In what follows, we apply some fixed-point theorems to demonstrate the existence and uniqueness results for problem (1). To obtain the existence results for problem (1), the following auxiliary lemma is needed.
Lemma 3.1
For any \(\omega \in C(\Sigma , \mathbb{R})\), the \(\mathbb{F}\mathrm{P}q{-}\mathbb{DE}\) with nonlocal boundary conditions
$$ \textstyle\begin{cases} {}^{C }\mathcal{D}_{ q}^{\theta} \upvarphi (\rho )= \omega ( \rho ), & \theta \in ( m-1, m ], m \geq 2, \\ \upvarphi^{ (i ) } ( 0 ) =0,& i=0,1,2,\dots , m-2, \\ \upvarphi ( \delta )= \sum_{i=1}^{k} \upgamma _{0i} ( \mathcal{I}_{ q}^{ \vartheta _{i}} \upvarphi ( \upgamma _{1i} ) - \mathcal{I}_{ q}^{\vartheta _{i}} \upvarphi ( \upgamma _{2i} ) ),& \vartheta _{i}>0, \upgamma _{0i} \in \mathbb{R}, \end{cases} $$
(2)
for \(q\in (0,1 )\), \(\rho \in [ 0,\delta ]\), \(m\in \mathbb{N}\),
$$ 0< \upgamma _{2i} < \upgamma _{1i}< \cdots < \upgamma _{2k} < \upgamma _{1k}< \delta ,\quad i=1,2,\dots , k,$$
has a unique solution given by
$$ \upvarphi ( \rho ) = \mathcal{I}_{ q}^{\theta} \omega ( \rho ) +\frac{\rho ^{m-1}}{\Lambda } \Biggl[ \sum_{i=1}^{k} \upgamma _{0i} \bigl(\mathcal{I}_{ q}^{ \vartheta _{i} + \theta } \omega ( \upgamma _{1i} ) - \mathcal{I}_{ q}^{\vartheta _{i}+\theta} \omega ( \upgamma _{2i} ) \bigr) - \mathcal{I}_{ q}^{\theta} \omega ( \delta ) \Biggr], $$
(3)
where
$$ \Lambda := \sum_{i=1}^{k} \frac{\upgamma _{0i} \Gamma _{q} (m ) }{ \Gamma _{q} ( m + \vartheta _{i} ) } \bigl( \upgamma _{2i}^{\vartheta _{i} + m-1} - \upgamma _{1i}^{ \vartheta _{i} + m-1} \bigr) + \delta ^{ m-1} \neq 0. $$
(4)
Proof
Assume φ satisfies problem (1). First, we write this equation as
$$ \mathcal{I}_{ q}^{\theta} {}^{C } \mathcal{D}_{ q}^{\theta} \upvarphi ( \rho ) = \mathcal{I}_{ q}^{\theta} \omega ( \rho ).$$
In view of Lemma 2.2, we have
$$ \upvarphi ( \rho ) = \mathcal{I}_{ q}^{\theta } \omega ( \rho ) -\zeta _{0} - \zeta _{1} \rho -\zeta _{2} \rho ^{2}- \cdots - \zeta _{m-1}\rho ^{m-1}. $$
(5)
Applying the BCs, we obtain
$$ \zeta _{0} = \zeta _{1}=\zeta _{2}=\cdots =\zeta _{m-2}=0. $$
(6)
By substituting (6) into (5), we obtain
$$ \upvarphi ( \rho ) =\mathcal{I}_{ q}^{\theta} \omega ( \rho ) -\zeta _{m-1}\rho ^{m-1}. $$
(7)
Applying the integrator operator \(\mathcal{I}_{ q}^{ \vartheta _{i}}\) to both sides of equation (7), we obtain
$$ \mathcal{I}_{ q}^{\vartheta _{i}} \upvarphi ( \rho ) = \mathcal{I}_{ q}^{\vartheta _{i}+\theta _{1} } \omega ( \rho ) - \zeta _{m-1} \mathcal{I}_{ q}^{\vartheta _{i}} \rho ^{m-1}.$$
Using the condition
