In this section, we give the proofs of our main results.
Lemma 3.1
The functional \(\Phi : X \to \mathbb{R}\) is weakly lower semicontinuous.
Proof
Let \(\{(u_{m},v_{m})\}\subset X\) with \((u_{m},v_{m})\rightharpoonup (u,v)\), then we obtain that \(\{u_{m}\}\) and \(\{v_{m}\}\) converge uniformly to u and v on \([0,T]\), respectively (see [36, Proposition 1.2]). In connection with the fact that \(\|(u,v)\|_{X}\leq \liminf_{m\to \infty}\|(u_{m},v_{m})\|_{X}\), one has
$$\begin{aligned} \liminf_{m\to \infty}\Phi (u_{m},v_{m})={}&\liminf _{m \to \infty} \Biggl\{ \frac{1}{2} \bigl\Vert (u_{m},v_{m}) \bigr\Vert _{X}^{2}+ \sum_{i=1}^{N} \int _{0}^{u_{m}(t_{i})}I_{i}(s)\,ds \\ &{}+\sum_{i=1}^{N} \int _{0}^{v_{m}(t_{i})}S_{i}(s)\,ds-\sum _{i=0}^{N} \int _{s_{i}}^{t_{i+1}}F_{i}\bigl(t,u_{m}(t),v_{m}(t) \bigr)\,dt \Biggr\} \\ \geq {}&\frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}+ \sum_{i=1}^{N} \int _{0}^{u(t_{i})}I_{i}(s)\,ds \\ & {}+\sum_{i=1}^{N} \int _{0}^{v(t_{i})}S_{i}(s)\,ds-\sum _{i=0}^{N} \int _{s_{i}}^{t_{i+1}}F_{i}\bigl(t,u(t),v(t) \bigr)\,dt \\ ={}& \Phi (u,v). \end{aligned}$$
This implies that Φ is a weakly lower semicontinuous functional. □
Proof of Theorem 1.1
For any \((u,v)\in X\), by (H1), (H2), and Lemma 2.9, we have
$$\begin{aligned} \Phi (u,v)={}&\frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}+\sum_{i=1}^{N} \int _{0}^{u(t_{i})}I_{i}(s)\,ds+ \sum _{i=1}^{N} \int _{0}^{v(t_{i})}S_{i}(s)\,ds \\ & {}-\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}F_{i}\bigl(t,u(t),v(t) \bigr)\,dt \\ \geq{}& \frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}- \sum_{i=1}^{N} \int _{0}^{u(t_{i})}\bigl(c_{i}+d_{i} \vert s \vert ^{ \beta _{i}}\bigr)\,ds-\sum_{i=1}^{N} \int _{0}^{v(t_{i})}\bigl(c_{i}+d_{i} \vert s \vert ^{ \beta _{i}}\bigr)\,ds \\ & {}-\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}\bigl(a_{i} \vert u \vert +b_{i} \vert u \vert ^{ \gamma _{1}+1}+a_{i} \vert v \vert +b_{i} \vert v \vert ^{\gamma _{2}+1}\bigr)\,dt \\ \geq{}& \frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}-NC \Vert u \Vert _{\infty}-D\sum_{i=1}^{N} \Vert u \Vert _{\infty}^{\beta _{i}+1}-NC \Vert v \Vert _{\infty} \\ & {}-D\sum_{i=1}^{N} \Vert v \Vert _{\infty}^{\beta _{i}+1}-(N+1)AT \Vert u \Vert _{ \infty}-(N+1)BT \Vert u \Vert _{\infty}^{\gamma _{1}+1} \\ & {}-(N+1)AT \Vert v \Vert _{\infty}-(N+1)BT \Vert v \Vert _{\infty}^{\gamma _{2}+1} \\ \geq{}& \frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}-2NCc \bigl\Vert (u,v) \bigr\Vert _{X}-2D\sum _{i=1}^{N}c^{ \beta _{i}+1} \bigl\Vert (u,v) \bigr\Vert _{X}^{\beta _{i}+1} \\ & {}-2(N+1)ATc \bigl\Vert (u,v) \bigr\Vert _{X}-(N+1)BTc^{\gamma _{1}+1} \bigl\Vert (u,v) \bigr\Vert _{X}^{ \gamma _{1}+1} \\ & {}-(N+1)BTc^{\gamma _{2}+1} \bigl\Vert (u,v) \bigr\Vert _{X}^{\gamma _{2}+1}, \end{aligned}$$
