2.1 Decomposition of the solution
Due to the weak damping term, we use time-dependent tubular coordinates in a neighborhood of solitary waves and skillfully represent solutions of the initial value problem (1.1) in the form (see also (1.13))
$$ u(x,t)=e^{-\epsilon t}u_{c(t)}(y)+v(y,t), $$
(2.1)
where
$$ y=y(x,t)=x- \int _{0}^{t} c(s)\,ds+\gamma (t) $$
(2.2)
and \(u_{c(t)}(y)\) belongs to the family of traveling waves.
In order to achieve exponential decay for the perturbation \(v(y,t)\) in the weighted space \(H^{1}_{a}\), we wish to impose the constraint that
$$ w(y,t)=e^{ay}v(y,t)\in \operatorname{range}(Q)= \operatorname{ker}(P), $$
(2.3)
where the projections P, Q are given in Proposition A.2 (see the Appendix). This requirement corresponds to the two scalar constraints \(\langle w, \eta _{k}\rangle =0\), \(k=1,2\), cf. (A.14), which follows the modulation equations, namely, two coupled first-order differential equations for \(c(t)\), \(\gamma (t)\) as \(t> 0\).
As this point, let us begin the proof of Theorem 1.1.
The solution \(u(x,t)\) of the initial problem (1.1) satisfies, for \(\forall t>0\),
$$ u\in C\bigl([0,t], H^{2}\bigr)\cap C^{1} \bigl([0,t], H^{-1}\bigr),\qquad e^{ax}u\in C\bigl([0,t],H^{1} \bigr) \cap C^{1}\bigl([0,t], H^{-3}\bigr). $$
(2.4)
Moreover, u is a classical solution of (1.1) for \(t>0\). Given the initial data in (1.11), if the perturbation \(\|v_{0}\|_{H^{1}_{a}}\) is sufficiently small, it is easy to prove decomposition (2.1) exists in [0,t], with \((\gamma , c)\in C^{1}([0,t], \mathbb{R}^{2})\).
We now derive evolution equations for \(\gamma (t)\), \(c(t)\), and \(v(y,t)\) that are valid pointwise for \(t>0\). Substituting (2.1) into (1.1), we have
$$\begin{aligned} 0={}&\partial _{t}u+\partial _{x}^{3} u+\partial _{x}\biggl(\frac{1}{2}u^{2}\biggr)+ \epsilon u \\ ={}& \bigl[\partial _{t}+\bigl(\dot{\gamma}-c(t)\bigr)\partial _{y}+\partial _{y}^{3} \bigr] \bigl(e^{-\epsilon t}u_{c(t)}(y)+v \bigr) \\ &{}+\partial _{y}\biggl[\frac{1}{2} \bigl(e^{-\epsilon t}u_{c(t)}(y)+v(y,t) \bigr)^{2}\biggr]+\epsilon \bigl(e^{-\epsilon t}u_{c(t)}(y)+v(y,t) \bigr) \\ ={}& \bigl(\partial _{t}+\bigl(\dot{\gamma}-c(t)\bigr)\partial _{y}+\partial _{y}^{3} \bigr)v+ \bigl(\partial _{t}+\bigl(\dot{\gamma}-c(t)\bigr)\partial _{y}+\partial _{y}^{3} \bigr)e^{-\epsilon t}u_{c(t)}(y) \\ &{}+\partial _{y} \biggl[\frac{1}{2} \bigl(e^{-\epsilon t}u_{c(t)}(y)+v(y,t) \bigr)^{2} \biggr]+\epsilon \bigl[e^{-\epsilon t}u_{c(t)}(y)+v(y,t) \bigr] \\ ={}& \bigl(\partial _{t}+\bigl(\dot{\gamma}-c(t)\bigr)\partial _{y}+\partial _{y}^{3} \bigr)v+ \bigl(\partial _{t}+\bigl(\dot{\gamma}-c(t)\bigr)\partial _{y}+\partial _{y}^{3} \bigr)e^{-\epsilon t}u_{c(t)}(y) \\ &{}+\partial _{y} \biggl[\frac{1}{2} \bigl(e^{-\epsilon t}u_{c(t)}(y)+v(y,t) \bigr)^{2} \biggr]+\epsilon e^{-\epsilon t}u_{c(t)}(y)+ \epsilon v(y,t) \\ ={}& \bigl(\partial _{t}+\bigl(\dot{\gamma}-c(t)\bigr)\partial _{y}+\partial _{y}^{3} \bigr)v+ \biggl\{ \dot{ \gamma}\partial _{y} e^{-\epsilon t}u_{c(t)}(y)-\epsilon e^{-\epsilon t}u_{c(t)}(y)+e^{-\epsilon t}\frac{\partial u}{\partial c} \dot{c}+e^{-\epsilon t}\partial _{t}u_{c(t)}(y) \\ &{}+\partial _{y}^{3}e^{-\epsilon t}u_{c(t)}(y) \biggr\} +\partial _{y} \biggl[\frac{1}{2} \bigl(e^{-\epsilon t}u_{c(t)}(y)+v(y,t) \bigr)^{2} \biggr]+\epsilon e^{-\epsilon t}u_{c(t)}(y)+ \epsilon v(y,t) \\ ={}& \bigl(\partial _{t}+\bigl(\dot{\gamma}-c(t)\bigr)\partial _{y}+\partial _{y}^{3} \bigr)v+\dot{\gamma} \partial _{y} e^{-\epsilon t}u_{c(t)}(y)+e^{-\epsilon t} \frac{\partial u}{\partial c}\dot{c} \\ &{}+e^{-\epsilon t} \bigl(\partial _{t}u_{c(t)}(y)+\partial _{y}^{3}u_{c(t)}(y) \bigr)+\partial _{y} \biggl[\frac{1}{2} \bigl(e^{-\epsilon t}u_{c(t)}(y)+v(y,t) \bigr)^{2} \biggr]+\epsilon v(y,t) \\ ={}& \bigl(\partial _{t}+\bigl(\dot{\gamma}-c(t)\bigr)\partial _{y}+\partial _{y}^{3} \bigr)v+\dot{\gamma} \partial _{y} e^{-\epsilon t}u_{c(t)}(y)+e^{-\epsilon t} \frac{\partial u}{\partial c}\dot{c} \\ &{}+e^{-\epsilon t}\partial _{y} \bigl( -c(t)u_{c(t)}(y)+ \partial _{y}^{2} u_{c(t)}(y) \bigr)+\partial _{y} \biggl[\frac{1}{2} \bigl(e^{-\epsilon t}u_{c(t)}(y)+v(y,t) \bigr)^{2} \biggr]+\epsilon v(y,t) \\ ={}& \bigl(\partial _{t}+\bigl(\dot{\gamma}-c(t)\bigr)\partial _{y}+\partial _{y}^{3} \bigr)v+\epsilon v(y,t)+ \dot{\gamma}\partial _{y} e^{-\epsilon t}u_{c(t)}(y)+e^{-\epsilon t} \frac{\partial u}{\partial c}\dot{c} \\ &{}+e^{-\epsilon t} \biggl(-\frac{1}{2}\partial _{y} \bigl(u_{c(t)}(y)\bigr)^{2} \biggr)+\partial _{y} \biggl[\frac{1}{2} \bigl(e^{-\epsilon t}u_{c(t)}(y)+v(y,t) \bigr)^{2} \biggr] \\ ={}& \bigl(\partial _{t}+\bigl(\dot{\gamma}-c(t)\bigr)\partial _{y}+\partial _{y}^{3} \bigr)v+\epsilon v(y,t)+ \partial _{y} (u_{c_{0}}v)+\dot{\gamma}\partial _{y} e^{-\epsilon t}u_{c(t)}(y)+e^{-\epsilon t} \frac{\partial u}{\partial c}\dot{c} \\ &{}+e^{-\epsilon t} \biggl(-\frac{1}{2}\partial _{y} \bigl(u_{c(t)}(y)\bigr)^{2} \biggr)+\partial _{y} \biggl[\frac{1}{2} \bigl(e^{-\epsilon t}u_{c(t)}(y)+v(y,t) \bigr)^{2} \biggr]-\partial _{y} (u_{c_{0}}v) \\ ={}& \bigl(\partial _{t}+\bigl(\dot{\gamma}-c(t)\bigr)\partial _{y}+\partial _{y}^{3} \bigr)v+\epsilon v(y,t)+ \partial _{y} (u_{c_{0}}v)+\dot{\gamma}\partial _{y} e^{-\epsilon t}u_{c(t)}(y)+e^{-\epsilon t} \frac{\partial u}{\partial c}\dot{c} \\ &{}+\partial _{y} \biggl[\frac{1}{2}e^{-2\epsilon t}u^{2}+e^{-\epsilon t}uv+ \frac{1}{2}v^{2}-e^{-\epsilon t}\frac{1}{2}u^{2}-u_{c_{0}}v \biggr]. \end{aligned}$$
(2.5)
Hence,
$$\begin{aligned} \partial _{t} v={}&\partial _{y} \bigl[- \partial _{y}^{2}+c_{0}-u_{c_{0}} \bigr]v-\epsilon v-e^{-\epsilon t} \biggl[\dot{\gamma}\partial _{y} u+\dot{c}\frac{\partial u}{\partial c} \biggr] \\ &{}-\partial _{y} \bigl[ \bigl(\dot{\gamma}-c(t)+c_{0} \bigr)v \bigr]-\partial _{y} \biggl[\frac{1}{2}e^{-2\epsilon t}u^{2}+e^{-\epsilon t}uv+ \frac{1}{2}v^{2}-e^{-\epsilon t}\frac{1}{2}u^{2}-u_{c_{0}}v \biggr]. \end{aligned}$$
(2.6)
Now, \(w(y,t)=e^{ay}v(y,t)\) satisfies (and set \(A_{a}=e^{ay}\partial _{y} L_{c_{0}}e^{-ay}\) with \(L_{c_{0}}=-\partial _{y}^{2}+c_{0}-u_{c_{0}}\))
$$ \partial _{t} w= A_{a} w-\epsilon w+ \mathfrak{F}, $$
(2.7)
where we write
$$\begin{aligned} \begin{aligned} \mathfrak{F}={}&{-}e^{-\epsilon t}e^{ay}(\dot{c}\partial _{c}+\dot{\gamma}\partial _{y})u_{c(t)}-\dot{ \gamma}e^{ay}\partial _{y} e^{-ay}w+\mathcal{F}, \\ \mathcal{F}={}&e^{ay}\partial _{y} \bigl(c(t)-c_{0} \bigr)e^{-ay}w-e^{ay}\partial _{y} \biggl[ \frac{1}{2}e^{-2\epsilon t}u^{2}-e^{-\epsilon t} \frac{1}{2}u^{2} \biggr]\\ &{}-e^{ay}\partial _{y} \biggl[e^{-\epsilon t}uv+\frac{1}{2}v^{2}-u_{c_{0}}v \biggr] \\ ={}&e^{ay}\partial _{y} \bigl(c(t)-c_{0} \bigr)e^{-ay}w-e^{ay}\partial _{y} \biggl[ \frac{1}{2}e^{-2\epsilon t}u^{2}-e^{-\epsilon t} \frac{1}{2}u^{2} \biggr] \\ &{}-e^{ay}\partial _{y} \biggl[e^{-\epsilon t}uv+ \frac{1}{2}v^{2}-e^{-\epsilon t}u_{c_{0}}v+ \bigl(e^{-\epsilon t}-1\bigr)u_{c_{0}}v \biggr]. \end{aligned} \end{aligned}$$
(2.8)
Meanwhile, (2.4) implies that this equation is initially justified in \(C([0,t], H^{-3})\), but also holds in \(C([0,t], L^{2})\) and moreover is pointwise. The constraint \(w\in \operatorname{range}(Q)\) in (2.3) now yields the following system of evolution equations for \((w,\gamma , c)\):
$$ \partial _{t} w=A_{a} w-\epsilon w+Q \mathfrak{F},\quad P\mathfrak{F}=0. $$
(2.9)
Written as an integral equation, the initial value problem for (2.9) becomes:
$$ w(t)=e^{(A_{a}-\epsilon )t}w(0)+ \int _{0}^{t} e^{(A_{a}-\epsilon )(t-s)}Q \mathfrak{F}(s) \,ds. $$
(2.10)
The equation \(P\mathfrak{F}=0\) yields equations for γ̇, ċ as follows. Introduce the notation
$$\begin{aligned} \begin{aligned} &e_{1}(y,t)=e^{ay}\bigl(\partial _{y} u_{c(t)}(y)-\partial _{y} u_{c_{0}}(y)\bigr), \\ &e_{2}(y,t)=e^{ay}\bigl(\partial _{c} u_{c(t)}(y)-\partial _{c} u_{c_{0}}(y)\bigr), \end{aligned} \end{aligned}$$
(2.11)
and note that \(\langle e^{ay}\partial _{y} e^{-ay}w, \eta _{k}\rangle =-\langle v, \partial _{y} \tilde{\eta}_{k}\rangle \) for \(k=1,2\), by integration by parts. Then, by (A.14), the condition \(P\mathfrak{F}=0\) is equivalent to
$$ 0= \bigl\langle \dot{\gamma} \bigl[e^{-\epsilon t}(\xi _{1}+e_{1})+( \partial _{y}-a)w \bigr]+ \dot{c}e^{-\epsilon t}(\xi _{2}+e_{2})- \mathcal{F}, \eta _{k} \bigr\rangle ,\quad k=1,2. $$
(2.12)
Using the biorthogonality relation \(\langle \xi _{j}, \eta _{k}\rangle =\delta _{jk}\), we obtain a system of equations for \(\gamma (t)\) and \(c(t)\):
$$\begin{aligned} \mathfrak{A}(t) \begin{pmatrix} \dot{\gamma}\\ \dot{c} \end{pmatrix}= \begin{pmatrix} \langle \mathcal{F},\eta _{1}\rangle \\ \langle \mathcal{F},\eta _{2}\rangle \end{pmatrix} \end{aligned}$$
(2.13)
and
(2.14)
The matrix \(\mathfrak{A}(t)\) satisfies
$$ \mathfrak{A}(t)=e^{-\epsilon t}I+O\bigl( \bigl\vert c(t)-c_{0} \bigr\vert + \Vert v \Vert _{L^{2}}\bigr)\quad \text{as } \bigl\vert c(t)-c_{0} \bigr\vert + \Vert v \Vert _{L^{2}}\rightarrow 0. $$
(2.15)
In order to obtain reversibility of the matrix \(\mathfrak{A}(t)\), in some sense, we need the term \(e^{-\epsilon t}I\approx I\). In other words, it is possible to consider stability in the long-time period \(0\leqslant t\leqslant T=O(\frac{1}{\epsilon ^{\tau}})\) (given in (2.35)) instead of the long time “\(t\rightarrow +\infty \)”. Otherwise, \(e^{-\epsilon t}I\rightarrow 0\) as \(t\rightarrow +\infty \).