$$ \upvarphi ( \delta ) =\sum_{i=1}^{k} \upgamma _{0i} \bigl( \mathcal{I}_{ q}^{\vartheta _{i}} \upvarphi ( \upgamma _{1i} ) - \mathcal{I}_{ q}^{ \vartheta _{i}} \upvarphi ( \upgamma _{2i} ) \bigr),$$
we have
$$\begin{aligned} \mathcal{I}_{ q}^{\theta _{1}} \omega ( \delta ) - \zeta _{m-1} \delta ^{m-1} & = \sum _{i=1}^{k}\upgamma _{0i} \biggl[ \mathcal{I}_{ q}^{\vartheta _{i} + \theta _{1}} \upvarphi ( \upgamma _{1i} ) - \mathcal{I}_{ q}^{\vartheta _{i}+\theta _{1} }\upvarphi ( \upgamma _{2i} ) \\ &\quad{} + \zeta _{m-1} \frac{\Gamma _{q} ( m ) }{\Gamma _{q} ( m+ \vartheta _{i} ) } \bigl( \xi \upgamma _{2i}^{\vartheta _{i} + m-1} - \upgamma _{1i}^{\vartheta _{i}+m-1} \bigr) \biggr]. \end{aligned}$$
(8)
By solving (8), we find that
$$ \zeta _{m-1} = \frac{1}{\Lambda } \Biggl( \mathcal{I}_{ q}^{\theta} \omega ( \delta ) - \sum _{i=1}^{k} \upgamma _{0i} \bigl[ \mathcal{I}_{ q}^{\vartheta _{i}+\theta } \upvarphi ( \upgamma _{1i} ) - \mathcal{I}_{ q}^{ \vartheta _{i} + \theta}\upvarphi ( \upgamma _{2i} ) \bigr] \Biggr). $$
(9)
By inserting (9) into (7), we obtain (3). □
To obtain our findings, we need the following assumptions.
-
(As1)
There is a constant \(l_{\mathfrak{g}}>0\) such that
$$ \bigl\vert \mathfrak{g} ( \rho , \upvarphi, \upvarphi ) - \mathfrak{g} ( \rho , \tilde{\upvarphi}, \tilde{\upvarphi} ) \bigr\vert \leq l_{\mathfrak{g}} \bigl( \vert \upvarphi-\tilde{\upvarphi} \vert + \vert \upvarphi - \tilde{ \upvarphi} \vert \bigr),$$
for \(\rho \in \Sigma \) and \(\upvarphi ,\tilde{\upvarphi}\in \mathbb{R}\).
-
(As2)
There exist constants \(\mathrm{D}, \mathrm{h}_{\mathfrak{g}}^{ ( 1 )}, \mathrm{h}_{\mathfrak{g}}^{ ( 2 ) }>0\) such that
$$ \bigl\vert \mathfrak{g} \bigl( \rho , \upvarphi ( \rho ), \upvarphi ( \lambda \rho ) \bigr) \bigr\vert \leq \mathrm{D}+ \mathrm{h}_{\mathfrak{g}}^{ ( 1 ) } \bigl\vert \upvarphi ( \rho ) \bigr\vert + \mathrm{h}_{\mathfrak{g}}^{ (2 ) } \bigl\vert \upvarphi ( \lambda \rho ) \bigr\vert , \quad \forall ( \rho , \upvarphi ) \in \Sigma \times \mathbb{R}. $$
3.1 Existence and uniqueness results via Banach’s fixed-point theorem
Theorem 3.2
Let (As1) be valid, then \(\mathbb{F}\mathrm{P}q{-}\mathbb{DE}\) (1) has a unique mild solution on Σ, whenever
$$ \mathrm{k}^{\ast }l_{\mathfrak{g}}< 1, $$
(10)
where
$$\begin{aligned} \mathrm{k}^{\ast} & = \frac{2 (\delta ^{\theta } + \delta ^{m+ \theta -1} )}{ \Gamma _{q} ( \theta + 1 ) } + \sum _{i=1}^{k} \vert \upgamma _{0i} \vert \frac{4\delta ^{m+ \vartheta _{i}+\theta -1}}{ \vert \Lambda \vert \Gamma _{q} ( \vartheta _{i} + \theta +1 ) }. \end{aligned}$$
