To convert the problem (1) into the corresponding integral form, we establish the following result.
Lemma 3.1
Let
\(w\in PC^{1}(\mathcal{J}, \mathcal{R})\)
be a solution with
\(q\in L[0, 1]\)
of the given problem
$$ \textstyle\begin{cases} {{}^{C}_{0}\mathbf{D}^{\beta}_{x_{k}}}w(x) = q(x),\quad 1< \beta \leq{2}, x\in{\mathcal{J}_{1} = \mathcal{J}\backslash \{{x_{1}, x_{2}, \ldots , x_{p}}}\}, \\ \Delta{w(x_{k})} = I_{k}({w(x_{k}^{-})}), \qquad \Delta{w'(x_{k})} = \bar{I}_{k}({w(x_{k}^{-})}), \quad x_{k}\in{(0, 1)}, {k = 1, 2,\ldots, p}, \\ {w'(0)+cw(\eta ) = 0, \qquad dw'(1)+w(\zeta ) = 0}, \quad {\eta , \zeta \in{(0, 1)}}, \end{cases} $$
(4)
if and only if
w
is a solution of the impulsive fractional integral equation as
$$ w(x)= \textstyle\begin{cases} \int _{0}^{x}\frac{(x-s)^{\beta -1}}{\Gamma{(\beta )}}{q(s)}\,ds+ \frac{c(d+\zeta -x)}{[1-c(d+\zeta -\eta )]}\int _{x_{k}}^{\eta} \frac{(\eta -s)^{\beta -1}}{\Gamma{(\beta )}}{q(s)}\,ds \\ \quad {} -\frac{1+c(\eta -x)}{[1-c(d+\zeta -\eta )]} [\int _{x_{k}}^{ \zeta}\frac{(\zeta -s)^{\beta -1}}{\Gamma{(\beta )}}{q(s)}\,ds+d\int _{x_{p}}^{1} \frac{(1-s)^{\beta -2}}{\Gamma{(\beta -1)}}{q(s)}\,ds ] \\ \quad {} -\frac{1-c(d+\zeta +x-\eta )}{[1-c(d+\zeta -\eta )]}\sum_{i=1}^{p}d(\int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}}{q(s)}\,ds+\bar{I_{i}}(w(x_{i}^{-})) ) \\ \quad {} -\sum_{i=1}^{k} (\int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -1}}{\Gamma{(\beta )}}{q(s)}\,ds+I(w(x_{i}^{-})) ) \\ \quad {} -\sum_{i=1}^{k} ( \frac{cx(\eta -\zeta )+(\zeta -cd\eta )}{[1-c(d+\zeta -\eta )]}-x_{i} ) (\int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}}{q(s)}\,ds+\bar{I_{i}}(w(x_{i}^{-})) ), \\ \quad x\in{[0, x_{1}]}, \\ \int _{x_{k}}^{x}\frac{(x-s)^{\beta -1}}{\Gamma{(\beta )}}{q(s)}\,ds+ \frac{c(d+\zeta -x)}{[1-c(d+\zeta -\eta )]}\int _{x_{k}}^{\eta} \frac{(\eta -s)^{\beta -1}}{\Gamma{(\beta )}}{q(s)}\,ds \\ \quad {} -\frac{1+c(\eta -x)}{[1-c(d+\zeta -\eta )]} [\int _{x_{k}}^{ \zeta}\frac{(\zeta -s)^{\beta -1}}{\Gamma{(\beta )}}{q(s)}\,ds+d\int _{x_{p}}^{1} \frac{(1-s)^{\beta -2}}{\Gamma{(\beta -1)}}{q(s)}\,ds ] \\ \quad {} -\frac{1-c(d+\zeta +x-\eta )}{[1-c(d+\zeta -\eta )]}\sum_{i=1}^{p}d(\int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}}{q(s)}\,ds+\bar{I_{i}}(w(x_{i}^{-})) ) \\ \quad {} +\sum_{i=1}^{k} ( \frac{x(1-cd)+cd\eta -\zeta}{[1-c(d+\zeta -\eta )]} ) (\int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}}{q(s)}\,ds+\bar{I_{i}}(w(x_{i}^{-})) ),\\ \quad x\in{(x_{k}, x_{k+1}]}. \end{cases} $$
(5)
Proof
Suppose w is a solution to problem (4), hence we use Lemmas 2.2 and 2.1, for some constants \(a_{0}, a_{1}\in \mathcal{R}\), following the same procedure as was used in [35], we have
$$\begin{aligned} w(x) = -a_{0}-a_{1}x+ \int _{0}^{x} \frac{(x-s)^{\beta -1}}{\Gamma (\beta )}{q(s)}\,ds,\quad x\in [0, x_{1}]. \end{aligned}$$
(6)
Using constants \(d_{0}, d_{1}\in \mathcal{R}\), we have
$$\begin{aligned} w(x) = -d_{0}-d_{1}(x-x_{1})+ \int _{x_{1}}^{x} \frac{(x-s)^{\beta -1}}{\Gamma (\beta )}{q(s)}\,ds,\quad x\in (x_{1}, x_{2}]. \end{aligned}$$
(7)
First, we take derivatives of (6) and (7) to produce
$$\begin{aligned}& w'(x) = -a_{1}+ \int _{0}^{x} \frac{(x-s)^{\beta -2}}{\Gamma (\beta -1)}{q(s)}\,ds,\quad x\in [0, x_{1}], \end{aligned}$$
(8)
$$\begin{aligned}& w'(x) = -d_{1}+ \int _{x_{1}}^{x} \frac{(x-s)^{\beta -2}}{\Gamma (\beta -1)}{q(s)}\,ds,\quad x\in (x_{1}, x_{2}]. \end{aligned}$$
(9)
Using the impulsive conditions \(\Delta{w(x_{1})} = w(x_{1}^{+})-w(x_{1}^{-})=I_{1}({w(x_{1}^{-})})\) and \(\Delta{w'(x_{1})} = w'(x_{1}^{+})-w'(x_{1}^{-})=\bar{I_{1}}({w(x_{1}^{-})})\), we find from (8) and (9)