2.2 The long-time behavior
In order to complete the proof of Theorem 1.1. It remains to establish the priori estimates from the evolution equations in (2.10)–(2.13). We have
Proposition 2.1
There exist \(\delta _{*}>0\), \(\epsilon _{0}>0\), \(C>0\) such that, if the decomposition (2.10), (2.11), and (2.12) exists for \(0\leqslant t\leqslant T=O(\frac{1}{\epsilon ^{\tau}})\) with \(0<\epsilon \ll 1, \tau <\frac{1}{2}\) and satisfies
$$ e^{\epsilon t} \bigl\Vert w(t) \bigr\Vert _{H^{1}}+ \bigl\vert c(t)-c_{0} \bigr\vert + \bigl\Vert v(\cdot , t) \bigr\Vert _{H^{1}} \leqslant \delta _{*},\quad 0\leqslant t \leqslant T=O\biggl( \frac{1}{\epsilon ^{\tau}}\biggr), $$
(2.16)
and if the perturbation \(\|v_{0}\|_{H^{1}}+\|v_{0}\|_{H_{a}^{1}}<\epsilon <\epsilon _{0}\) in (1.11), then
$$\begin{aligned} \begin{aligned} &e^{\epsilon t} \bigl\Vert w(t) \bigr\Vert _{H^{1}} \leqslant C\epsilon ,\quad 0\leqslant t\leqslant T=O\biggl(\frac{1}{\epsilon ^{\tau}}\biggr), \\ &e^{(\epsilon ^{\tau}+\epsilon ) t} \bigl\Vert w(t) \bigr\Vert _{H^{1}}\leqslant C \epsilon ^{1-\tau}, \quad0\leqslant t\leqslant T=O\biggl(\frac{1}{\epsilon ^{\tau}} \biggr), \\ &\bigl\vert c(t)-c_{0} \bigr\vert \leqslant C\epsilon ^{1-2\tau},\quad 0\leqslant t\leqslant T=O\biggl(\frac{1}{\epsilon ^{\tau}}\biggr), \\ &\bigl\vert \gamma (t)-\gamma _{0} \bigr\vert \leqslant C \epsilon ^{1-2\tau},\quad 0\leqslant t\leqslant T=O\biggl(\frac{1}{\epsilon ^{\tau}} \biggr), \\ &\bigl\Vert v(\cdot , t) \bigr\Vert _{H^{1}}\leqslant C\epsilon ^{1-2\tau},\quad 0\leqslant t\leqslant T=O\biggl(\frac{1}{\epsilon ^{\tau}}\biggr). \end{aligned} \end{aligned}$$
(2.17)
Proof
The proof follows the two stages as given in Proposition 4.1 in Ref. [9] but with different detailed estimates.
(i) Local energy-decay estimate: Estimates of the weighted perturbation, \(w(y,t)=e^{ay}v(y,t)\), in \(H^{1}\), via the integral equation (2.10), the modulation equation (2.13), and the linear semigroup estimates of Lemma A.2 (see the Appendix).
If \(\delta _{*}\) is sufficiently small and \(0\leqslant t\leqslant T=O(\frac{1}{\epsilon ^{\tau}})\), then \(\mathfrak{A}(t)\) defined in (2.13) has a bounded inverse, so we may estimate (2.13) to find
$$ \vert \dot{\gamma} \vert + \vert \dot{c} \vert \leqslant C \Vert \mathcal{F} \Vert _{L^{2}}. $$
(2.18)
From (2.8), using that \(e^{ay}\partial _{y} e^{-ay}=\partial _{y}-a\) and the expression (1.4) (or the following estimate (3.19)), we obtain the estimates
$$\begin{aligned} \begin{aligned}&\Vert \mathfrak{F} \Vert \leqslant C \bigl( \vert \dot{ \gamma} \vert \bigl(1+ \Vert w \Vert _{H^{1}}\bigr) \bigr)+ \vert \dot{c} \vert + \Vert \mathcal{F} \Vert _{L^{2}}\leqslant C\bigl(1+ \Vert w \Vert _{H^{1}}\bigr) \Vert \mathcal{F} \Vert _{L^{2}}, \\ &\Vert \mathcal{F} \Vert _{L^{2}}\leqslant C \bigl[ \bigl( \bigl\vert c(t)-c_{0} \bigr\vert + \Vert v \Vert _{H^{1}}+ \bigl(1-e^{-\epsilon t}\bigr) \bigr) \Vert w \Vert _{H_{1}}+ \bigl(e^{-\epsilon t}-e^{-2\epsilon t}\bigr) \bigr] \\ &\phantom{\Vert \mathcal{F} \Vert _{L^{2}}}\leqslant C \bigl(\delta _{*}+\bigl(1-e^{-\epsilon t}\bigr) \bigr) \Vert w \Vert _{H^{1}}+C\bigl(e^{-\epsilon t}-e^{-2\epsilon t} \bigr). \end{aligned} \end{aligned}$$
(2.19)
Now, we may choose \(b, b'\) with \(b+\epsilon < b'+\epsilon < a(c-a^{2})+\epsilon \), such that \(b, b'\), satisfies the condition of Lemma A.2. We may then estimate (2.10) as follows, for \(t> 0\):
$$\begin{aligned} & \bigl\Vert w(t) \bigr\Vert _{H^{1}} \\ &\quad\leqslant Ce^{-(b'+\epsilon )t} \bigl\Vert w(0) \bigr\Vert _{H^{1}}+C \int _{0}^{t}(t-s)^{-1/2}e^{-(b'+\epsilon )(t-s)} \Vert \mathcal{F} \Vert _{L^{2}}\,ds \\ &\quad\leqslant Ce^{-(b'+\epsilon )t} \bigl\Vert w(0) \bigr\Vert _{H^{1}} +C \int _{0}^{t}(t-s)^{-1/2}e^{-(b'+\epsilon )(t-s)}(1+ \delta _{*}) \\ &\qquad{}\times \bigl[ \bigl(\delta _{*}+ \bigl(1-e^{-\epsilon s}\bigr) \bigr) \bigl\Vert w(s) \bigr\Vert _{H^{1}}+\bigl(e^{-\epsilon s}-e^{-2\epsilon s }\bigr) \bigr]\,ds. \end{aligned}$$
(2.20)
Now, define
$$ M_{w,b}(t)=\sup_{0\leqslant s\leqslant t}e^{(b+\epsilon )s} \bigl\Vert w(s) \bigr\Vert _{H^{1}}, $$
(2.21)
where the variable b is constrained in Remark A.1 (see the Appendix).