(11)
Proof
We switch problem (1) into a fixed-point problem and we consider the operator \(\tilde{\mathcal{Z}} : C(\Sigma , \mathbb{R})\to C(\Sigma , \mathbb{R})\) as
$$\begin{aligned} ( \tilde{\mathcal{Z}} \upvarphi ) ( \rho ) & = \mathcal{I}_{ q}^{\theta} \mathfrak{g} \bigl( \rho , \upvarphi ( \rho ), \upvarphi ( \lambda \rho ) \bigr) \\ & \quad{}+\frac{\rho ^{m-1}}{\Lambda } \Biggl[ \sum_{i=1}^{k} \upgamma _{0i} \bigl( \mathcal{I}_{ q}^{\vartheta _{i} + \theta } \mathfrak{g} \bigl( \upgamma _{1i}, \upvarphi ( \upgamma _{1i} ), \upvarphi ( \lambda \upgamma _{1i} ) \bigr) \\ & \quad{}- \mathcal{I}_{ q}^{\vartheta _{i} + \theta } \mathfrak{g} \bigl( \upgamma _{2i}, \upvarphi ( \upgamma _{2i} ), \upvarphi ( \lambda \upgamma _{2i} ) \bigr) \bigr) \Biggr] \\ &\quad{}- \frac{\rho ^{m-1}}{\Lambda } \mathcal{I}_{ q}^{\theta} \mathfrak{g} \bigl( \delta , \upvarphi ( \delta ),\upvarphi ( \lambda \delta ) \bigr). \end{aligned}$$
(12)
Clearly, the solution of (1) is as a fixed point of the operator \(\tilde{\mathcal{Z}}\). By (As1), for any \(\upvarphi ,\tilde{\upvarphi}\in C(\Sigma , \mathbb{R})\) and \(\rho \in \Sigma \), we obtain
$$\begin{aligned} & \bigl\vert ( \tilde{\mathcal{Z}}\upvarphi ) ( \rho ) - ( \tilde{\mathcal{Z}} \tilde{\upvarphi} ) ( \rho ) \bigr\vert \\ &\quad \leq \mathcal{I}_{ q}^{\theta} \bigl\vert \mathfrak{g} \bigl( \rho , \upvarphi ( \rho ), \upvarphi ( \lambda \rho ) \bigr) - \mathfrak{g} \bigl( \rho, \tilde{ \upvarphi} ( \rho ), \tilde{\upvarphi} ( \lambda \rho ) \bigr) \bigr\vert \\ &\quad \quad{}+ \frac{ \rho^{m-1}}{ \vert \Lambda \vert } \Biggl[ \sum_{i=1}^{k} \vert \upgamma _{0i} \vert \bigl( \mathcal{I}_{ q}^{\vartheta _{i} +\theta } \bigl\vert \mathfrak{g} \bigl( \upgamma _{1i}, \upvarphi ( \upgamma _{1i} ) ,\upvarphi ( \lambda \upgamma _{1i} ) \bigr) \\ &\quad \quad{}- \mathfrak{g} \bigl( \upgamma _{1i}, \tilde{ \upvarphi} ( \upgamma _{1i} ), \tilde{\upvarphi} ( \lambda \upgamma _{1i} ) \bigr) \bigr\vert + \mathcal{I}_{ q}^{\vartheta _{i} + \theta } \bigl\vert \mathfrak{g} \bigl( \upgamma _{2i}, \upvarphi ( \upgamma _{2i} ) , \upvarphi ( \lambda \upgamma _{2i} ) \bigr) \\ &\quad \quad{}- \mathfrak{g} \bigl( \upgamma _{2i}, \tilde{\upvarphi} ( \upgamma _{2i} ), \tilde{\upvarphi} ( \lambda \upgamma _{2i} ) \bigr) \bigr\vert \bigr) \\ &\quad \quad{}+I_{q}^{\theta} \bigl\vert \mathfrak{g} \bigl( \delta , \upvarphi ( \delta ) ,\upvarphi ( \lambda \delta ) \bigr) -\mathfrak{g} \bigl( \delta , \tilde{\upvarphi} ( \delta ) , \tilde{\upvarphi} ( \lambda \delta ) \bigr) \bigr\vert \Biggr] \\ &\quad \leq \frac{\rho ^{\theta} l_{\mathfrak{g}}}{ \Gamma _{q} ( \theta + 1 ) } \bigl( \Vert \upvarphi - \tilde{\upvarphi} \Vert + \Vert \upvarphi - \tilde{\upvarphi} \Vert \bigr) \\ &\quad \quad{}+ \frac{\delta ^{m-1}l_{\mathfrak{g}} ( \Vert \upvarphi -\tilde{\upvarphi} \Vert + \Vert \upvarphi - \tilde{\upvarphi} \Vert ) }{ \vert \Lambda \vert } \\ &\quad \quad{}\times \Biggl[ \sum_{i=1}^{k} \vert \upgamma _{0i} \vert \biggl( \frac{\upgamma _{1i}^{\vartheta _{i} + \theta}}{ \Gamma _{q} ( \vartheta _{i}+\theta + 1 ) }+ \frac{\upgamma _{2i}^{\vartheta _{i} + \theta }}{\Gamma _{q} ( \vartheta _{i} + \theta + 1 ) } \biggr) + \frac{\delta ^{ \theta}}{\Gamma _{q} ( \theta +1 ) } \Biggr] \\ &\quad \leq \Biggl[ \frac{2\delta ^{ \theta}}{\Gamma _{q} ( \theta + 1 ) } + \sum_{i=1}^{k} \vert \upgamma _{0i} \vert \frac{4\delta ^{m+\vartheta _{i} + \theta - 1}}{ \vert \Lambda \vert \Gamma _{q} ( \vartheta _{i} + \theta + 1 ) } \\ &\quad \quad{}+ \frac{2\delta ^{m+\theta -1}}{\Gamma _{q} ( \theta +1 ) } \Biggr] l_{\mathfrak{g}} \Vert \upvarphi - \tilde{\upvarphi} \Vert . \end{aligned}$$
Thus,
$$ \bigl\Vert ( \tilde{\mathcal{Z}} \upvarphi ) - ( \tilde{\mathcal{Z}} \tilde{ \upvarphi} ) \bigr\Vert \leq \mathrm{k }^{\ast } l_{\mathfrak{g}} \Vert \upvarphi - \tilde{\upvarphi} \Vert .$$
From (10), \(\tilde{\mathcal{Z}}\) is a contraction. As an outcome of Banach’s FPT, \(\tilde{\mathcal{Z}}\) has a unique fixed point that is a unique mild solution of (1) on Σ. □
3.2 Existence results via Schaefer’s fixed-point theorem
Theorem 3.3
Suppose that the hypothesis (As2) is satisfied. Then, \(\mathbb{F}\mathrm{P}q{-}\mathbb{DE}\) (1) has at least one solution on Σ, whenever \(\mathrm{N}_{1}<1\), where
$$\begin{aligned} \mathrm{N}_{1}& =\frac{\delta ^{\theta } ( \mathrm{h}_{\mathfrak{g}}^{ ( 1 ) }+\mathrm{h}_{\mathfrak{g}}^{ ( 2 ) } ) }{\Gamma _{q} ( \theta +1 ) }+ \frac{ ( \mathrm{h}_{\mathfrak{g}}^{ ( 1 ) }+ \mathrm{h}_{\mathfrak{g}}^{ ( 2 ) } ) \delta ^{m-1}}{ \vert \Lambda \vert } \sum_{i=1}^{k} \frac{2 \vert \upgamma _{0i} \vert \mathcal{I}_{ q}^{\vartheta _{i} + \theta }}{\Gamma _{q} ( \vartheta _{i} + \theta +1 )} \\ & \quad{}+ \frac{ \delta ^{ m +\theta -1} ( \mathrm{h}_{\mathfrak{g}}^{ ( 1 ) }+\mathrm{h}_{\mathfrak{g}}^{ ( 2 ) } ) }{ \vert \Lambda \vert \Gamma _{q} ( \theta + 1 ) }. \end{aligned}$$
(13)
Proof
We shall use Schaefer’s fixed-point theorem to demonstrate that \(\tilde{\mathcal{Z}}\) defined in (12) has a fixed point. The proof will be given in the following steps.