$$\begin{aligned}& -d_{0} = \int _{0}^{x_{1}} \frac{(x_{1}-s)^{\beta -1}}{\Gamma (\beta )}{q(s)}\,ds-a_{0}-a_{1}x_{1}+ I_{1}\bigl({w\bigl(x_{1}^{-}\bigr)}\bigr), \\& -d_{1} = \int _{0}^{x_{1}} \frac{(x_{1}-s)^{\beta -2}}{\Gamma (\beta -1)}{q(s)}\,ds-a_{1}+ \bar{I_{1}}\bigl({w\bigl(x_{1}^{-}\bigr)}\bigr). \end{aligned}$$
Thus, putting the values in (7), we have
$$ \begin{aligned} w(x)&= \int _{x_{1}}^{x}\frac{(x-s)^{\beta -1}}{\Gamma (\beta )}{q(s)}\,ds+ \int _{0}^{x_{1}}\frac{(x_{1}-s)^{\beta -1}}{\Gamma (\beta )}{q(s)}\,ds-a_{0}-a_{1}x+ I_{1}\bigl({w\bigl(x_{1}^{-}\bigr)}\bigr) \\ &\quad {} +(x-x_{1}) \biggl[ \int _{0}^{x_{1}} \frac{(x_{1}-s)^{\beta -2}}{\Gamma (\beta -1)}{q(s)}\,ds+ \bar{I_{1}}\bigl({w\bigl(x_{1}^{-}\bigr)}\bigr) \biggr],\quad x\in (x_{1}, x_{2}]. \end{aligned} $$
Repeating the above process, the obtained solution \(w(x)\) for \(x\in{(x_{k}, x_{k+1}]}\) has the following expression
$$ \begin{aligned} w(x) &= \int _{x_{k}}^{x}\frac{(x-s)^{\beta -1}}{\Gamma (\beta )}q(s)\,ds-a_{0}-a_{1}x\\ &\quad {}+ \sum_{i=1}^{k} \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -1}}{\Gamma (\beta )}q(s)\,ds+I_{i} \bigl({w\bigl(x_{i}^{-}\bigr)}\bigr) \biggr) \\ &\quad {} +\sum_{i=1}^{k} \biggl[(x-x_{i}) \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma (\beta -1)}q(s)\,ds+ \bar{I_{i}}\bigl({w\bigl(x_{i}^{-}\bigr)}\bigr) \biggr) \biggr],\quad x\in (x_{k}, x_{k+1}]. \end{aligned} $$
(10)
Now, using the boundary conditions \(w'(0)+cw(\eta ) = 0\), \(dw'(1)+w(\zeta ) = 0\), \(0<\eta \leq \zeta <1\) in (10), we obtain the values of \(a_{0}\), \(a_{1}\) as
$$\begin{aligned}& a_{0} =-\frac{c(d+\zeta )}{[1-c(d+\zeta -\eta )]} \int _{x_{k}}^{ \eta}\frac{(\eta -s)^{\beta -1}}{\Gamma (\beta )}q(s)\,ds\\& \hphantom{a_{0} =}{}+\sum _{i=1}^{k} \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -1}}{\Gamma (\beta )}q(s)\,ds+{I_{i}} \bigl({w\bigl(x_{i}^{-}\bigr)}\bigr) \biggr) \\& \hphantom{a_{0} =}{} +\frac{1+c\eta}{[1-c(d+\zeta -\eta )]} \biggl[ \int _{x_{k}}^{\zeta} \frac{(\zeta -s)^{\beta -1}}{\Gamma (\beta )}q(s)\,ds+d \int _{x_{p}}^{1} \frac{(1-s)^{\beta -2}}{\Gamma (\beta -1)}q(s)\,ds \biggr] \\& \hphantom{a_{0} =}{} +\sum_{i=1}^{p}\frac{(1+c\eta )d}{[1-c(d+\zeta -\eta )]} \biggl( \int _{x_{i-1}}^{x_{i}}\frac{(x_{i}-s)^{\beta -2}}{\Gamma (\beta -1)}q(s)\,ds-{ \bar{I_{i}}}\bigl({w\bigl(x_{i}^{-}\bigr)}\bigr) \biggr) \\& \hphantom{a_{0} =}{} +\sum_{i=1}^{k} \biggl[ \biggl( \frac{(\zeta -cd\eta )}{[1-c(d+\zeta -\eta )]}-x_{i} \biggr) \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma (\beta -1)}q(s)\,ds+{ \bar{I_{i}}}\bigl({w\bigl(x_{i}^{-}\bigr)}\bigr) \biggr) \biggr], \\& a_{1} =\frac{(c)}{[1-c(d+\zeta -\eta )]} \Biggl[ \int _{x_{k}}^{\eta} \frac{(\eta -s)^{\beta -1}}{\Gamma (\beta )}q(s)\,ds- \int _{x_{k}}^{ \zeta}\frac{(\zeta -s)^{\beta -1}}{\Gamma (\beta )}q(s)\,ds \\& \hphantom{a_{1} =} {} -d \int _{x_{p}}^{1}\frac{(1-s)^{\beta -2}}{\Gamma (\beta -1)}q(s)\,ds- \sum _{i=1}^{p}d \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma (\beta -1)}q(s)\,ds-{ \bar{I_{i}}}\bigl({w\bigl(x_{i}^{-}\bigr)}\bigr) \biggr) \\& \hphantom{a_{1} =} {} +\sum_{i=1}^{k} (\eta -\zeta ) \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma (\beta -1)}q(s)\,ds-{ \bar{I_{i}}}\bigl({w\bigl(x_{i}^{-}\bigr)}\bigr) \biggr) \Biggr]. \end{aligned}$$
Substituting the values of \(a_{0}\), \(a_{1}\) into (6) and (10), we obtain (5). Conversely, suppose w is a solution of the impulsive fractional-integral equation (5). It follows from a direct calculation that (5) satisfies the problem (4). □
For simplicity, we define