Then, multiplying (2.20) by \(e^{(b+\epsilon )t}\), we find, for \(t>0\),
$$\begin{aligned} &e^{(b+\epsilon )t} \bigl\Vert w(t) \bigr\Vert _{H^{1}} \\ &\quad\leqslant Ce^{(b+\epsilon )t}e^{-(b'+\epsilon )t} \bigl\Vert w(0) \bigr\Vert _{H^{1}} \\ &\qquad{}+C \int _{0}^{t}(t-s)^{-1/2}e^{-(b'+\epsilon )(t-s)}(1+ \delta _{*}) \bigl(\delta _{*}+\bigl(1-e^{-\epsilon s} \bigr) \bigr)e^{(b+\epsilon )t} \bigl\Vert w(s) \bigr\Vert _{H^{1}}\,ds \\ &\qquad{}+C \int _{0}^{t}(t-s)^{-1/2}e^{-(b'+\epsilon )(t-s)}e^{(b+\epsilon )t} \bigl(e^{-\epsilon s}-e^{-2\epsilon s }\bigr)\,ds \\ &\quad\leqslant Ce^{-(b'-b)t} \bigl\Vert w(0) \bigr\Vert _{H^{1}} \\ &\qquad{}+C \int _{0}^{t}(t-s)^{-1/2}e^{-(b'+\epsilon )(t-s)}(1+ \delta _{*}) \bigl(\delta _{*}+\bigl(1-e^{-\epsilon s} \bigr) \bigr)e^{(b+\epsilon )(t-s)}e^{(b+\epsilon )s} \bigl\Vert w(s) \bigr\Vert _{H^{1}}\,ds \\ &\qquad{} +C \int _{0}^{t}(t-s)^{-1/2}e^{-(b'+\epsilon )(t-s)}e^{(b+\epsilon )t} \bigl(e^{-\epsilon s}-e^{-2\epsilon s }\bigr)\,ds \\ &\quad\leqslant C \bigl\Vert w(0) \bigr\Vert _{H^{1}}+C\delta _{*}M_{w,b}(t) \int _{0}^{t}(t-s)^{-1/2}e^{-(b'-b))(t-s)} \,ds \\ &\qquad{}+C \int _{0}^{t}(t-s)^{-1/2}e^{-(b'+\epsilon )(t-s)} \bigl(1-e^{-\epsilon s}\bigr)e^{(b+\epsilon )(t-s)}e^{(b+\epsilon )s} \bigl\Vert w(s) \bigr\Vert _{H^{1}}\,ds \\ &\qquad{}+C \int _{0}^{t}(t-s)^{-1/2}e^{-(b'+\epsilon )(t-s)}e^{(b+\epsilon )t} \bigl(e^{-\epsilon s}-e^{-2\epsilon s }\bigr)\,ds \\ &\quad\leqslant C \bigl\Vert w(0) \bigr\Vert _{H^{1}}+C\delta _{*}M_{w,b}(t) \int _{0}^{t}(t-s)^{-1/2}e^{-(b'-b))(t-s)} \,ds \\ &\qquad{}+CM_{w,b}(t) \int _{0}^{t}(t-s)^{-1/2}e^{-(b'-b)(t-s)} \bigl(1-e^{-\epsilon s}\bigr)\,ds \\ &\qquad{}+C \int _{0}^{t}(t-s)^{-1/2}e^{-(b'+\epsilon )(t-s)}e^{(b+\epsilon )t} \bigl(e^{-\epsilon s}-e^{-2\epsilon s }\bigr)\,ds. \end{aligned}$$
(2.22)
It is sufficient to estimate the terms \(\mathcal{A}(\epsilon )\triangleq \int _{0}^{t}(t-s)^{-1/2}e^{-(b'-b)(t-s)}(1-e^{- \epsilon s})\,ds\) and \(\mathcal{B}_{b}(\epsilon )\triangleq \int _{0}^{t}(t-s)^{-1/2}e^{-(b'+ \epsilon )(t-s)}e^{(b+\epsilon )t}(e^{-\epsilon s}-e^{-2\epsilon s })\,ds\) in (2.22) above. We first deal with the latter term \(\mathcal{B}_{b}(\epsilon )\).