Step 1. \(\tilde{\mathcal{Z}}\) is continuous. Let a sequence \(\upvarphi _{n} \to \upvarphi \) in \(C(\Sigma , \mathbb{R})\). Since \(\mathfrak{g}\) is continuous, we have
$$ \bigl\vert \mathfrak{g} \bigl( \rho , \upvarphi _{n} ( \rho ), \upvarphi _{n} ( \lambda \rho ) \bigr) - \mathfrak{g} \bigl( \rho , \upvarphi ( \rho ) , \upvarphi ( \lambda \rho ) \bigr) \bigr\vert \rightarrow 0,$$
as \(n\to \infty \). Thus, for any \(\rho\in \Sigma \), we write
$$\begin{aligned} & \bigl\vert ( \tilde{\mathcal{Z}} \upvarphi _{n} ) (\rho ) - ( \tilde{\mathcal{Z}}\upvarphi ) ( \rho ) \bigr\vert \\ &\quad \leq \int _{0}^{\rho } \frac{ (\rho - q \varpi )^{ ( \theta -1 ) }}{\Gamma _{q} ( \theta ) } \bigl\vert \mathfrak{g} \bigl( \varpi , \upvarphi _{n} ( \varpi ), \upvarphi _{n} ( \lambda \varpi ) \bigr) \\ &\quad \quad{}- \mathfrak{g} \bigl( \varpi , \upvarphi ( \varpi ), \upvarphi ( \lambda \varpi ) \bigr) \bigr\vert \,\mathrm{d}_{q} \varpi \\ &\quad \quad{}+ \frac{ \rho ^{m-1}}{ \vert \Lambda \vert } \sum_{i=1}^{k} \vert \upgamma _{0i} \vert \int _{0}^{ \upgamma _{1i}} \frac{ ( \upgamma _{1i} - q \varpi )^{ ( \theta -1 ) }}{\Gamma _{q} ( \theta ) } \bigl\vert \mathfrak{g} \bigl( \varpi, \upvarphi _{n} ( \varpi ), \upvarphi_{n} ( \lambda \varpi ) \bigr) \\ &\quad \quad{}-\mathfrak{g} \bigl(\varpi, \upvarphi ( \varpi ), \upvarphi ( \lambda \varpi ) \bigr) \bigr\vert \,\mathrm{d}_{q} \varpi \\ &\quad \quad{}+ \frac{\rho ^{m-1}}{ \vert \Lambda \vert } \sum_{i=1}^{k} \vert \upgamma _{0i} \vert \int _{0}^{ \upgamma _{1i}} \frac{ ( \upgamma _{2i} - q\varpi )^{ ( \theta _{1}-1 ) }}{\Gamma _{q} ( \theta ) } \bigl\vert \mathfrak{g} \bigl( \varpi , \upvarphi _{n} ( \varpi ), \upvarphi _{n} ( \lambda \varpi ) \bigr) \\ &\quad \quad{}- \mathfrak{g} \bigl( \varpi , \upvarphi ( \varpi ) ,\upvarphi ( \lambda \varpi ) \bigr) \bigr\vert \,\mathrm{d}_{q} \varpi \\ &\quad \quad{}+ \frac{\rho ^{m-1}}{ \vert \Lambda \vert } \int _{0}^{ \delta} \frac{ ( \delta - q\varpi )^{ ( \theta -1 ) }}{\Gamma _{q} ( \theta ) } \bigl\vert \mathfrak{g} \bigl( \varpi , \upvarphi _{n} ( \varpi ) , \upvarphi _{n} ( \lambda \varpi ) \bigr) \\ &\quad \quad{}-\mathfrak{g} \bigl( \varpi ,\upvarphi ( \varpi ) ,\upvarphi ( \lambda \varpi ) \bigr) \bigr\vert \,\mathrm{d}_{q} \varpi. \end{aligned}$$
Hence, we obtain
$$ \bigl\Vert ( \tilde{\mathcal{Z}}\upvarphi _{n} ) - ( \tilde{ \mathcal{Z}}\upvarphi ) \bigr\Vert \rightarrow 0\quad \text{as } n \to \infty .$$
Consequently, \(\tilde{\mathcal{Z}}\) is continuous.