$$\begin{aligned} \begin{aligned} & \sigma _{1}=\sup _{x\in [0, 1]} \biggl\vert \frac{c(d+\zeta -x)}{[1-c(d+\zeta -\eta )]} \biggr\vert ,\qquad \sigma _{2}= \sup_{x\in [0, 1]} \biggl\vert \frac{1+c(\eta -x)}{[1-c(d+\zeta -\eta )]} \biggr\vert , \\ & \sigma _{3}=\sup_{x\in [0, 1]} \biggl\vert \frac{1-c(d+\zeta +x-\eta )}{[1-c(d+\zeta -\eta )]} \biggr\vert ,\qquad \sigma _{4}= \sup _{x\in [0, 1]} \biggl\vert \frac{(1-cd)x+cd\eta -\zeta}{[1-c(d+\zeta -\eta )]} \biggr\vert . \end{aligned} \end{aligned}$$
To derive our main results of the existence and uniqueness of solution, we need to define an operator T as \(T : PC(\mathcal{J}, \mathcal{R})\rightarrow PC(\mathcal{J}, \mathcal{R})\) by
$$\begin{aligned} \begin{aligned} Tw(x)&= \int _{x_{k}}^{x}\frac{(x-s)^{\beta -1}}{\Gamma{(\beta )}}{f\bigl(s, w(s), {{}_{0}^{C}\mathbf{D}_{s_{k}}^{\beta}{w(s)}} \bigr)}\,ds\\ &\quad {}+ \frac{c(d+\zeta -x)}{[1-c(d+\zeta -\eta )]} \int _{x_{k}}^{\eta} \frac{(\eta -t)^{\beta -1}}{\Gamma{(\beta )}}{f \bigl(s,w(s),{_{0}^{C} \mathbf{D}_{s_{k}}^{\beta}{w(s)}} \bigr)}\,ds \\ &\quad {} -\frac{1+c(\eta -x)}{[1-c(d+\zeta -\eta )]} \biggl[ \int _{x_{k}}^{ \zeta}\frac{(\zeta -s)^{\beta -1}}{\Gamma{(\beta )}}{f \bigl(s,w(s),{_{0}^{C} \mathbf{D}_{s_{k}}^{\beta}{w(s)}} \bigr)}\,ds\\ &\quad {}+d \int _{x_{p}}^{1} \frac{(1-s)^{\beta -2}}{\Gamma{(\beta -1)}}{f \bigl(s,w(s),{_{0}^{C} \mathbf{D}_{s_{k}}^{\beta}{w(s)}} \bigr)}\,ds \biggr] \\ &\quad {} -\frac{1-c(d+\zeta +x-\eta )}{[1-c(d+\zeta -\eta )]}\\ &\quad {}\times\sum_{i=1}^{p}d \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}}{f \bigl(s,w(s),{_{0}^{C} \mathbf{D}_{s_{k}}^{\beta}{w(s)}} \bigr)}\,ds+\bar{I_{i}}\bigl(w\bigl(x_{i}^{-}\bigr) \bigr) \biggr) \\ &\quad {} +\sum_{i=1}^{k} \biggl( \frac{x(1-cd)+cd\eta -\zeta}{[1-c(d+\zeta -\eta )]} \biggr) \\ &\quad {}\times\biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}}{f \bigl(s,w(s),{_{0}^{C} \mathbf{D}_{s_{k}}^{\beta}{w(s)}} \bigr)}\,ds+\bar{I_{i}}\bigl(w\bigl(x_{i}^{-}\bigr) \bigr) \biggr). \end{aligned} \end{aligned}$$
(11)
Using Lemma 3.1 with \(\mathrm{z}_{w}(x) = f(x, w(x), {{}_{0}^{C}\mathbf{D}_{x_{k}}^{\beta}{w(x)}})\), problem (1) is reduced to a fixed-point problem \(Tw(x) = w(x)\), where T is given by (11). Therefore, problem (1) has a solution if and only if the operator T has a fixed point, where \(\mathrm{z}_{w}(x)= f(x, w(x), \mathrm{z}_{w}(x))\) and \(\mathrm{z}_{w}(x)={{}_{0}^{C}\mathbf{D}_{x_{k}}^{\beta}{w(x)}}\). We assume that the following hypotheses are satisfied:
- \((A_{1})\):
-
The function \(f : \mathcal{J}\times \mathcal{R}\times \mathcal{R}\rightarrow \mathcal{R}\) is continuous;
- \((A_{2})\):
-
There exist constant \(K_{f} > 0\) and \(0< L_{f}<1\) such that
$$ \bigl\vert f\bigl(x, w(x), \mathrm{z}_{w}(x)\bigr)-f\bigl(x, \bar{w}(x), \bar{\mathrm{z}}_{w}(x)\bigr) \bigr\vert \leq K_{f} \bigl\vert w(x)-\bar{w}(x) \bigr\vert +L_{f} \bigl\vert \mathrm{z}_{w}(x)-\bar{\mathrm{z}}_{w}(x) \bigr\vert ,$$
for any \(w, \bar{w},\mathrm{z}_{w},\bar{\mathrm{z}}_{w}\in \mathrm{PC(\mathcal{J}, \mathcal{R})}\), and \(x\in{\mathcal{J}}\);
- \((A_{3})\):
-
There exists a constant \(M>0\), such that
$$ \bigl\vert \bar{I_{i}}\bigl(w(x)\bigr)-\bar{I_{i}}\bigl( \bar{w}(x)\bigr) \bigr\vert \leq M \bigl\vert w(x)-\bar{w}(x) \bigr\vert ,$$
for each \(w, \bar{w}\in PC(\mathcal{J}, \mathcal{R})\) and \(i = 1, 2, 3,\ldots ,p\).
Theorem 3.1
Under the hypotheses \((A_{1})\), \((A_{2})\), and \((A_{3})\) and if the condition
$$\begin{aligned} \biggl[\frac{K_{f}}{1-L_{f}} \biggl( \frac{\sigma _{1}+\sigma _{2}+1}{\Gamma (\beta +1)}+ \frac{(\sigma _{2}+\sigma _{3}p) \vert d \vert +\sigma _{4}p}{\Gamma (\beta )} \biggr)+\bigl(\sigma _{3} \vert d \vert +\sigma _{4}\bigr)pM \biggr]< 1, \end{aligned}$$
(12)
holds, then there exists a unique solution for problem (1) on \(\mathcal{J}\).
