \,d\tau \,ds \biggr], \end{aligned}$$
and consider the ball \({\mathcal{V}}_{r} = \{x\in C(I) : \|x\| = \|x\|_{C(I)}\leq r \}\).
Clearly \({\mathcal{V}}_{r} \) is a closed, convex, and bounded subset of the Banach space \(C(I) = C[0,1]\).
Let \(x \in {\mathcal{V}}_{r} \) and \(t \in I\), hence,
$$\begin{aligned} & \bigl\vert \mathcal{A}x(t) \bigr\vert \\ &\quad = \bigl\vert g\bigl(t, x(t)\bigr) \bigr\vert \biggl\vert - \int _{0}^{t} (t-s) \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+ \lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+ \int _{0}^{\eta }(\eta -s) \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl( \tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x( \varsigma )\bigr) \,d\varsigma \biggr) \,d\tau \,ds \biggr\vert \\ &\quad\leq \bigl\vert g\bigl(t, x(t)\bigr) \bigr\vert \biggl(- \int _{0}^{t} (t-s) \int _{0}^{1} \frac{s}{s+\tau} \biggl\vert \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \biggr\vert \,d\tau \,ds \\ &\quad\quad{}+ \lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \frac{s}{s+\tau} \biggl\vert \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \biggr\vert \,d\tau \,ds \\ &\quad\quad{}+ \int _{0}^{\eta }(\eta -s) \int _{0}^{1} \frac{s}{s+\tau} \biggl\vert \phi \biggl( \tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x( \varsigma )\bigr) \,d\varsigma \biggr) \biggr\vert \,d\tau \,ds \biggr) \\ &\quad\leq \bigl\vert g\bigl(t, x(t)\bigr) \bigr\vert \biggl( \int _{0}^{t} (t-s) \int _{0}^{1} \frac{s}{s+\tau} \biggl[m(\tau )+k_{1}(\tau ) \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \bigl\vert \psi \bigl(\varsigma ,x(\varsigma )\bigr) \bigr\vert \,d\varsigma \biggr] \,d\tau \,ds \\ &\quad\quad{}+ \lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \frac{s}{s+\tau} \biggl[m(\tau )+k_{1}(\tau ) \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \bigl\vert \psi \bigl(\varsigma ,x(\varsigma )\bigr) \bigr\vert \,d\varsigma \biggr] \,d\tau \,ds \\ &\quad\quad{}+ \int _{0}^{\eta }(\eta -s) \int _{0}^{1} \frac{s}{s+\tau} \biggl[m( \tau )+k_{1}(\tau ) \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \bigl\vert \psi \bigl(\varsigma ,x(\varsigma )\bigr) \bigr\vert \,d\varsigma \biggr] \,d\tau \,ds \biggr) \\ &\quad \leq \bigl[\omega \bigl\vert x(t) \bigr\vert +G \bigr] \\ &\quad\quad{}\times \biggl( \int _{0}^{t} (t-s) \int _{0}^{1} \frac{s}{s+\tau} \biggl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \bigl\vert k_{2}(\varsigma ) \bigr\vert \chi \bigl( \Vert x \Vert \bigr) \,d \varsigma \biggr] \,d\tau \,ds \\ &\quad\quad{}+\lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \frac{s}{s+\tau} \biggl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \bigl\vert k_{2}(\varsigma ) \bigr\vert \chi \bigl( \Vert x \Vert \bigr) \,d \varsigma \biggr] \,d\tau \,ds \\ &\quad\quad{}+ \int _{0}^{\eta }(\eta -s) \int _{0}^{1} \frac{s}{s+\tau} \biggl[ \bigl\vert m( \tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \bigl\vert k_{2}( \varsigma ) \bigr\vert \chi \bigl( \Vert x \Vert \bigr) \,d \varsigma \biggr] \,d\tau \,ds \biggr) \\ &\quad \leq \bigl[\omega \bigl\vert x(t) \bigr\vert +G \bigr] \biggl( \int _{0}^{t} \int _{0}^{1} \biggl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert \int _{0}^{1} \bigl\vert k_{2}(\varsigma ) \bigr\vert \chi \bigl( \Vert x \Vert \bigr) \,d\varsigma \biggr] \,d\tau \,ds \\ &\quad\quad{}+\lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \biggl[ \bigl\vert m( \tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert \int _{0}^{1} \bigl\vert