$$\begin{aligned} \mathcal{B}_{b}(\epsilon )={}& \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'+\epsilon )(t-s)}e^{(b+\epsilon )t} \bigl(e^{-\epsilon s}-e^{-2\epsilon s }\bigr)\,ds \\ ={}& \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-b)(t-s)}e^{(b+\epsilon )s} \bigl(e^{-\epsilon s}-e^{-2\epsilon s }\bigr)\,ds \\ ={}& \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-b)(t-s)}e^{bs} \bigl(1-e^{-\epsilon s}\bigr)\,ds. \end{aligned}$$
(2.23)
If we set \(b=0\) in (2.23), \(\mathcal{B}_{b=0}(\epsilon )=\mathcal{A}(\epsilon )\). The substitution \(t-s=\ell \) yields
$$\begin{aligned} \mathcal{B}_{b=0}(\epsilon )={}&\mathcal{A}(\epsilon )= \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-b)(t-s)} \bigl(1-e^{-\epsilon s}\bigr)\,ds \\ ={}& \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-0)(t-s)} \bigl(1-e^{-\epsilon s}\bigr)\,ds \\ ={}& \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-b'(t-s)} \bigl(1-e^{-\epsilon s}\bigr)\,ds \\ ={}& \int _{0}^{t} \ell ^{-\frac{1}{2}}e^{-b'\ell} \bigl(1-e^{-\epsilon t}e^{\epsilon \ell}\bigr)\,d\ell . \end{aligned}$$
(2.24)
Considering the long-time point \(t\triangleq T_{0}(=O(\frac{\tau}{\epsilon}))\) in the first instance, we have
$$\begin{aligned} & \int _{0}^{T_{0}} \ell ^{-\frac{1}{2}}e^{-b'\ell} \bigl(1-e^{-\epsilon t}e^{\epsilon \ell}\bigr)\,d\ell \\ &\quad\approx \int _{0}^{\frac{\tau}{\epsilon}} \ell ^{-\frac{1}{2}}e^{-b'\ell} \bigl(1-e^{-\epsilon \cdot \frac{\tau}{\epsilon}}e^{\epsilon \ell}\bigr)\,d\ell \\ &\quad= \int _{0}^{\frac{\tau}{\epsilon}} \ell ^{-\frac{1}{2}}e^{-b'\ell} \bigl(1-e^{-\tau}e^{\epsilon \ell}\bigr)\,d\ell \quad \text{fix } s= \epsilon \ell \\ &\quad= \int _{0}^{\tau} \biggl(\frac{s}{\epsilon} \biggr)^{-\frac{1}{2}}e^{-b'\frac{s}{\epsilon}}\bigl(1-e^{-\tau}e^{s} \bigr)\frac{1}{\epsilon}\,ds \\ &\quad= \int _{0}^{\tau} s^{-\frac{1}{2}}e^{-\frac{b'}{\epsilon}s} \bigl(1-e^{-\tau}e^{s}\bigr)\epsilon ^{-\frac{1}{2}} \,ds. \end{aligned}$$
(2.25)
Due to \(\lim_{\epsilon \rightarrow 0^{+}}e^{-\frac{b'}{\epsilon} \tau}\epsilon ^{-\frac{1}{2}}=0\), integrating (2.25) by parts, we have
$$\begin{aligned} 0&\leqslant \lim_{\epsilon \rightarrow 0^{+}} \int _{0}^{\tau} s^{-\frac{1}{2}}e^{-\frac{b'}{\epsilon}s} \bigl(1-e^{-\tau}e^{s}\bigr)\epsilon ^{-\frac{1}{2}} \,ds \\ &\leqslant \lim_{\epsilon \rightarrow 0^{+}} 2\epsilon ^{-\frac{1}{2}} \int _{0}^{\tau} s^{-\frac{1}{2}}e^{-\frac{b'}{\epsilon}s}\,ds \\ &=\lim_{\epsilon \rightarrow 0^{+}} \epsilon ^{-\frac{1}{2}} \biggl\{ s^{\frac{1}{2}}e^{-\frac{b'}{\epsilon}s}| ^{\tau}_{0}+ \frac{b'}{\epsilon} \int _{0}^{\tau} s^{\frac{1}{2}}e^{-\frac{b'}{\epsilon}s}\,ds \biggr\} \\ &=\lim_{\epsilon \rightarrow 0^{+}}b'\epsilon ^{-\frac{3}{2}} \int _{0}^{\tau} s^{\frac{1}{2}}e^{-\frac{b'}{\epsilon}s}\,ds = 0, \end{aligned}$$
(2.26)
where the last inequality follows from the monotone theorem and the fact that \(\lim_{\epsilon \rightarrow 0^{+}}s^{\frac{1}{2}}e^{- \frac{b'}{\epsilon}s} \epsilon ^{-\frac{3}{2}}=0, \forall s\in [0, \tau ]\).
After derivation to ϵ of \(\mathcal{B}_{b=0}(\epsilon )\) defined in (2.24), we have
$$\begin{aligned} \mathcal{B}'_{b=0}(\epsilon )= \int _{0}^{\tau} s^{-\frac{1}{2}}e^{-\frac{b'}{\epsilon}s} \bigl(1-e^{-\tau}e^{s}\bigr)\epsilon ^{-\frac{3}{2}} \,ds- \int _{0}^{\tau} s^{-\frac{1}{2}}e^{-\frac{b'}{\epsilon}s} \bigl(1-e^{-\tau}e^{s}\bigr)\epsilon ^{-\frac{5}{2}} \cdot b's\,ds. \end{aligned}$$
(2.27)
Similarly, as (2.25) and (2.26), it is easy to deduce
$$ \lim_{\epsilon \rightarrow 0^{+}}\mathcal{B}'_{b=0}( \epsilon )=0. $$
(2.28)
Therefore, one can deduce
$$ \bigl\vert \mathcal{B}_{b=0}(\epsilon ) \bigr\vert \leqslant C(m)\epsilon ^{m}, \quad\forall m\in \mathbb{N}. $$
(2.29)
Hence, inserting (2.29) into (2.22), we have for \(b=0\),
$$ e^{(b+\epsilon ) t} \bigl\Vert w(t) \bigr\Vert _{H^{1}}=e^{\epsilon t} \bigl\Vert w(t) \bigr\Vert _{H^{1}} \leqslant C \bigl\Vert w(0) \bigr\Vert _{H^{1}}+C\bigl(\delta _{*}+\epsilon ^{m}\bigr) M_{w,b=0}(T_{0})+C(m) \epsilon ^{m}. $$
(2.30)
Taking the supremum over \(0\leqslant t\leqslant T_{0}(=O(\frac{\tau}{\epsilon}))\), we find that if \(\delta _{*}\) is sufficient small, then
$$ M_{w,b=0}(T_{0})=\sup_{0\leqslant t\leqslant T_{0}}e^{\epsilon t} \bigl\Vert w(t) \bigr\Vert _{H^{1}}\leqslant C \bigl\Vert w(0) \bigr\Vert _{H^{1}}+C(m)\epsilon ^{m}. $$
(2.31)