Step 2. The image of a bounded set under \(\tilde{\mathcal{Z}}\) is bounded in \(C(\Sigma , \mathbb{R})\). Indeed, it is enough to show that for any \(\omega >0\), there exists a positive constant ζ such that for each
$$ \upvarphi \in \Omega _{\omega }= \bigl\{ \upvarphi \in C(\Sigma , \mathbb{R}) : \Vert \upvarphi \Vert \leq \omega \bigr\} ,$$
we have \(\Vert \tilde{\mathcal{Z}} \upvarphi \Vert \leq \zeta \). In fact, we have
$$\begin{aligned} \bigl\vert ( \tilde{\mathcal{Z}}\upvarphi ) ( \rho ) \bigr\vert & \leq \mathcal{I}_{ q}^{ \theta } \bigl\vert \mathfrak{g} \bigl( \rho , \upvarphi ( \rho ), \upvarphi ( \lambda \rho ) \bigr) \bigr\vert \\ & \quad{}+ \frac{\rho ^{m-1}}{ \vert \Lambda \vert } \Biggl[ \sum_{i=1}^{k} \vert \upgamma _{0i} \vert \bigl( \mathcal{I}_{ q}^{\vartheta _{i} +\theta} \bigl\vert \mathfrak{g} \bigl( \upgamma _{1i}, \upvarphi ( _{i} ), \upvarphi ( \lambda _{i} ) \bigr) \bigr\vert \\ & \quad{}+\mathcal{I}_{ q}^{\vartheta _{i}+\theta } \bigl\vert \mathfrak{g} \bigl( \upgamma _{2i} , \upvarphi ( \upgamma _{2i} ) , \upvarphi ( \lambda \upgamma _{2i} ) \bigr) \bigr\vert \bigr) \Biggr] \\ &\quad{}+ \frac{\rho ^{m-1}}{ \vert \Lambda \vert } \mathcal{I}_{ q}^{\theta} \bigl\vert \mathfrak{g} \bigl( \delta , \upvarphi ( \delta ) ,\upvarphi ( \lambda \delta ) \bigr) \bigr\vert \\ & \leq \frac{\delta ^{\theta} ( \mathrm{D}+ ( \mathrm{h}_{\mathfrak{g}}^{ ( 1 ) } + \mathrm{h}_{\mathfrak{g}}^{ ( 2 ) } )\omega ) }{ \Gamma _{q} ( \theta + 1 ) } \\ & \quad{}+ \frac{ ( \mathrm{D}+ ( \mathrm{h}_{\mathfrak{g}}^{ ( 1 ) } + \mathrm{h}_{\mathfrak{g}}^{ ( 2 ) } ) \omega ) \delta ^{m-1}}{ \vert \Lambda \vert } \sum_{i=1}^{k} \frac{2 \vert \upgamma _{0i} \vert \delta ^{\vartheta _{i} + \theta }}{\Gamma _{q} ( \vartheta _{i}+\theta + 1 ) } \\ & \quad{}+ \frac{\delta ^{m+\theta _{1}-1} ( \mathrm{D}+ ( \mathrm{h}_{\mathfrak{g}}^{ (1 )}+\mathrm{h}_{\mathfrak{g}}^{ ( 2 ) } ) \omega ) }{ \vert \Lambda \vert \Gamma _{q} ( \theta +1 ) }, \end{aligned}$$
and consequently
$$\begin{aligned} \Vert \tilde{\mathcal{Z}}\upvarphi \Vert & \leq \Biggl( \frac{ \delta ^{\theta } ( \mathrm{D}+\mathrm{h}_{\mathfrak{g}} \omega ) }{\Gamma _{q} ( \theta +1 ) } \\ & \quad{}+ \frac{ ( \mathrm{D}+ ( \mathrm{h}_{\mathfrak{g}}^{ ( 1 ) }+\mathrm{h}_{\mathfrak{g}}^{ ( 2 ) } ) \omega ) \delta ^{m-1}}{ \vert \Lambda \vert } \sum_{i=1}^{k} \frac{2 \vert \upgamma _{0i} \vert \delta ^{\vartheta _{i} + \theta} }{ \Gamma _{q} ( \vartheta _{i}+\theta + 1 ) } \\ &\quad{} + \frac{ \delta ^{m+\theta -1} ( \mathrm{D}+\mathrm{h}_{\mathfrak{g}} \omega ) }{ \vert \Lambda \vert \Gamma _{q} (\theta +1 ) } \Biggr) :=\zeta , \end{aligned}$$
where \(\mathrm{h}_{\mathfrak{g}} = \mathrm{h}_{\mathfrak{g}}^{ ( 1 ) } + \mathrm{h}_{\mathfrak{g}}^{ ( 2 ) }\).