where \(A=\max \{a_{0},a_{1},\dots ,a_{N}\}\), \(B=\max \{b_{0}, b_{1},\dots ,b_{N}\}\), \(C=\max \{c_{1},c_{2},\dots ,c_{N}\}\), and \(D=\max \{d_{1},d_{2},\dots ,d_{N}\}\). Since \(\gamma _{1}, \gamma _{2}\in [0,1)\), \(i=0,1,\dots ,N\), \(\beta _{i}\in [0,1)\), \(i=1,2,\dots ,N\), the above equation implies \(\lim_{\|(u,v)\|_{X}\to \infty}\Phi (u,v)=+\infty \), i.e., Φ is coercive. By Lemma 3.1 and Theorem 2.3, we obtain that functional Φ satisfies all the conditions of Theorem 2.4. So Φ has a minimum on X, which is a critical point of Φ. Hence, problem (1.1) has at least one classical solution. □
Corollary 3.2
Assume that \(D_{u}F_{i}\), \(D_{v}F_{i}\), \(i=0,1,\dots ,N\), \(I_{i}\), \(S_{i}\), \(i=1,2,\dots ,N\), are bounded. Then, problem (1.1) has at least one classical solution.
Proof of Theorem 1.2
Obviously, \(\Phi \in C^{1}(X,\mathbb{R})\) and \(\Phi (0,0)=0\). We divide the proof into three parts.
First, we will show that Φ satisfies the (PS) condition. Let \(\{(u_{m},v_{m})\}\subset X\) be a sequence such that \(\{\Phi (u_{m},v_{m})\}\) is bounded and \(\Phi '(u_{m},v_{m})\to 0\). By (2.9), (2.10), (H3), and (H5), we have
$$\begin{aligned} &\theta \Phi (u_{m},v_{m})-\Phi '(u_{m},v_{m}) (u_{m},v_{m}) \\ &\quad =\frac{\theta}{2} \bigl\Vert (u_{m},v_{m}) \bigr\Vert _{X}^{2}+\theta \sum_{i=1}^{N} \int _{0}^{u_{m}(t_{i})}I_{i}(s)\,ds+\theta \sum _{i=1}^{N} \int _{0}^{v_{m}(t_{i})}S_{i}(s)\,ds \\ & \qquad {}-\theta \sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}F_{i}(t,u_{m},v_{m})\,dt- \int _{0}^{T} \bigl\vert u_{m}'(t) \bigr\vert ^{2}\,dt- \int _{0}^{T} \bigl\vert v_{m}'(t) \bigr\vert ^{2}\,dt \\ & \qquad {}-\sum_{i=1}^{N}I_{i} \bigl(u_{m}(t_{i})\bigr)u_{m}(t_{i})- \sum_{i=1}^{N}S_{i} \bigl(v_{m}(t_{i})\bigr)v_{m}(t_{i}) \\ &\qquad {}+\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}D_{u}F_{i}(t,u_{m},v_{m})u_{m}\,dt+ \sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}D_{v}F_{i}(t,u_{m},v_{m})v_{m}\,dt \\ &\quad = \biggl(\frac{\theta}{2}-1 \biggr) \bigl\Vert (u_{m},v_{m}) \bigr\Vert _{X}^{2}+ \Biggl( \theta \sum _{i=1}^{N} \int _{0}^{u_{m}(t_{i})}I_{i}(s)\,ds-\sum _{i=1}^{N}I_{i}\bigl(u_{m}(t_{i}) \bigr)u_{m}(t_{i}) \Biggr) \\ & \qquad {}+ \Biggl(\theta \sum_{i=1}^{N} \int _{0}^{v_{m}(t_{i})}S_{i}(s)\,ds- \sum _{i=1}^{N}S_{i}\bigl(v_{m}(t_{i}) \bigr)v_{m}(t_{i}) \Biggr) \\ & \qquad {}+ \Biggl(\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}D_{u}F_{i}(t,u_{m},v_{m})u_{m}\,dt +\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}D_{v}F_{i}(t,u_{m},v_{m})v_{m}\,dt \\ &\qquad {}-\theta \sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}F_{i}(t,u_{m},v_{m})\,dt \Biggr) \\ &\quad \geq \biggl(\frac{\theta}{2}-1 \biggr) \bigl\Vert (u_{m},v_{m}) \bigr\Vert _{X}^{2}. \end{aligned}$$
Since \(\theta >2\), it follows that \(\{(u_{m},v_{m})\}\) is bounded in X. Passing, if necessary, to a subsequence, we can assume that there exist \(\{(u_{m},v_{m})\}\in X\) such that
$$\begin{aligned} &(u_{m},v_{m})\rightharpoonup (u,v)\quad \text{in } X, \\ &u_{m} \rightarrow u,\qquad v_{m} \rightarrow v \quad \text{uniformly in } C\bigl([0,T]\bigr), \end{aligned}$$
as \(m\to +\infty \). Hence
$$ \begin{aligned}& \sum_{i=1}^{N}(I_{i}(u_{m}(t_{i})-I_{i} \bigl(u(t_{i})\bigr) \bigl(u_{m}(t_{i})-u(t_{i}) \bigr) \to 0, \\ &\sum_{i=1}^{N}(S_{i}(v_{m}(t_{i})-S_{i} \bigl(v(t_{i})\bigr) \bigl(v_{m}(t_{i})-v(t_{i}) \bigr) \to 0, \\ &\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}\bigl(D_{u}F_{i}(t,u_{m},v_{m})-D_{u}F_{i}(t,u,v) \bigr) (u_{m}-u)\,dt \to 0, \\ &\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}\bigl(D_{v}F_{i}(t,u_{m},v_{m})-D_{v}F_{i}(t,u,v) \bigr) (v_{m}-v)\,dt \to 0, \end{aligned} $$
(3.1)
as \(m\to +\infty \). Moreover, by (2.10), we have
$$ \begin{aligned} &\bigl(\Phi '(u_{m},v_{m})- \Phi '(u,v)\bigr) (u_{m}-u,v_{m}-v) \\ &\quad = \bigl\Vert (u_{m}-u,v_{m}-v) \bigr\Vert ^{2}+\sum_{i=1}^{N}(I_{i} \bigl(u_{m}(t_{i})-I_{i}\bigl(u(t_{i}) \bigr)\bigr) \bigl(u_{m}(t_{i})-u(t_{i})\bigr) \\ & \qquad {}+\sum_{i=1}^{N}(S_{i} \bigl(v_{m}(t_{i})-S_{i}\bigl(v(t_{i}) \bigr)\bigr) \bigl(v_{m}(t_{i})-v(t_{i})\bigr) \\ & \qquad {}-\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}\bigl(D_{u}F_{i}(t,u_{m},v_{m})-D_{u}F_{i}(t,u,v) \bigr) (u_{m}-u)\,dt \\ & \qquad {}-\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}\bigl(D_{v}F_{i}(t,u_{m},v_{m})-D_{v}F_{i}(t,u,v) \bigr) (v_{m}-v)\,dt. \end{aligned} $$
(3.2)
Since \(\Phi '(u_{m},v_{m})\to 0\) and \((u_{m},v_{m})\rightharpoonup (u,v)\), we have
$$ \bigl(\Phi '(u_{m},v_{m})-\Phi '(u,v)\bigr) (u_{m}-u,v_{m}-v)\to 0, \quad \text{as } m\to +\infty . $$
(3.3)
Therefore, (3.1), (3.2), and (3.3) yield \(\|(u_{m}-u,v_{m}-v)\|\to 0\) as \(m\to +\infty \). That is, \((u_{m},v_{m})\to (u,v)\) in X, which means that the (PS) condition holds for Φ.