k_{2}(\varsigma ) \bigr\vert \chi \bigl( \Vert x \Vert \bigr) \,d \varsigma \biggr] \,d\tau \,ds \\ &\quad\quad{}+ \int _{0}^{\eta } \int _{0}^{1} \biggl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert \int _{0}^{1} \bigl\vert k_{2}(\varsigma ) \bigr\vert \chi \bigl( \Vert x \Vert \bigr) \,d\varsigma \biggr] \,d\tau \,ds \biggr) \\ &\quad \leq \bigl[\omega \bigl\vert x(t) \bigr\vert +G \bigr] \biggl( \int _{0}^{t} \int _{0}^{1} \bigl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert k_{2} \chi \bigl( \Vert x \Vert \bigr) \bigr] \,d\tau \,ds \\ &\quad\quad{}+\lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \bigl[ \bigl\vert m( \tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert |k_{2} \chi \bigl( \Vert x \Vert \bigr) \bigr] \,d\tau \,ds \\ &\quad\quad{}+ \int _{0}^{\eta } \int _{0}^{1} \bigl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert k_{2} \chi \bigl( \Vert x \Vert \bigr) \bigr] \,d\tau \,ds \biggr) \\ &\quad \leq \bigl[\omega \bigl\vert x(t) \bigr\vert +G \bigr] \\ &\qquad{}\times \biggl( m + k_{1} k_{2} \chi \bigl( \Vert x \Vert \bigr) +\lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \bigl(m + k_{1} |k_{2} \chi \bigl( \Vert x \Vert \bigr)\bigr) \,ds + m + k_{1} k_{2} \chi \bigl( \Vert x \Vert \bigr) \biggr). \end{aligned}$$
Now, taking the supremum over \(t \in I\), we have
$$\begin{aligned} \Vert \mathcal{A} x \Vert &\leq [r \omega + G ] \biggl( \bigl(m + k_{1} k_{2} \chi (r)\bigr) + \frac{\lambda}{\Gamma (3-\varrho )} \bigl(m + k_{1} k_{2} \chi (r)\bigr) + \bigl(m + k_{1} k_{2} \chi (r)\bigr) \biggr) \\ &\leq \bigl(m + k_{1} k_{2} \chi (r)\bigr) ( r \omega +G )\Lambda =r. \end{aligned}$$
(2.12)
Then, \(\|\mathcal{A}x\| \leq r\).
Hence, \(\mathcal{A}:{\mathcal{V}}_{r} \to {\mathcal{V}}_{r}\), and the class \(\{\mathcal{A}x\}\) is uniformly bounded on \({\mathcal{V}}_{r}\).
Let \(\{x_{n}\}\) be a sequence that converges to a point \(x \in {\mathcal{V}}_{r}\), then from our assumptions and the Lebesgue Dominated Convergence Theorem [32], we can obtain
$$\begin{aligned} &\lim_{n \rightarrow \infty }(\mathcal{A}x_{n}) (t) \\ &\quad=\lim_{n \rightarrow \infty} g\bigl(t,x_{n}(t)\bigr) \biggl[-\lim _{n \rightarrow \infty} \int _{0}^{t} (t-s) \int _{0}^{1} \frac{s}{s+\tau} \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x_{n}(\varsigma )\bigr) \,d\varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+\lim_{n \rightarrow \infty} \lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x_{n}(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+\lim_{n \rightarrow \infty} \int _{0}^{\eta } \frac{(\eta -s)^{\varrho -1}}{\Gamma (\varrho )} \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x_{n}(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \biggr] \\ &\quad=g\bigl(t,x(t)\bigr) \biggl[- \int _{0}^{t} \frac{(t-s)^{\varrho -1}}{\Gamma (\varrho )} \int _{0}^{1} \frac{s}{s+\tau}\lim _{n \rightarrow \infty}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x_{n}(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+ \lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \frac{s}{s+\tau}\lim _{n \rightarrow \infty}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x_{n}(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+ \int _{0}^{\eta }\frac{(\eta -s)^{\varrho -1}}{\Gamma (\varrho )} \int _{0}^{1} \frac{s}{s+\tau}\lim _{n \rightarrow \infty}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x_{n}( \varsigma )\bigr) \,d\varsigma \biggr) \,d\tau \,ds \biggr] \\ &\quad=g\bigl(t,x(t)\bigr) \biggl[- \int _{0}^{t} \frac{(t-s)^{\varrho -1}}{\Gamma (\varrho )} \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \lim _{n \rightarrow \infty}\psi \bigl( \varsigma ,x_{n}(\varsigma )\bigr) \,d\varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+ \lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \lim _{n \rightarrow \infty}\psi \bigl( \varsigma ,x_{n}(\varsigma )\bigr) \,d\varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+ \int _{0}^{\eta }\frac{(\eta -s)^{\varrho -1}}{\Gamma (\varrho )} \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \lim _{n \rightarrow \infty}\psi \bigl( \varsigma ,x_{n}(\varsigma )\bigr) \,d\varsigma \biggr) \,d\tau \,ds \biggr] \\ &\quad = g\bigl(t,x(t)\bigr) \biggl[- \int _{0}^{t} \frac{(t-s)^{\varrho -1}}{\Gamma (\varrho )} \int _{0}^{1} \frac{s}{s+\tau} \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+ \lambda \int _{0}^{ \sigma} \frac{( \sigma -s)^{1-\varrho}}{\Gamma (2-\varrho )} \int _{0}^{1} \frac{s}{s+\tau} \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+ \int _{0}^{\eta }\frac{(\eta -s)^{\varrho -1}}{\Gamma (\varrho )} \int _{0}^{1} \frac{s}{s+\tau} \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \biggr]\\ &\quad =(\mathcal{A}x) (t). \end{aligned}$$
Thus, \(\mathcal{A}x_{n} \rightarrow \mathcal{A}x \) and \(\mathcal{A}\) is continuous. Now, for \(x\in {\mathcal{V}}_{r}\), define the set
$$\begin{aligned} {\theta}_{g}(\delta )&=\sup \bigl\{ \bigl\vert g(t_{2},x)-g(t_{1},x) \bigr\vert : t_{1},t_{2} \in I, t_{1}< t_{2}, \vert t_{2}-t_{1} \vert < \delta , \vert x \vert \leq \epsilon \bigr\} , \end{aligned}$$
therefore, based on the uniform continuity of the function using the assumptions \((\mathcal{H}_{1})\) and \((\mathcal{H}_{3})\), we can conclude that \({\theta}_{g}(\delta ) \rightarrow 0\), as \(\delta \rightarrow 0 \) independent of \(x \in {\mathcal{V}}_{r}\),
Let \(t_{1}, t_{2} \in I\), \(|t_{2}-t_{1}| <\delta \). Then,
$$\begin{aligned} & \bigl\vert (\mathcal{A}x) (t_{2}) - (\mathcal{A}x) (t_{1}) \bigr\vert \\ &\quad = \biggl\vert g\bigl(t_{2}, x(t_{2})\bigr) \int _{0}^{t_{2}} (t_{2}-s) \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}-g\bigl(t_{1}, x(t_{1})\bigr) \int _{0}^{t_{1}} (t_{1}-s) \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \biggr\vert \\ &\quad = \biggl\vert g\bigl(t_{2}, x(t_{2})\bigr) \int _{0}^{t_{2}} (t_{2}-s) \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}-g\bigl(t_{2}, x(t_{2})\bigr) \int _{0}^{t_{2}} (t_{1}-s) \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+g\bigl(t_{2}, x(t_{2})\bigr) \int _{0}^{t_{2}} (t_{1}-s) \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}- g\bigl(t_{2}, x(t_{2})\bigr) \int _{0}^{t_{1}} (t_{1}-s) \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}+ g\bigl(t_{2}, x(t_{2})\bigr) \int _{0}^{t_{1}} (t_{1}-s) \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \\ &\quad\quad{}-g\bigl(t_{1}, x(t_{1})\bigr) \int _{0}^{t_{1}} (t_{1}-s) \int _{0}^{1} \frac{s}{s+\tau}\phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \,d\tau \,ds \biggr\vert \\ &\quad\leq \bigl\vert g\bigl(t_{2}, x(t_{2})\bigr) \bigr\vert \\ &\qquad {}\times \int _{0}^{t_{2}} \bigl((t_{2}-s)-(t_{1}-s) \bigr) \int _{0}^{1} \frac{s}{s+\tau} \biggl\vert \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \biggr\vert \,d\tau \,ds \\ &\quad\quad{}+ \bigl\vert g\bigl(t_{2}, x(t_{2})\bigr) \bigr\vert \int _{t_{1}}^{t_{2}} (t_{1}-s) \int _{0}^{1} \frac{s}{s+\tau} \biggl\vert \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \biggr\vert \,d\tau \,ds \\ &\quad\quad{}+ \bigl\vert g\bigl(t_{2}, x(t_{2})\bigr)-g \bigl(t_{1}, x(t_{1})\bigr) \bigr\vert \\ &\qquad {}\times \int _{0}^{t_{1}} (t_{1}-s) \int _{0}^{1} \frac{s}{s+\tau} \biggl\vert \phi \biggl(\tau , \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \psi \bigl( \varsigma ,x(\varsigma )\bigr) \,d \varsigma \biggr) \biggr\vert \,d\tau \,ds \\ &\quad\leq \bigl[ \bigl\vert x(t) \bigr\vert \omega +G \bigr] \\ &\quad\quad{}\times \int _{0}^{t_{2}} \bigl((t_{2}-s)-(t_{1}-s) \bigr) \int _{0}^{1} \frac{s}{s+\tau} \biggl[m(\tau )+k_{1}(\tau ) \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \bigl\vert \psi \bigl(\varsigma ,x(\varsigma )\bigr) \bigr\vert \,d\varsigma \biggr] \,d\tau \,ds \\ &\quad\quad{}+ \bigl[ \bigl\vert x(t) \bigr\vert \omega +G \bigr]\\ &\qquad {}\times \int _{t_{1}}^{t_{2}} (t_{1}-s) \int _{0}^{1} \frac{s}{s+\tau} \biggl[m(\tau )+k_{1}(\tau ) \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \bigl\vert \psi \bigl(\varsigma ,x(\varsigma )\bigr) \bigr\vert \,d\varsigma \biggr] \,d\tau \,ds \\ &\quad\quad{}+ {\theta}_{g}(\delta ) \int _{0}^{t_{1}} (t_{1}-s) \int _{0}^{1} \frac{s}{s+\tau} \biggl[m(\tau )+k_{1}(\tau ) \int _{0}^{1} \frac{\tau}{\tau +\varsigma} \bigl\vert \psi \bigl(\varsigma ,x(\varsigma )\bigr) \bigr\vert \,d\varsigma \biggr] \,d\tau \,ds \\ &\quad\leq \bigl[ \Vert x \Vert \omega +G \bigr] \\ &\quad\quad{}\times \int _{0}^{t_{2}} \bigl((t_{2}-s)-(t_{1}-s) \bigr) \int _{0}^{1} \biggl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert \int _{0}^{1} \bigl\vert k_{2}(\varsigma ) \bigr\vert \chi \bigl( \Vert x \Vert \bigr) \,d\varsigma \biggr] \,d\tau \,ds \\ &\quad\quad{}+ \bigl[ \Vert x \Vert \omega +G \bigr] \int _{t_{1}}^{t_{2}} (t_{1}-s) \int _{0}^{1} \biggl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert \int _{0}^{1} \bigl\vert k_{2}(\varsigma ) \bigr\vert \chi \bigl( \Vert x \Vert \bigr) \,d\varsigma \biggr] \,d\tau \,ds \\ &\quad\quad{}+{\theta}_{g}(\delta ) \int _{t_{1}}^{t_{2}} (t_{1}-s) \int _{0}^{1} \biggl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert \int _{0}^{1} \bigl\vert k_{2}(\varsigma ) \bigr\vert \chi \bigl( \Vert x \Vert \bigr) \,d\varsigma \biggr] \,d\tau \,ds \\ &\quad\leq \bigl[ \Vert x \Vert \omega +G \bigr] \\ &\quad\quad{}\times \int _{0}^{t_{2}} \bigl((t_{2}-s)-(t_{1}-s) \bigr) \int _{0}^{1} \bigl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert k_{2}\chi \bigl( \Vert x \Vert \bigr) \bigr] \,d\tau \,ds \\ &\quad\quad{}+ \bigl[ \Vert x \Vert \omega +G \bigr] \int _{t_{1}}^{t_{2}} (t_{1}-s) \int _{0}^{1} \bigl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert k_{2}\chi \bigl( \Vert x \Vert \bigr) \bigr] \,d\tau \,ds \\ &\quad\quad{}+{\theta}_{g}(\delta ) \int _{t_{1}}^{t_{2}} (t_{1}-s) \int _{0}^{1} \bigl[ \bigl\vert m(\tau ) \bigr\vert + \bigl\vert k_{1}(\tau ) \bigr\vert k_{2}\chi \bigl( \Vert x \Vert \bigr) \bigr] \,d\tau \,ds \\ &\quad\leq [r \omega +G ] \bigl[m+k_{1} k_{2}\chi (r) \bigr] \biggl[ \int _{0}^{t_{2}} \bigl((t_{2}-s)-(t_{1}-s) \bigr) \,ds+ \int _{t_{1}}^{t_{2}} (t_{1}-s) \,ds \biggr] \\ &\quad\quad{}+ {\theta}_{g}(\delta ) \bigl[m+k_{1} k_{2}\chi (r) \bigr] \int _{t_{1}}^{0}(t_{1}-s) \,ds. \end{aligned}$$
Hence, the class \(\{ \mathcal{A}x\}\) is equicontinuous. Then, from the Arzela–Ascoli Theorem [32], the operator \(\mathcal{A} \) is compact.
As a result, (see [33]), \(\mathcal{A}\) has at least one fixed point \(x \in {\mathcal{V}}_{r}\), then the problem (1.1)–(1.2) has a solution \(x \in C(I)\). □