Step 3. \(\tilde{\mathcal{Z}}\) sends bounded sets of \(C(\Sigma , \mathbb{R})\) into equicontinuous sets. For \(\rho_{1}, \rho _{2}\in \Sigma \), \(\rho _{1} < \rho _{2}\) and for \(\upvarphi \in \Omega _{\omega }\), we have
$$\begin{aligned} & \bigl\vert ( \tilde{\mathcal{Z}}\upvarphi ) ( \rho_{2} ) - ( \tilde{\mathcal{Z}}\upvarphi ) ( \rho_{1} ) \bigr\vert \\ &\quad \leq \int _{0}^{\rho_{2}} \frac{ ( \rho _{2} - q\varpi )^{ ( \theta -1 ) }}{\Gamma _{q} ( \theta ) } \bigl\vert \mathfrak{g} \bigl( \varpi ,\upvarphi ( \varpi ) ,\upvarphi ( \lambda \varpi ) \bigr) \bigr\vert \,\mathrm{d}_{q} \varpi \\ &\quad \quad{}- \int _{0}^{\rho_{1}} \frac{ ( \rho _{1} - q\varpi )^{ ( \theta -1 ) }}{\Gamma _{q} ( \theta ) } \bigl\vert \mathfrak{g} \bigl( \varpi ,\upvarphi ( \varpi ) ,\upvarphi ( \lambda \varpi ) \bigr) \bigr\vert \,\mathrm{d}_{q} \varpi \\ &\quad \quad{}+ \biggl\vert \frac{\rho_{2}^{m-1} - \rho_{1}^{m-1}}{ \vert \Lambda \vert } \biggr\vert \\ &\quad \quad{}\times \sum_{i=1}^{k} \vert \upgamma _{0i} \vert \int _{0}^{\upgamma _{1i} } \frac{ ( \upgamma _{1i} - q \varpi )^{ ( \theta - 1 ) }}{\Gamma _{q} ( \theta ) } \bigl\vert \mathfrak{g} \bigl( \varpi , \upvarphi ( \varpi ), \upvarphi ( \lambda \varpi ) \bigr) \bigr\vert \,\mathrm{d}_{q} \varpi \\ &\quad \quad{}+ \biggl\vert \frac{\rho_{2}^{m-1} - \rho_{1}^{m-1}}{ \vert \Lambda \vert } \biggr\vert \int _{0}^{\delta} \frac{ ( \delta - q\varpi ) ^{ ( \theta -1 ) }}{\Gamma _{q} ( \theta ) } \bigl\vert \mathfrak{g} \bigl( \varpi ,\upvarphi ( \varpi ) ,\upvarphi ( \lambda \varpi ) \bigr) \bigr\vert \,\mathrm{d}_{q} \varpi. \end{aligned}$$
As \(\rho_{1} \rightarrow \rho _{2}\), we obtain
$$ \bigl\vert ( \tilde{\mathcal{Z}} \upvarphi ) ( \rho _{2})- ( \tilde{\mathcal{Z}} \upvarphi ) (\rho _{1}) \bigr\vert \to 0.$$
Consequently, \(\tilde{\mathcal{Z}} ( \Omega _{\omega } ) \) is equicontinuous. From the previous steps, together with the Arzelá–Ascoli theorem, we deduce that \(\tilde{\mathcal{Z}}\) is completely continuous.