Next, we estimate \(|c(t)-c_{0}|\). Using (2.18) and (2.31), we find that
$$\begin{aligned} & \bigl\vert c(t)-c_{0} \bigr\vert \\ & \quad\leqslant \bigl\vert c(0)-c_{0} \bigr\vert + \int _{0}^{t} \bigl\vert \dot{c}(s) \bigr\vert \,ds \\ &\quad\leqslant \bigl\vert c(0)-c_{0} \bigr\vert + \int _{0}^{t}C \bigl[ \bigl( \bigl\vert c(t)-c_{0} \bigr\vert + \Vert v \Vert _{H^{1}}+ \bigl(1-e^{-\epsilon s}\bigr) \bigr) \Vert w \Vert _{H_{1}}+ \bigl(e^{-\epsilon s}-e^{-2\epsilon s}\bigr) \bigr]\,ds \\ &\quad\leqslant \bigl\vert c(0)-c_{0} \bigr\vert +C \biggl(\delta _{*}+ \int _{0}^{t}\bigl(e^{-\epsilon s}-e^{-2\epsilon s} \bigr)\,ds \biggr)M_{w,b=0}(t)+ \int _{0}^{t}\bigl(e^{-\epsilon s}-e^{-2\epsilon s} \bigr)\,ds \\ &\quad\leqslant \bigl\vert c(0)-c_{0} \bigr\vert +C \biggl(\delta _{*}+ \frac{e^{-2\epsilon t}-2e^{-\epsilon t}+1}{2\epsilon} \biggr) M_{w,b=0}(t)+ \frac{e^{-2\epsilon t}-2e^{-\epsilon t}+1}{2\epsilon}. \end{aligned}$$
(2.32)
For fixed t, we have
$$ \lim_{\epsilon \rightarrow 0^{+}} \frac{e^{-2\epsilon t}-2e^{-\epsilon t}+1}{2\epsilon}=0. $$
(2.33)
However, if we consider (2.33) on the long-time point \(T_{0}(=O(\frac{\tau}{\epsilon}))\), we know that
$$ \lim_{\epsilon \rightarrow 0^{+}} \frac{e^{-2\epsilon T_{0}}-2e^{-\epsilon T_{0}}+1}{2\epsilon}=\lim _{\epsilon \rightarrow 0^{+}} \frac{e^{-2\tau}-2e^{-\tau}+1}{2\epsilon}=\infty . $$
(2.34)
To obtain a small estimate \(|c(t)-c_{0}|\), we need to consider the more appropriate long-time point \(t\triangleq T(=O(\frac{1}{\epsilon ^{\tau}})) \) (clearly, \(< T_{0}\)). Meanwhile, the estimates (2.24)–(2.31) are still valid in the short long-time period \(0\leqslant t\leqslant T(=O(\frac{1}{\epsilon ^{\tau}}))\).
By calculating, in the new long-time point \(t\triangleq T(=O(\frac{1}{\epsilon ^{\tau}}))\), one can deduce that
$$\begin{aligned} \lim_{\epsilon \rightarrow 0^{+}} \int _{0}^{T}\bigl(e^{-\epsilon s}-e^{-2\epsilon s} \bigr)\,ds \approx {}&\lim_{\epsilon \rightarrow 0^{+}} \int _{0}^{\frac{1}{\epsilon ^{\tau}}}\bigl(e^{-\epsilon s}-e^{-2\epsilon s} \bigr)\,ds \\ ={}&\lim_{\epsilon \rightarrow 0^{+}}\frac{e^{-2\epsilon ^{1-\tau}}-2e^{-\epsilon ^{1-\tau}}+1}{2\epsilon} \\ ={}&\lim_{\epsilon \rightarrow 0^{+}}\frac{(1-\tau )e^{-\epsilon ^{1-\tau}}(1-e^{-\epsilon ^{1-\tau}})}{\epsilon ^{\tau}} \\ ={}&\lim_{\epsilon \rightarrow 0^{+}}\frac{(1-\tau )(1-e^{-\epsilon ^{1-\tau}})}{\epsilon ^{\tau}} \\ ={}&\lim_{\epsilon \rightarrow 0^{+}}\frac{(1-\tau )^{2}(e^{-\epsilon ^{1-\tau}})}{\epsilon ^{2\tau -1}} \\ ={}&\lim_{\epsilon \rightarrow 0^{+}}(1-\tau )^{2}\bigl(e^{-\epsilon ^{1-\tau}} \bigr)\epsilon ^{1-2\tau}. \end{aligned}$$
(2.35)
Obviously, it is sufficient to choose \(\tau <\frac{1}{2}\) such that \(\lim_{\epsilon \rightarrow 0^{+}}\int _{0}^{ \frac{1}{\epsilon ^{\tau}}}(e^{-2\epsilon s}-e^{-\epsilon s})\,ds=0\). Similarly, the fourth estimate of (2.17) holds.
Conversely, in the new long-time period \(0\leqslant t\leqslant T(=O(\frac{1}{\epsilon ^{\tau}}))\), we return to estimate the term \(\mathcal{B}_{b}(\epsilon )\) with choosing \(b=\epsilon ^{\tau}\) in (2.23) instead of \(b=0\) in (2.24). This supplies that the quantity \(e^{(\epsilon ^{\tau}+\epsilon )t}\|w(t)\|_{H^{1}}\) (i.e., (2.22) with \(b=\epsilon ^{\tau}\)) has more exponential weight decay than \(e^{\epsilon t}\|w(t)\|_{H^{1}}\), (i.e., (2.22) with \(b=0\)), that is
$$\begin{aligned} \mathcal{B}_{b=\epsilon ^{\tau}}(\epsilon )={}& \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'+\epsilon )(t-s)}e^{(b+\epsilon )t} \bigl(e^{-\epsilon s}-e^{-2\epsilon s }\bigr)\,ds \\ ={}& \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-b)(t-s)}e^{(b+\epsilon )s} \bigl(e^{-\epsilon s}-e^{-2\epsilon s }\bigr)\,ds \\ ={}& \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-b)(t-s)}e^{bs} \bigl(1-e^{-\epsilon s}\bigr)\,ds \\ ={}& \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})(t-s)}e^{\epsilon ^{\tau}s} \bigl(1-e^{-\epsilon s}\bigr)\,ds. \end{aligned}$$
(2.36)
Due to \(\epsilon ^{\tau}\ll b'\) and \(0\leqslant t\leqslant T(=O(\frac{1}{\epsilon ^{\tau}}))\), by the Hölder inequality and the mean value principle, we have