Second, we verify that Φ satisfies assumption (i) of Theorem 2.5. By the Sobolev embedding theorem, there exists \(\gamma >0\) such that
$$ \Vert u \Vert _{L^{2}}^{2}+ \Vert v \Vert _{L^{2}}^{2}\leq \gamma \bigl\Vert (u,v) \bigr\Vert _{X}^{2}. $$
(3.4)
By (H4), we have
$$ F_{i}(t,u,v)=o\bigl( \vert u \vert ^{2}+ \vert v \vert ^{2}\bigr),\quad \text{as } \vert u \vert + \vert v \vert \to 0.$$
Let \(\varepsilon =\frac{1}{4(N+1)\gamma}\), then there exists \(\delta >0\) such that \(|u|+|v|<\delta \) implies
$$ F_{i}(t,u,v)\leq \frac{1}{4(N+1)\gamma} \bigl( \vert u \vert ^{2}+ \vert v \vert ^{2}\bigr),\quad \forall (u,v)\in X. $$
(3.5)
In addition, it follows from (i) of (H3) that
$$ \int _{0}^{u(t_{i})}I_{i}(s)\,ds\geq 0\quad \text{and}\quad \int _{0}^{v(t_{i})}S_{i}(s)\,ds \geq 0. $$
(3.6)
It is clear that \(\|(u,v)\|_{X}\leq \frac{\delta}{c}\), where c is defined in Lemma 2.9, implies that \(\|u\|_{\infty}, \|v\|_{\infty}<\delta \). By (2.9), (3.4), (3.5), and (3.6), we have
$$\begin{aligned} \Phi (u,v)={}&\frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}+\sum_{i=1}^{N} \int _{0}^{u(t_{i})}I_{i}(s)\,ds+ \sum _{i=1}^{N} \int _{0}^{v(t_{i})}S_{i}(s)\,ds \\ & {}-\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}F_{i}(t,u,v)\,dt \\ \geq {}&\frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}- \sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}} \frac{1}{4(N+1)\gamma} \bigl( \vert u \vert ^{2}+ \vert v \vert ^{2}\bigr)\,dt \\ \geq {}&\frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}- \frac{1}{4\gamma} \int _{0}^{T} \bigl( \vert u \vert ^{2}+ \vert v \vert ^{2}\bigr)\,dt \\ \geq{}& \frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}- \frac{1}{4\gamma}\bigl( \Vert u \Vert _{L^{2}}^{2}+ \Vert v \Vert _{L^{2}}^{2}\bigr) \\ ={}& \frac{1}{4} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}. \end{aligned}$$
Choose \(\alpha =\frac{\delta ^{2}}{4c^{2}}\), \(\rho =\frac{\delta}{c}\), then \(\Phi (u,v)\geq \alpha >0\) for any \((u,v)\in \partial B_{\rho}\).