Step 4. A priori bounds. Now, it remains to prove that the set
$$ \mathcal{U} = \bigl\{ \upvarphi \in C(\Sigma , \mathbb{R}) : \upvarphi = \varrho \tilde{\mathcal{Z}} \upvarphi , \text{for some } \varrho \in (0,1) \bigr\} ,$$
is bounded. Let \(\upvarphi \in \mathcal{U}\) and for each \(\rho \in \Sigma \), we have
$$\begin{aligned} \bigl\vert \upvarphi ( \rho ) \bigr\vert & = \bigl\vert \varrho \tilde{ \mathcal{Z}} \bigl( \upvarphi ( \rho ) \bigr) \bigr\vert \\ &\leq \mathcal{I}_{ q}^{\theta _{1}} \bigl\vert \mathfrak{g} \bigl( \rho , \upvarphi ( \rho ), \upvarphi ( \lambda \rho ) \bigr) \bigr\vert \\ & \quad{}+ \frac{ \rho ^{m-1}}{ \vert \Lambda \vert } \Biggl[ \sum_{i=1}^{k} \vert \upgamma _{0i} \vert \bigl( \mathcal{I}_{ q}^{\vartheta _{i}+ \theta } \bigl\vert \mathfrak{g} \bigl( \upgamma _{1i}, \upvarphi ( \upgamma _{1i} ), \upvarphi ( \lambda \upgamma _{1i} ) \bigr) \bigr\vert \\ & \quad{}+ \mathcal{I}_{ q}^{\vartheta _{i} + \theta} \bigl\vert \mathfrak{g} \bigl( \upgamma _{2i}, \upvarphi ( \upgamma _{2i} ), \upvarphi ( \lambda \upgamma _{2i} ) \bigr) \bigr\vert \bigr) \Biggr] \\ & \quad{}+ \frac{\rho ^{m-1}}{ \vert \Lambda \vert } \mathcal{I}_{ q}^{\theta} \bigl\vert \mathfrak{g} \bigl( \delta , \upvarphi ( \delta ) , \upvarphi ( \lambda \delta ) \bigr) \bigr\vert \\ & \leq \frac{ \delta ^{\theta} ( \mathrm{D}+ ( \mathrm{h}_{\mathfrak{g}}^{ ( 1 ) } + \mathrm{h}_{\mathfrak{g}}^{ ( 2 ) } ) \Vert \upvarphi \Vert ) }{ \Gamma _{q} ( \theta +1 ) } \\ & \quad{}+ \frac{ ( \mathrm{D}+ ( \mathrm{h}_{\mathfrak{g}}^{ ( 1 ) }+\mathrm{h}_{\mathfrak{g}}^{ ( 2 ) } ) \Vert \upvarphi \Vert ) \delta ^{m-1} }{ \vert \Lambda \vert } \sum_{i=1}^{k} \frac{ 2 \vert \gamma _{i} \vert \delta ^{\vartheta _{i} + \theta} }{ \Gamma _{q} ( \vartheta _{i} + \theta + 1 ) } \\ &\quad{}+ \frac{\delta ^{ m + \theta -1} ( \mathrm{D}+ (\mathrm{h}_{\mathfrak{g}}^{ ( 1 ) } + \mathrm{h}_{\mathfrak{g}}^{ ( 2 ) } ) \Vert \upvarphi \Vert ) }{ \vert \Lambda \vert \Gamma _{q} ( \theta + 1 ) } . \end{aligned}$$
(14)
From inequality (14), we obtain \(\Vert \upvarphi \Vert \leq \frac{\mathrm{N}_{2}}{ ( 1- \mathrm{N}_{1} )}\), where
$$\begin{aligned} \mathrm{N}_{2}& =\frac{\delta ^{ \theta} \mathrm{D}}{\Gamma _{q} (\theta + 1 ) } + \frac{\mathrm{D} \delta ^{m-1}}{ \vert \Lambda \vert } \sum_{i=1}^{k} \frac{2 \vert \upgamma _{0i} \vert \delta ^{\vartheta _{i} + \theta }}{\Gamma _{q} ( \vartheta _{i} + \theta +1 ) }+\frac{\delta ^{m + \theta - 1 } \mathrm{D}}{ \vert \Lambda \vert \Gamma _{q} ( \theta + 1 )}. \end{aligned}$$
(15)
This means that the set \(\mathcal{U}\) is bounded. We infer from Schaefer’s fixed-point theorem that \(\tilde{\mathcal{Z}}\) possesses at least one fixed point. Consequently, there is at least one solution to the problem (1). □