$$\begin{aligned} \mathcal{B}_{b=\epsilon ^{\tau}}(\epsilon ) ={}& \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})(t-s)}e^{\epsilon ^{\tau}s} \bigl(1-e^{-\epsilon s}\bigr)\,ds \\ ={}& \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})(t-s)}e^{\epsilon ^{\tau}s} \bigl(e^{-\epsilon \cdot 0}-e^{-\epsilon s}\bigr)\,ds \\ \leqslant {}& C \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})(t-s)} \,ds \cdot \sup_{s\in [0,t]}\bigl(e^{-\epsilon \cdot 0}-e^{-\epsilon s} \bigr) \\ \leqslant {}& C \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})(t-s)} \,ds \cdot \epsilon e^{-\epsilon \xi}s \\ \leqslant {}& C_{1} \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})(t-s)} \,ds \cdot \epsilon s \\ ={}& C_{1} \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})(t-s)} \,ds \cdot \epsilon ^{1-\tau}. \end{aligned}$$
(2.37)
Also, the substitution \(t-s=\ell \) follows
$$\begin{aligned} & \int _{0}^{t} (t-s)^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})(t-s)} \,ds \\ &\quad= \int _{0}^{t} \ell ^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})\ell} \,ds \\ &\quad= \int _{0}^{1} \ell ^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})\ell} \,ds+ \int _{1}^{t} \ell ^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})\ell} \,ds \\ &\quad\leqslant \int _{0}^{1} \ell ^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})\ell} \,ds+ \int _{1}^{\infty} \ell ^{-\frac{1}{2}}e^{-(b'-\epsilon ^{\tau})\ell} \,ds \\ &\quad\leqslant \int _{0}^{1} \ell ^{-\frac{1}{2}}\,ds+ \int _{1}^{\infty} e^{-(b'-\epsilon ^{\tau})\ell}\,ds \\ &\quad=2+\frac {1}{b'-\epsilon ^{\tau}}e^{-(b'-\epsilon ^{\tau})}. \end{aligned}$$
(2.38)
Hence, by (2.36), (2.37), and (2.38), we have
$$ \mathcal{B}_{b=\epsilon ^{\tau}}(\epsilon )\leqslant C \epsilon ^{1- \tau}. $$
(2.39)
Hence, inserting (2.39) into (2.22), we have, for \(b=\epsilon ^{\tau}\),
$$ e^{(\epsilon ^{\tau}+\epsilon ) t} \bigl\Vert w(t) \bigr\Vert _{H^{1}} \leqslant C \bigl\Vert w(0) \bigr\Vert _{H^{1}}+C\bigl( \delta _{*}+\epsilon ^{m}\bigr) M_{w,b=\epsilon ^{\tau}}(T)+C\epsilon ^{1- \tau}. $$
(2.40)
Taking the supremum over \(0\leqslant t\leqslant T(=O(\frac{1}{\epsilon ^{\tau}}))\), we find that if \(\delta _{*}\) is sufficient small, then
$$ M_{w,b=\epsilon ^{\tau}}(T)=\sup_{0\leqslant t\leqslant T}e^{( \epsilon ^{\tau}+\epsilon ) t} \bigl\Vert w(t) \bigr\Vert _{H^{1}}\leqslant C \bigl\Vert w(0) \bigr\Vert _{H^{1}}+C \epsilon ^{1-\tau}. $$
(2.41)
Remark 2.1
In some sense, there is a balance between the long-time point \(T=O(\frac{1}{\epsilon ^{\tau}})\) and the exponent weight \(b=\epsilon ^{\tau}\). In other words, if the long-time point is smaller, then the exponent weight of decay is larger. Here, we cannot obtain the exponent weight of decay \(e^{-a(c-a^{2})t}\) as in Ref. [9] due to perturbation estimates (2.23) and (2.36) caused by the weakly damped term.
Proof
(ii) \(H^{1}\) estimate: We make use of the damping quantity
$$ \mathcal{E}(u)=\mathcal{H}(u)+c_{0} \mathcal{I}(u)= \int _{-\infty}^{ \infty}\frac{1}{2}(\partial _{x} u)^{2}\,dx- \int _{-\infty}^{\infty} \frac{1}{6}u^{3} \,dx+ \int _{-\infty}^{\infty}\frac{1}{2}c_{0}u^{2} \,dx. $$
(2.42)
Since \(u_{c_{0}}\) is a critical point of the functional \(\mathcal{E}\), we have for any \(z\in H^{1}\),
$$\begin{aligned} \mathcal{E}(u_{c_{0}}+z)-\mathcal{E}(u_{c_{0}})= \int _{-\infty}^{\infty} \frac{1}{2}(\partial _{x} z)^{2}+\frac{1}{2}(c_{0}-u_{c_{0}})z^{2}- \frac{1}{6}z^{3}\,dx. \end{aligned}$$
(2.43)
Now, we take \(z=u(x,t)-u_{c_{0}}(y)=e^{-\epsilon t}u_{c(t)}(y)+v(y,t)-u_{c_{0}}(y)\) above, and observe that \(\delta \mathcal{E}_{0}=\mathcal{E}(u)-\mathcal{E}(u_{c_{0}})\) is decaying in time. Indeed,
$$\begin{aligned} \frac{d \delta \mathcal{E}_{0}}{dt} ={}&\frac{d (\mathcal{E}(u)-\mathcal{E}(u_{0}) )}{dt} \\ ={}&\frac{d \mathcal{E}}{dt} \\ ={}& \biggl\langle -\partial _{xx}u-\frac{1}{2}u^{2}+c_{0}u, -\partial _{x}\biggl(u_{xx}+\frac{1}{2}u^{2} \biggr)-\epsilon u \biggr\rangle \\ ={}& \biggl\langle -\biggl(\partial _{xx}u+\frac{1}{2}u^{2} \biggr), -\partial _{x}\biggl(u_{xx}+\frac{1}{2}u^{2} \biggr) \biggr\rangle + \biggl\langle c_{0}u, -\partial _{x}\biggl(u_{xx}+\frac{1}{2}u^{2}\biggr) \biggr\rangle \\ &{}+ \biggl\langle -\biggl(\partial _{xx}u+\frac{1}{2}u^{2} \biggr), -\epsilon u \biggr\rangle + \langle c_{0}u, -\epsilon u \rangle \\ ={}&{-}\epsilon \int _{\mathbb{R}} \vert u_{x} \vert ^{2} \,dx+\frac{\epsilon }{2} \int _{\mathbb{R}}u^{3}\,dx-c_{0}\epsilon \int _{\mathbb{R}}u^{2}\,dx \\ ={}&{-}3\epsilon \mathcal{E}(u)+\epsilon \biggl( \int _{\mathbb{R}}\frac{1}{2}u_{x}^{2} \,dx+\frac{1}{2}c_{0} \int _{\mathbb{R}}u^{2}\,dx \biggr) \\ ={}&{-}3\epsilon \mathcal{E}(u)+\epsilon \biggl( \int _{\mathbb{R}}\frac{1}{2}u_{x}^{2} \,dx+\frac{1}{2}c_{0} \int _{\mathbb{R}}u^{2}\,dx \biggr) \\ ={}&{-}3\epsilon \bigl(\mathcal{E}(u)-\mathcal{E}(u_{0}) \bigr)-3 \epsilon \mathcal{E}(u_{0})+\epsilon \biggl( \int _{\mathbb{R}}\frac{1}{2}u_{x}^{2} \,dx+\frac{1}{2}c_{0} \int _{\mathbb{R}}u^{2}\,dx \biggr) \\ ={}&{-}3\epsilon \delta \mathcal{E}_{0}-3\epsilon \mathcal{E}(u_{0})+ \epsilon \biggl( \int _{\mathbb{R}}\frac{1}{2}u_{x}^{2} \,dx+\frac{1}{2}c_{0} \int _{\mathbb{R}}u^{2}\,dx \biggr) \\ ={}&{-}3\epsilon \delta \mathcal{E}_{0}-3\epsilon C+\epsilon \biggl( \int _{\mathbb{R}}\frac{1}{2}u_{x}^{2} \,dx+\frac{1}{2}c_{0} \int _{\mathbb{R}}u^{2}\,dx \biggr). \end{aligned}$$
(2.44)
Moreover, multiplying equation (1.1) by \(u_{xx}\), one has
$$ \frac{1}{2}\frac{d}{dt} \Vert u_{x} \Vert _{L^{2}(\mathbb{R})}=-\epsilon \Vert u_{x} \Vert _{L^{2}}. $$
(2.45)
Due to decaying estimates about \(\|u\|_{L^{2}}\) and \(\|u_{x}\|_{L^{2}}\) given in (1.10) and (2.45), one can deduce from (2.44) that for \(0\leqslant t\leqslant T=O(\frac{1}{\epsilon ^{\tau}})\)
$$\begin{aligned} \delta \mathcal{E}_{0}&\leqslant e^{-3\epsilon t} \delta \mathcal{E}_{0}(0)+C\bigl(1-e^{-3\epsilon t}\bigr) \\ &\leqslant e^{-3\epsilon t}\delta \mathcal{E}_{0}(0)+C \bigl(1-e^{-3\epsilon ^{1-\tau} }\bigr). \end{aligned}$$
(2.46)
At the same time, we estimate (2.43) as follows. Note that, for \(\delta _{*}\) sufficiently small,
$$\begin{aligned} \bigl\Vert e^{-\epsilon t}u_{c(t)}-u_{c_{0}} \bigr\Vert _{H^{1}}&= \bigl\Vert e^{-\epsilon t}u_{c(t)}-e^{-\epsilon t}u_{c_{0}}+e^{-\epsilon t}u_{c_{0}}-u_{c_{0}} \bigr\Vert _{H^{1}} \\ &\leqslant C \bigl( \bigl\vert c(t)-c_{0} \bigr\vert + \bigl\vert e^{-\epsilon t}-1 \bigr\vert \bigr). \end{aligned}$$
(2.47)
Then, for some \(k_{1}>0\),
$$ \int _{-\infty}^{\infty}\frac{1}{2}(\partial _{y}z)^{2}+\frac{1}{2}c_{0}z^{2} \,dy \leqslant k_{1} \Vert v \Vert _{H^{1}}^{2}+C \bigl( \bigl\vert c(t)-c_{0} \bigr\vert ^{2}+ \bigl\vert e^{- \epsilon t}-1 \bigr\vert ^{2} \bigr). $$
(2.48)
Since \(e^{-ay}u_{c_{0}}(y)\) is bounded in y, we may estimate
$$\begin{aligned} \int _{-\infty}^{\infty}u_{c_{0}}(y)z^{2} \,dy &\leqslant \sup_{y} \bigl\vert e^{-ay}u_{c_{0}}(y) \bigr\vert \Vert z \Vert _{L^{2}} \bigl\Vert e^{ay}z \bigr\Vert _{L^{2}} \\ &\leqslant C \bigl( \bigl\vert c(t)-c_{0} \bigr\vert + \bigl\vert e^{-\epsilon t}-1 \bigr\vert + \Vert v \Vert _{L^{2}} \bigr) \bigl( \bigl\vert c(t)-c_{0} \bigr\vert + \bigl\vert e^{-\epsilon t}-1 \bigr\vert + \Vert w \Vert _{L^{2}} \bigr) \\ &\leqslant \frac{1}{4}k_{1} \Vert v \Vert _{L^{2}}^{2}+C \bigl[ \bigl\vert c(t)-c_{0} \bigr\vert ^{2}+ \Vert w \Vert _{L^{2}}^{2}+ \bigl\vert e^{-\epsilon t}-1 \bigr\vert ^{2} \bigr], \end{aligned}$$
(2.49)
where we have used the estimate \(ab\leqslant \delta a^{2}+C(\delta )b^{2}\) for a suitably small δ. Finally, since \(\|z\|_{H^{1}}\leqslant C (|c(t)-c_{0}|+\|v\|_{H^{1}}+|1-e^{- \epsilon t}| )\leqslant C (\delta _{*}+|1-e^{-\epsilon t}| )\), we have
$$\begin{aligned} \int _{-\infty}^{\infty}\frac{1}{6}z^{3}\,dy &\leqslant C \Vert z \Vert _{H^{1}}^{3}\leqslant C \bigl( \delta _{*}+ \bigl\vert 1-e^{-\epsilon t} \bigr\vert \bigr) \bigl( \bigl\vert c(t)-c_{0} \bigr\vert ^{2}+ \Vert v \Vert _{H^{1}}^{2}+ \bigl\vert e^{-\epsilon t}-1 \bigr\vert ^{2} \bigr) \\ &\leqslant \frac{1}{4}k_{1} \Vert v \Vert _{L^{2}}^{2}+C \bigl[ \bigl\vert c(t)-c_{0} \bigr\vert ^{2}+ \bigl\vert e^{-\epsilon t}-1 \bigr\vert ^{2} \bigr]. \end{aligned}$$
(2.50)
Hence, if \(\delta _{*}\) is sufficiently small, (2.43) with (2.48), (2.49), and (2.50) yields
$$ \frac{1}{2}k_{1} \Vert v \Vert _{H^{1}}^{2}\leqslant \delta \mathcal{E}_{0}+C \bigl[ \bigl\vert c(t)-c_{0} \bigr\vert ^{2}+ \bigl\vert e^{-\epsilon t}-1 \bigr\vert ^{2} \bigr]. $$
(2.51)
Due to (2.35) and (2.46), we know that
$$\begin{aligned} \Vert v \Vert _{H^{1}}&\leqslant C \bigl( \sqrt{\delta \mathcal{E}_{0}}+ \bigl\vert c(t)-c_{0} \bigr\vert + \bigl\vert e^{-\epsilon t}-1 \bigr\vert \bigr) \\ &\leqslant C \Vert v_{0} \Vert _{H^{1}}+C\epsilon ^{1-\tau}+ \bigl\vert c(t)-c_{0} \bigr\vert \\ &\leqslant C_{1}\epsilon +C_{2}\epsilon ^{1-\tau}+C_{3} \epsilon ^{1-2\tau} \\ &\leqslant C \epsilon ^{1-2\tau}. \end{aligned}$$
(2.52)
This completes the proof of Proposition 2.1, which implies the conclusions of Theorem 1.1. □