Finally, we prove that assumption (ii) of Theorem 2.5 is satisfied. According to (H3), (H5), and Lemma 2.9, we have
$$ \begin{aligned} \Phi (u,v)={}&\frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}+\sum _{i=1}^{N} \int _{0}^{u(t_{i})}I_{i}(s)\,ds+\sum _{i=1}^{N} \int _{0}^{v(t_{i})}S_{i}(s)\,ds \\ & {}-\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}F_{i}(t,u,v)\,dt \\ \leq{}& \frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}+ \sum_{i=1}^{N}\delta _{i} \bigl\vert u(t_{i}) \bigr\vert ^{ \theta}+\sum _{i=1}^{N}\delta _{i} \bigl\vert v(t_{i}) \bigr\vert ^{\theta}-\sum _{i=0}^{N} \int _{s_{i}}^{t_{i+1}}C\bigl( \vert u \vert ^{\beta}+ \vert v \vert ^{\beta}\bigr)\,dt \\ \leq{}& \frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}+ \sum_{i=1}^{N}\delta _{i} \Vert u \Vert _{ \infty}^{\theta}+\sum_{i=1}^{N} \delta _{i} \Vert v \Vert _{\infty}^{\theta}-C \sum _{i=0}^{N} \int _{s_{i}}^{t_{i+1}}\bigl( \vert u \vert ^{\beta}+ \vert v \vert ^{\beta}\bigr)\,dt \\ \leq{}& \frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}^{2}+ \sum_{i=1}^{N}\delta _{i}c^{ \theta} \bigl\Vert (u,v) \bigr\Vert _{X}^{\theta}+\sum _{i=1}^{N}\delta _{i}c^{\theta} \bigl\Vert (u,v) \bigr\Vert _{X}^{\theta} \\ & {}-C\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}\bigl( \vert u \vert ^{\beta}+ \vert v \vert ^{ \beta}\bigr)\,dt \end{aligned} $$
(3.7)
Now, for any given \((u,v)\in X\) with \(\|u\|_{1}=\|v\|_{1}=1\), by (3.7), we have
$$\begin{aligned} \Phi (\xi u,\xi v) \leq& \frac{1}{2} \bigl\Vert (\xi u,\xi v) \bigr\Vert _{X}^{2}+ \sum _{i=1}^{N}\delta _{i}c^{\theta} \bigl\Vert (\xi u,\xi v) \bigr\Vert _{X}^{\theta}+ \sum _{i=1}^{N}\delta _{i}c^{\theta} \bigl\Vert (\xi u,\xi v) \bigr\Vert _{X}^{\theta} \\ & {}-C\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}\bigl( \vert \xi u \vert ^{\beta}+ \vert \xi v \vert ^{ \beta}\bigr)\,dt \\ =&\xi ^{2}+2(\sqrt{2}c)^{\theta}\xi ^{\theta}\sum _{i=1}^{N}\delta _{i}-C \xi ^{\beta}\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}\bigl( \vert u \vert ^{\beta}+ \vert v \vert ^{ \beta}\bigr)\,dt. \end{aligned}$$
Since \(2<\theta <\beta \), the above inequality implies that \(\Phi (\xi u,\xi v)\to -\infty \) as \(\xi \to +\infty \). Therefore, there exists \(\xi _{0} \in \mathbb{R}\backslash \{0\}\) with \(\xi _{0}>\rho \) such that \(\Phi (\xi _{0} u,\xi _{0} v)\leq 0\). By Theorem 2.5, problem (1.1) has at least one classical solution. □
Proof of Theorem 1.3
We apply Theorem 2.6 to show this result. In view of the proof of Theorem 1.2, we obtain that \(\Phi \in C^{1}(X,\mathbb{R})\) with \(\Phi (0,0)=0\) satisfies the (PS) condition. Conditions (H6) and (H7) imply that Φ is even.