Proof
suppose \(w, \bar{w},\mathrm{z}_{w},\bar{\mathrm{z}}_{w}\in PC(\mathcal{J}, \mathcal{R})\), for some \(x\in \mathcal{J}\) we have
$$\begin{aligned} \bigl\vert T w(x)-T\bar{w}(x) \bigr\vert \leq & \int _{x_{k}}^{x} \frac{(x-s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert \mathrm{z}_{w}(s)- \bar{\mathrm{z}}_{w}(s) \bigr\vert \,ds \\ &{}+ \biggl\vert \frac{c(d+\zeta -x)}{[1-c(d+\zeta -\eta )]} \biggr\vert \int _{x_{k}}^{ \eta}\frac{(\eta -s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert \mathrm{z}_{w}(s)- \bar{\mathrm{z}}_{w}(s) \bigr\vert \,ds \\ &{}+ \biggl\vert \frac{1+c(\eta -x)}{[1-c(d+\zeta -\eta )]} \biggr\vert \biggl[ \int _{x_{k}}^{\zeta}\frac{(\zeta -s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert \mathrm{z}_{w}(s)-\bar{\mathrm{z}}_{w}(s) \bigr\vert \,ds \\ &{}+ \vert d \vert \int _{x_{p}}^{1}\frac{(1-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}(s)-\bar{\mathrm{z}}_{w}(s) \bigr\vert \,ds \biggr] \\ &{}+ \biggl\vert \frac{1-c(d+\zeta +x-\eta )}{[1-c(d+\zeta -\eta )]} \biggr\vert \sum _{i=1}^{p} \vert d \vert \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}(s)- \bar{\mathrm{z}}_{w}(s) \bigr\vert \,ds \\ &{}+ \bigl\vert \bar{I_{i}}\bigl(w\bigl(x_{i}^{-} \bigr)\bigr)-\bar{I_{i}}\bigl(\bar{w}\bigl(x_{i}^{-} \bigr)\bigr) \bigr\vert \biggr) \\ &{}+\sum_{i=1}^{k} \biggl\vert \biggl( \frac{x(1-cd)+cd\eta -\zeta}{[1-c(d+\zeta -\eta )]} \biggr) \biggr\vert \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}(s)- \bar{\mathrm{z}}_{w}(s) \bigr\vert \,ds \\ &{}+ \bigl\vert \bar{I_{i}}\bigl(w\bigl(x_{i}^{-} \bigr)\bigr)-\bar{I_{i}}\bigl(\bar{w}\bigl(x_{i}^{-} \bigr)\bigr) \bigr\vert \biggr), \end{aligned}$$
and by using \((A_{2})\), we have
$$\begin{aligned} \bigl\vert \mathrm{z}_{w}(x)-\bar{\mathrm{z}}_{w}(x) \bigr\vert =& \bigl\vert f\bigl(x, w(x), \mathrm{z}_{w}(x)\bigr)-f \bigl(x, \bar{w}(x), \bar{\mathrm{z}}_{w}(x)\bigr) \bigr\vert \\ \leq & K_{f} \bigl\vert w(x)-\bar{w}(x) \bigr\vert +L_{f} \bigl\vert \mathrm{z}_{w}(x)- \bar{ \mathrm{z}}_{w}(x) \bigr\vert . \end{aligned}$$
Repeating this process one has
$$\begin{aligned} |\mathrm{z}_{w}(x)-\bar{\mathrm{z}}_{w}(x))|\leq \frac{K_{f}}{1-L_{f}} \bigl\vert w(x)- \bar{w}(x) \bigr\vert . \end{aligned}$$
Therefore, for each \(x\in \mathcal{J}\), we have
$$\begin{aligned} &\bigl\vert T w(x)-T\bar{w}(x) \bigr\vert \\ &\quad \leq \frac{K_{f}}{1-L_{f}} \int _{x_{k}}^{x} \frac{(x-s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert w(s)- \bar{w}(s) \bigr\vert \,ds \\ &\qquad {}+ \biggl\vert \frac{c(d+\zeta -x)}{[1-c(d+\zeta -\eta )]} \biggr\vert \frac{K_{f}}{1-L_{f}} \int _{x_{k}}^{\eta} \frac{(\eta -s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert w(s)- \bar{w}(s) \bigr\vert \,ds \\ &\qquad {}+ \biggl\vert \frac{1+c(\eta -x)}{[1-c(d+\zeta -\eta )]} \biggr\vert \frac{K_{f}}{1-L_{f}} \int _{x_{k}}^{\zeta} \frac{(\zeta -s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert w(s)- \bar{w}(s) \bigr\vert \,ds \\ &\qquad {}+ \biggl\vert \frac{1+c(\eta -x)}{[1-c(d+\zeta -\eta )]} \biggr\vert \vert d \vert \frac{K_{f}}{1-L_{f}} \int _{x_{k}}^{1} \frac{(1-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert w(s)- \bar{w}(s) \bigr\vert \,ds \\ &\qquad {}+ \biggl\vert \frac{1-c(d+\zeta +x-\eta )}{[1-c(d+\zeta -\eta )]} \biggr\vert \sum _{i=1}^{p} \vert d \vert \biggl[ \frac{K_{f}}{1-L_{f}} \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert w(s)- \bar{w}(s) \bigr\vert \,ds \\ &\qquad {}+M \bigl\vert w(s)-\bar{w}(s) \bigr\vert \biggr] \\ &\qquad {}+ \biggl\vert \biggl(\frac{x(1-cd)+cd\eta -\zeta}{[1-c(d+\zeta -\eta )]} \biggr) \biggr\vert \sum _{i=1}^{k} \biggl[\frac{K_{f}}{1-L_{f}} \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert w(s)- \bar{w}(s) \bigr\vert \,ds \\ &\qquad {}+M \bigl\vert w(s)-\bar{w}(s) \bigr\vert \biggr] \\ &\quad \leq \frac{K_{f}}{1-L_{f}} \frac{(x-x_{k})^{\beta}}{\Gamma{(\beta +1)}} \Vert w-\bar{w} \Vert \,ds + \sigma _{1} \frac{K_{f}}{1-L_{f}}\frac{(\eta -x_{k})^{\beta}}{\Gamma{(\beta +1)}} \Vert w-\bar{w} \Vert \,ds \\ &\qquad {}+\sigma _{2}\frac{K_{f}}{1-L_{f}} \frac{(\zeta -x_{k})^{\beta}}{\Gamma{(\beta +1)}} \Vert w-\bar{w} \Vert \,ds+ \sigma _{2} \vert d \vert \frac{K_{f}}{1-L_{f}} \frac{(1-x_{k})^{\beta -1}}{\Gamma{(\beta )}} \Vert w-\bar{w} \Vert \,ds \\ &\qquad {}+\sigma _{3}p \vert d \vert \biggl[\frac{K_{f}}{1-L_{f}} \frac{(x_{i}-x_{i-1})^{\beta -1}}{\Gamma{(\beta )}} \Vert w-\bar{w} \Vert \,ds+M \Vert w-\bar{w} \Vert \biggr] \\ &\qquad {}+\sigma _{4}p \biggl[\frac{K_{f}}{1-L_{f}} \frac{(x_{i}-x_{i-1})^{\beta -1}}{\Gamma{(\beta )}} \Vert w-\bar{w} \Vert \,ds+M \Vert w-\bar{w} \Vert \biggr] \\ &\quad \leq \biggl[\frac{K_{f}}{1-L_{f}}\frac{1}{\Gamma{(\beta +1)}}+ \sigma _{1} \frac{K_{f}}{1-L_{f}}\frac{1}{\Gamma{(\beta +1)}}+\sigma _{2} \frac{K_{f}}{1-L_{f}} \frac{1}{\Gamma{(\beta +1)}}+\sigma _{2} \vert d \vert \frac{K_{f}}{1-L_{f}} \frac{1}{\Gamma{(\beta )}} \\ &\qquad {}+\sigma _{3}p \vert d \vert \biggl(\frac{K_{f}}{1-L_{f}} \frac{1}{\Gamma{(\beta )}}+M \biggr)+\sigma _{4}p \biggl( \frac{K_{f}}{1-L_{f}} \frac{1}{\Gamma{(\beta )}}+M \biggr) \biggr] \Vert w- \bar{w} \Vert . \end{aligned}$$
Hence, we have
$$ \begin{aligned} &\Vert Tw-T\bar{w} \Vert \\ &\quad \leq \biggl[\frac{K_{f}}{1-L_{f}} \biggl( \frac{\sigma _{1}+\sigma _{2}+1}{\Gamma (\beta +1)}+ \frac{(\sigma _{2}+\sigma _{3}p) \vert d \vert +\sigma _{4}p}{\Gamma (\beta )} \biggr)+\bigl(\sigma _{3} \vert d \vert +\sigma _{4}\bigr)pM \biggr] \Vert w-\bar{w} \Vert . \end{aligned} $$
(13)
From (12), the operator T is a contraction. Therefore, according to Banach’s contraction principle, T has a unique fixed point that is the unique solution of problem (1). □
Our subsequent result is constructed on the Schaefer fixed-point theorem, consequently the following assumptions hold true:
- \((A_{4})\):
-
There exist \(a, b, c\in PC(\mathcal{J}, \mathcal{R})\), with
$$ a^{*}= \sup_{x\in [0, 1]}a(x), \qquad b^{*}= \sup_{x\in [0, 1]}b(x)$$
and
$$ c^{*}= \sup_{x\in [0, 1]} \bigl\vert c(x) \bigr\vert < 1$$
such that
$$ \bigl\vert f(x, w,\mathrm{z}_{w}) \bigr\vert \leq a(x)+ b(x) \bigl\vert w(x) \bigr\vert + c(x) \bigl\vert \mathrm{z}_{w}(x) \bigr\vert ,$$
for \(x\in \mathcal{J}\), \(w,\mathrm{z}_{w}\in PC(\mathcal{J}, \mathcal{R})\).
- \((A_{5})\):
-
The function \(\bar{I_{k}}: PC(\mathcal{J}, \mathcal{R})\rightarrow \mathcal{R}\) is continuous and there exist constants \(A^{*}, B^{*} > 0\), such that \(|\bar{I_{k}}w(x)|\leq A^{*}|w(x)|+ B^{*}\) for every \(w\in PC(\mathcal{J}, \mathcal{R})\), \(k= 1,\ldots, p\).
Theorem 3.2
If the hypotheses \((A_{1})\), \((A_{2})\), \((A_{4})\), and \((A_{5})\) hold, then the problem (1) has at least one solution.
Proof
We will use Schaefer’s theorem to establish our main result. The required proof consists of the following steps.
Step 1. T is continuous.