The set of all eigenvalues of (2.1) is given by the sequence of positive numbers \(\lambda _{n}=(\frac{n\pi}{T})^{2}\) (\(n=1,2,\dots \)). Let \(E_{n}\) denote the feature space corresponding to \(\lambda _{n}\), then we obtain \(H_{0}^{1}(0,T)=\overline{\bigoplus_{i\in \mathbb{N}}E_{i}}\) and \(X=\overline{\bigoplus_{i\in \mathbb{N}}E_{i}\times E_{i}}\). Assume that \(V=\bigoplus_{i=1}^{2}E_{i}\times E_{i}\) and \(Y=\overline{\bigoplus_{i=3}^{+\infty}E_{i}\times E_{i}}\), then \(X=V+Y\), where V is finite dimensional. As in the proof of Theorem 1.2, there exist \(\rho , \alpha >0\) such that \(\Phi (u,v)\geq \alpha \) for any \((u,v)\in \partial B_{\rho}\cap Y\). In addition, in the same way as in the proof of Theorem 1.2, we can obtain that \(\Phi (\xi u,\xi v)\to -\infty \) as \(\xi \to \infty \) for any \((u,v)\in W\). Hence, there exists \(R=R(W)\) such that \(\Phi (\xi u,\xi v)\leq 0\) on \(W\backslash B_{R(W)}\). By Theorem 2.6, problem (1.1) has infinitely many classical solutions. □
Proof of Theorem 1.4
Obviously, \(\Phi \in C^{1}(X,\mathbb{R})\) with \(\Phi (0,0)=0\) is even. First, we prove that Φ satisfies the (PS) condition. As in the proof of Theorem 1.2, by (2.9), (2.10), (H2), (H5), and Lemma 2.9, we have
$$\begin{aligned}& \theta \Phi (u_{m},v_{m})-\Phi '(u_{m},v_{m}) (u_{m},v_{m}) \\& \quad = \biggl(\frac{\theta}{2}-1 \biggr) \bigl\Vert (u_{m},v_{m}) \bigr\Vert _{X}^{2}+\theta \sum _{i=1}^{N} \int _{0}^{u_{m}(t_{i})}I_{i}(s)\,ds-\sum _{i=1}^{N}I_{i}\bigl(u_{m}(t_{i}) \bigr)u_{m}(t_{i}) \\& \qquad {}+\theta \sum_{i=1}^{N} \int _{0}^{v_{m}(t_{i})}S_{i}(s)\,ds- \sum _{i=1}^{N}S_{i}\bigl(v_{m}(t_{i}) \bigr)v_{m}(t_{i}) \\& \qquad {}+ \Biggl(\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}D_{u}F_{i}(t,u_{m},v_{m})u_{m}\,dt +\sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}D_{v}F_{i}(t,u_{m},v_{m})v_{m}\,dt \\& \qquad {}-\theta \sum_{i=0}^{N} \int _{s_{i}}^{t_{i+1}}F_{i}(t,u_{m},v_{m})\,dt \Biggr) \\& \quad \geq \biggl(\frac{\theta}{2}-1 \biggr) \bigl\Vert (u_{m},v_{m}) \bigr\Vert _{X}^{2}-\theta \sum _{i=1}^{N}\bigl(c_{i} \Vert u_{m} \Vert _{\infty}+d_{i} \Vert u_{m} \Vert _{\infty}^{ \beta _{i}+1}\bigr) \\& \qquad {}-\sum_{i=1}^{N}\bigl(c_{i} \Vert u_{m} \Vert _{\infty}+d_{i} \Vert u_{m} \Vert _{ \infty}^{\beta _{i}+1}\bigr)-\theta \sum _{i=1}^{N}\bigl(c_{i} \Vert v_{m} \Vert _{\infty}+d_{i} \Vert v_{m} \Vert _{\infty}^{\beta _{i}+1}\bigr) \\& \qquad {}-\sum_{i=1}^{N}\bigl(c_{i} \Vert v_{m} \Vert _{\infty}+d_{i} \Vert v_{m} \Vert _{ \infty}^{\beta _{i}+1}\bigr) \\& \quad \geq \biggl(\frac{\theta}{2}-1 \biggr) \bigl\Vert (u_{m},v_{m}) \bigr\Vert _{X}^{2}-2(\theta +1) \Biggl(\sum _{i=1}^{N}c_{i}c \bigl\Vert (u_{m},v_{m}) \bigr\Vert _{X} \\& \qquad {}+\sum_{i=1}^{N}d_{i}c^{\beta _{i}+1} \bigl\Vert (u_{m},v_{m}) \bigr\Vert _{X}^{ \beta _{i}+1} \Biggr). \end{aligned}$$
It follows that \(\{(u_{m},v_{m})\}\) is bounded in X. The rest of the proof showing that the (PS) condition holds is similar to that in Theorem 1.2. Secondly, since \(I_{i}\), \(S_{i}\), \(i=1,2,\dots ,N\), are odd and nondecreasing, we obtain \(\int _{0}^{u(t_{i})}I_{i}(s)\,ds\geq 0\) and \(\int _{0}^{v(t_{i})}S_{i}(s)\,ds\geq 0\). As in the proofs of Theorems 1.2 and 1.3, we can easily verify that condition (i) of Theorem 2.6 is satisfied. Finally, the proof of condition (ii) of Theorem 2.6 is also the same as that in Theorem 1.3. Hence, by Theorem 2.6, problem (1.1) has infinitely many classical solutions. □