Let \(\{w_{n}\}\) be a sequence such that \(w_{n}\rightarrow w\) on \(PC(\mathcal{J}, \mathcal{R})\). For \(x\in \mathcal{J}\), one has
$$\begin{aligned} \bigl\vert Tw_{n}(x)-T w(x) \bigr\vert \leq & \int _{x_{k}}^{x} \frac{(x-s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert \mathrm{z}_{w}^{(n)}(s)-{ \mathrm{z}}_{w}(s) \bigr\vert \,ds \\ &{}+ \biggl\vert \frac{c(d+\zeta -x)}{[1-c(d+\zeta -\eta )]} \biggr\vert \int _{x_{k}}^{ \eta}\frac{(\eta -s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert \mathrm{z}_{w}^{(n)}(s)-{ \mathrm{z}}_{w}(s) \bigr\vert \,ds \\ &{}+ \biggl\vert \frac{1+c(\eta -x)}{[1-c(d+\zeta -\eta )]} \biggr\vert \biggl[ \int _{x_{k}}^{ \zeta}\frac{(\zeta -s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert \mathrm{z}_{w}^{(n)}(s)-{ \mathrm{z}}_{w}(s) \bigr\vert \,ds \\ &{}+ \vert d \vert \int _{x_{p}}^{1}\frac{(1-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}^{(n)}(s)-{\mathrm{z}}_{w}(s) \bigr\vert \,ds \biggr] \\ &{}+ \biggl\vert \frac{1-c(d+\zeta +x-\eta )}{[1-c(d+\zeta -\eta )]} \biggr\vert \sum _{i=1}^{p} \vert d \vert \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}^{(n)}(s)-{ \mathrm{z}}_{w}(s) \bigr\vert \,ds \\ &{}+ \bigl\vert \bar{I_{i}}\bigl(w_{n} \bigl(x_{i}^{-}\bigr)\bigr)-\bar{I_{i}}\bigl({w} \bigl(x_{i}^{-}\bigr)\bigr) \bigr\vert \biggr) \\ &{}+\sum_{i=1}^{k} \biggl\vert \biggl( \frac{x(1-cd)+cd\eta -\zeta}{[1-c(d+\zeta -\eta )]} \biggr) \biggr\vert \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}^{(n)}(s)-{ \mathrm{z}}_{w}(s) \bigr\vert \,ds \\ &{}+ \bigl\vert \bar{I_{i}}\bigl(x_{n} \bigl(x_{i}^{-}\bigr)\bigr)-\bar{I_{i}}\bigl({w} \bigl(x_{i}^{-}\bigr)\bigr) \bigr\vert \biggr), \end{aligned}$$
(14)
where \(\mathrm{z}_{w}^{(n)}(x), {\mathrm{z}}_{w}(x))\in PC(\mathcal{J}, \mathcal{R})\) are given by
$$\begin{aligned} \mathrm{z}_{w}^{(n)}(x) =& f\bigl(x, w_{n}(x), \mathrm{z}_{w}^{(n)}(x)\bigr). \end{aligned}$$
Now, from assumption \((A_{2})\), we have
$$\begin{aligned} \bigl\vert \mathrm{z}_{w}^{(n)}(x)-{\mathrm{z}}_{w}(x) \bigr\vert =& \bigl|f\bigl(x, w_{n}(x), \mathrm{z}_{w}^{(n)}(x) \bigr)-f(x, w(x), \mathrm{z}_{w}(x)\bigr| \\ \leq & K_{f} \Vert w_{n}-w \Vert + L_{f} \bigl\vert \mathrm{z}_{w}^{(n)}(x)-{\mathrm{z}}_{w}(x) \bigr\vert . \end{aligned}$$
Repeating this process, \(|\mathrm{z}_{w}^{(n)}(x)-{\mathrm{z}}_{w}(x)|\leq \frac{K_{f}}{1-L_{f}}\|w_{n}-w\|\), since \(w_{n}\rightarrow w\), \(\mathrm{z}_{w}^{(n)}(x)\rightarrow \mathrm{z}_{w}(x)\) as n tends to ∞ for each \(x\in \mathcal{J}\). Since the sequence is convergent and bounded, then there is \(\xi >0\) such that for each \(x\in \mathcal{J}\), we have \(|\mathrm{z}_{w}^{(n)}(x)|\leq \xi \) and \(|{\mathrm{z}}_{w}(x)|\leq \xi \). Then,
$$\begin{aligned} (x-s)^{\beta -1} \bigl\vert \mathrm{z}_{w}^{(n)}(x)-{ \mathrm{z}}_{w}(x) \bigr\vert \leq (x-s)^{ \beta -1}\bigl[ \bigl\vert \mathrm{z}_{w}^{(n)}(x) \bigr\vert + \bigl\vert { \mathrm{z}}_{w}(x) \bigr\vert \bigr] \leq 2\xi (x-s)^{ \beta -1} \end{aligned}$$
and
$$\begin{aligned} (x_{k}-s)^{\beta -1} \bigl\vert \mathrm{z}_{w}^{(n)}(x)-{ \mathrm{z}}_{w}(x) \bigr\vert \leq (x_{k}-s)^{\beta -1} \bigl[ \bigl\vert \mathrm{z}_{w}^{(n)}(x) \bigr\vert + \bigl\vert {\mathrm{z}}_{w}(x) \bigr\vert \bigr] \leq 2\xi (x_{k}-s)^{\beta -1}, \end{aligned}$$
for every \(x\in \mathcal{J}\) the functions \(s\rightarrow 2\xi (x-s)^{\beta -1}\) and \(s\rightarrow 2\xi (t_{k}-s)^{\beta -1}\) are integrable on \([0, 1]\). Using these facts and the Lebesgue dominated convergence theorem in (14) and using the assumptions \((A_{4})\) and \((A_{5})\), we see that
$$ \bigl\vert Tw_{n}(x)-Tw(x) \bigr\vert \rightarrow 0 \quad \text{as } n \text{ tends to } \infty ,$$
and hence
$$ \Vert Tw_{n}-Tw \Vert \rightarrow 0,\quad n \text{ tends to } \infty .$$
Therefore, an operator T is continuous.
Step 2. The operator T sends bounded sets into bounded sets of \(PC(\mathcal{J}, \mathcal{R})\). We prove that for any \(\eta ^{*}>0\) there exists a positive constant \(R^{*}\), such that for every \(w\in B=\{w\in PC(\mathcal{J},\mathcal{R}), \|w\|\leq \eta ^{*}\}\), we have \(\|Tw\|\leq R^{*}\). To derive this result for each \(x\in \mathcal{J}\), we have
$$\begin{aligned} \bigl\vert Tw(x) \bigr\vert \leq & \int _{x_{k}}^{x} \frac{(x-s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert \mathrm{z}_{w}(s) \bigr\vert \,ds \\ &{}+ \biggl\vert \frac{c(d+\zeta -x)}{[1-c(d+\zeta -\eta )]} \biggr\vert \int _{x_{k}}^{ \eta}\frac{(\eta -s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert \mathrm{z}_{w}(s) \bigr\vert \,ds \\ &{}+ \biggl\vert \frac{1+c(\eta -x)}{[1-c(d+\zeta -\eta )]} \biggr\vert \biggl[ \int _{x_{k}}^{ \zeta}\frac{(\zeta -s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert \mathrm{z}_{w}(s) \bigr\vert \,ds \\ &{}+ \vert d \vert \int _{x_{p}}^{1}\frac{(1-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}(s) \bigr\vert \,ds \biggr] \\ &{}+ \biggl\vert \frac{1-c(d+\zeta +x-\eta )}{[1-c(d+\zeta -\eta )]} \biggr\vert \sum _{i=1}^{p} \vert d \vert \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}(s) \bigr\vert \,ds \\ &{}+ \bigl\vert \bar{I_{i}}\bigl({w}\bigl(x_{i}^{-} \bigr)\bigr) \bigr\vert \biggr)+\sum_{i=1}^{k} \biggl\vert \biggl( \frac{x(1-cd)+cd\eta -\zeta}{[1-c(d+\zeta -\eta )]} \biggr) \biggr\vert \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}(s) \bigr\vert \,ds \\ &{}+ \bigl\vert \bar{I_{i}}\bigl({w}\bigl(t_{i}^{-} \bigr)\bigr) \bigr\vert \biggr). \end{aligned}$$
(15)
From \((A_{4})\), for every \(x\in \mathcal{J}\), we have
$$\begin{aligned} \bigl\vert \mathrm{z}_{w}(x) \bigr\vert =& \bigl\vert f \bigl(x, w(x),\mathrm{z}_{w}(x)\bigr) \bigr\vert \\ \leq & a(x)+ b(x) \bigl\vert w(x) \bigr\vert + c(x) \bigl\vert \mathrm{z}_{w}(x) \bigr\vert \\ \leq & a(x)+ b(x) \Vert w \Vert + c(x) \bigl\vert \mathrm{z}_{w}(x) \bigr\vert \\ \leq & a(x)+ b(x)\eta ^{*}+ c(x) \bigl\vert \mathrm{z}_{w}(x) \bigr\vert \\ \leq & a^{*}+ b^{*}\eta ^{*}+ c^{*} \bigl\vert \mathrm{z}_{w}(x) \bigr\vert . \end{aligned}$$
Then,
$$\begin{aligned} \bigl\vert \mathrm{z}_{w}(x) \bigr\vert \leq \frac{a^{*}+ b^{*}\eta ^{*}}{1-c^{*}}:=M^{*}. \end{aligned}$$
(16)
Thus, (15) implies
$$\begin{aligned} \bigl\vert Tw(x) \bigr\vert \leq &\frac{M^{*}}{\Gamma (\beta +1)}+ \frac{\sigma _{1}M^{*}}{\Gamma (\beta +1)}+ \frac{\sigma _{2}M^{*}}{\Gamma (\beta +1)}+ \frac{\sigma _{2} \vert d \vert M^{*}}{\Gamma (\beta )} \\ &{}+\frac{\sigma _{3}p \vert d \vert M^{*}}{\Gamma (\beta )}+\sigma _{3} \vert d \vert \bigl(A^{*} \eta ^{*}+B^{*}\bigr)+ \frac{p\sigma _{4}M^{*}}{\Gamma (\beta )}+p\sigma _{4}\bigl(A^{*} \eta ^{*}+B^{*}\bigr). \end{aligned}$$
Hence, one has
$$\begin{aligned}& \begin{aligned} \Vert Tw \Vert &\leq \frac{M^{*}(1+\sigma _{1}+\sigma _{2})}{\Gamma (\beta +1)}+ \frac{ \vert d \vert M^{*}(\sigma _{2}+\sigma _{3}p)+\sigma _{4}pM^{*}}{\Gamma (\beta )}+\bigl( \sigma _{3} \vert d \vert +\sigma _{4}p\bigr) \bigl(A^{*}\eta ^{*}+B^{*}\bigr)\\ &:=R^{*}, \end{aligned} \\& \Vert Tw \Vert \leq R^{*}. \end{aligned}$$
Therefore, T is bounded.
Step 3. T assigns bounded sets to equicontinuous sets of \(PC(\mathcal{J}, \mathcal{R})\). Let \(x_{1}, x_{2}\in \mathcal{J} \), \(x_{1}< x_{2}\), and B be a bounded set as in Step 2, and suppose \(w\in B\), then
$$\begin{aligned} \bigl\vert Tw(x_{2})-Tw(x_{1}) \bigr\vert \leq & \biggl\vert \int _{x_{k}}^{x_{2}} \frac{(x_{2}-s)^{\beta -1}}{\Gamma{(\beta )}} \mathrm{z}_{w}(s)\,ds- \int _{x_{k}}^{x_{1}}\frac{(x_{1}-s)^{\beta -1}}{\Gamma{(\beta )}} \mathrm{z}_{w}(s)\,ds \biggr\vert \\ &{}+ \biggl\vert \frac{(c(d+\zeta -x_{2}))-(c(d+\zeta -x_{1}))}{[1-c(d+\zeta -\eta )]} \biggr\vert \int _{x_{k}}^{\eta} \frac{(\eta -s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert \mathrm{z}_{w}(s) \bigr\vert \,ds \\ &{}+ \biggl\vert \frac{(1+c(\eta -x_{1}))-(1+c(\eta -x_{2}))}{[1-c(d+\zeta -\eta )]} \biggr\vert \biggl[ \int _{x_{k}}^{\zeta} \frac{(\zeta -s)^{\beta -1}}{\Gamma{(\beta )}} \bigl\vert \mathrm{z}_{w}(s) \bigr\vert \,ds \\ &{}+ \vert d \vert \int _{x_{p}}^{1}\frac{(1-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}(s) \bigr\vert \,ds \biggr] \\ &{}+ \biggl\vert \frac{(1-c(d+\zeta +x_{1}-\eta ))-(1-c(d+\zeta +x_{2}-\eta ))}{[1-c(d+\zeta -\eta )]} \biggr\vert \\ &{}\times \Biggl(\sum_{i=1}^{p} \vert d \vert \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}(s) \bigr\vert \,ds + \bigl\vert \bar{I_{i}} \bigl(w\bigl(x_{i}^{-}\bigr)\bigr) \bigr\vert \biggr) \Biggr) \\ &{}+\sum_{i=1}^{k} \biggl\vert \biggl( \frac{(x_{2}(1-cd)+cd\eta -\zeta )-(x_{1}(1-cd)+cd\eta -\zeta )}{[1-c(d+\zeta -\eta )]} \biggr) \biggr\vert \\ &{}\times \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \bigl\vert \mathrm{z}_{w}(s) \bigr\vert \,ds+ \bigl\vert \bar{I_{i}} \bigl({w}\bigl(x_{i}^{-}\bigr)\bigr) \bigr\vert \biggr). \end{aligned}$$
(17)
Using (16) in (17), we obtain
$$\begin{aligned} &\bigl\vert Tw(x_{2})-Tw(x_{1}) \bigr\vert \\ &\quad \leq \biggl[\frac{M^{*}}{\Gamma (\beta +1)} \biggr] \bigl((x_{2}-x_{k})^{\beta}-(x_{1}-x_{k})^{\beta} \bigr)+ \biggl[ \frac{cM^{*}(\eta -x_{k})^{\beta}}{[1-c(d+\zeta -\eta )]\Gamma (\beta +1)} \biggr](x_{2}-x_{1}) \\ &\qquad {}+ \biggl[ \frac{cM^{*}[(\zeta -x_{k})^{\beta}+d(1-x_{p})^{\beta}]}{\Gamma (\beta +1)} \biggr](x_{2}-x_{1})+ \biggl[ \frac{cM^{*}(\eta -x_{k})^{\beta}}{\Gamma (\beta +1)} \biggr](x_{2}-x_{1}) \\ &\qquad {}+\frac{1}{1-c(d+\zeta -\eta )} \biggl[ \frac{ M^{*}cd\sum_{i=1}^{p}(x_{i}-x_{i-1})^{\beta}}{\Gamma (\beta -1)}+c\bigl(A^{*} \eta ^{*}+B^{*}\bigr) \biggr](x_{2}-x_{1}) \\ &\qquad {}+\frac{(1-cd)}{1-c(d+\zeta -\eta )} \biggl[ \frac{M^{*}\sum_{i=1}^{k}(x_{i}-x_{i-1})^{\beta -1}}{\Gamma (\beta -1)}+A^{*} \eta ^{*}+B^{*} \biggr](x_{2}-x_{1}). \end{aligned}$$
(18)
Similarly, we can see that the right-hand side of the inequality (18) tends to 0 when \(x_{1}\rightarrow x_{2}\). Thus, \(|Tw(x_{2})-Tw(x_{1})|\rightarrow 0\) as \(x_{1}\rightarrow x_{2}\). As, T is bounded,
$$ \bigl\Vert Tw(x_{2})-Tw(x_{1}) \bigr\Vert \rightarrow 0 \quad \text{as } x_{1}\rightarrow x_{2}.$$
Hence, T is uniformly continuous and is relatively compact. Thus, in view of the Arzelà–Ascoli theorem, the operator \(T : PC(\mathcal{J}, \mathcal{R})\rightarrow PC(\mathcal{J}, \mathcal{R})\) is completely continuous.
Step 4. Finally, we will show that the set \(E= \{w\in PC(\mathcal{J}, \mathcal{R}): w=\phi T(w), \text{for some } 0<\phi <1\}\) is bounded. Suppose that \(w\in E\); then \(w=\phi T(w)\) for some \(0<\phi <1\). Therefore, for each \(x\in \mathcal{J}\), we have
$$\begin{aligned} \bigl\vert w(x) \bigr\vert =& \bigl\vert \phi T\bigl(w(x) \bigr) \bigr\vert \\ =& \Biggl\vert \phi \int _{x_{k}}^{x} \frac{(x-s)^{\beta -1}}{\Gamma{(\beta )}} \mathrm{z}_{w}(s)\,ds+\phi \biggl(\frac{c(d+\zeta -x)}{[1-c(d+\zeta -\eta )]} \biggr) \int _{x_{k}}^{ \eta}\frac{(\eta -s)^{\beta -1}}{\Gamma{(\beta )}} \mathrm{z}_{w}(s)\,ds \\ &{}-\phi \biggl(\frac{1+c(\eta -x)}{[1-c(d+\zeta -\eta )]} \biggr) \biggl[ \int _{x_{k}}^{\zeta}\frac{(\zeta -s)^{\beta -1}}{\Gamma{(\beta )}} \mathrm{z}_{w}(s)\,ds+d \int _{x_{p}}^{1} \frac{(1-s)^{\beta -2}}{\Gamma{(\beta -1)}} \mathrm{z}_{w}(s)\,ds \biggr] \\ &{}-\phi \biggl(\frac{1-c(d+\zeta +x-\eta )}{[1-c(d+\zeta -\eta )]} \biggr)\sum_{i=1}^{p}d \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \mathrm{z}_{w}(s)\,ds+ \bar{I_{i}}\bigl({w} \bigl(x_{i}^{-}\bigr)\bigr) \biggr) \\ &{}+\sum_{i=1}^{k}\phi \biggl( \frac{x(1-cd)+cd\eta -\zeta}{[1-c(d+\zeta -\eta )]} \biggr) \biggl( \int _{x_{i-1}}^{x_{i}} \frac{(x_{i}-s)^{\beta -2}}{\Gamma{(\beta -1)}} \mathrm{z}_{w}(s)\,ds+ \bar{I_{i}}\bigl({w} \bigl(x_{i}^{-}\bigr) \bigr)\biggr) \Biggr\vert . \end{aligned}$$
(19)
Now, using assumptions \((A_{4})\), \((A_{5})\), and (16), we have
$$\begin{aligned} & \Vert w \Vert \leq \frac{M^{*}(1+\sigma _{1}+\sigma _{2})}{\Gamma (\beta +1)}+ \frac{ \vert d \vert M^{*}(\sigma _{2}+\sigma _{3}p)+\sigma _{4}pM^{*}}{\Gamma (\beta )}+\bigl( \sigma _{3} \vert d \vert +\sigma _{4}p\bigr) \bigl(A^{*}\eta ^{*}+B^{*}\bigr):=Z^{*}, \\ & \Vert w \Vert \leq Z^{*}. \end{aligned}$$
Consequently, set E is bounded. From Schaefer’s theorem, we conclude that an operator T has a fixed point and hence the resultant problem (1) has at least one solution. □