- Research
- Open Access
- Published:
Existence of triple solutions for elliptic equations driven by p-Laplacian-like operators with Hardy potential under Dirichlet–Neumann boundary conditions
Boundary Value Problems volume 2023, Article number: 3 (2023)
Abstract
In this article, we focus on triple weak solutions for some p-Laplacian-type elliptic equations with Hardy potential, two parameters, and mixed boundary conditions. We show the existence of at least three distinct weak solutions by using variational methods, the Hardy inequality, and the Bonanno–Marano-type three critical points theorem under suitable assumptions, and the existence of solutions to some particular cases of this type of elliptic equations are also obtained.
1 Introduction
Elliptic differential equations in bounded domains with singular Hardy potential and Dirichlet–Neumann-type mixed boundary conditions are used to describe many engineering or physical phenomena and play a role in modeling in applied sciences such as the heat conduction in electrically conducting materials, singular minimal surfaces, and the non-Newtonian fluids, and the state of stress and strain on the elastic surface in mechanics and the solidification and melting of materials in industrial processes are only some examples involving mixed conditions. In particular, an intuitive example is that an iceberg is partially immersed in water, and mixed boundary conditions must be imposed on its boundary. In the underwater part, a Dirichlet boundary condition is required, while the Neumann condition is used in the remaining part of the boundary in contact with air.
Recently, researches on the numbers of the existence of weak solutions to nonlinear differential equations via variational methods have received wide attention (see, for example [1, 2, 6, 7, 9–12]). In particular, in this very interesting paper [6], the author studied the existence of two nontrivial solutions for a class of mixed elliptic problems with Dirichlet–Neumann mixed boundary conditions and concave–convex nonlinearity has been obtained. In the detailed literature [7], the existence of at least one positive solution of a class of perturbed equations with mixed boundary conditions was discussed. It is worth noting that in the papers cited, the boundary conditions are homogeneous. In this paper, we deal with the existence of at least three weak solutions to the following elliptic equations with homogeneous Neumann boundary conditions, and the results of some particular cases of this type elliptic problems are also obtained,
where \(\mathbf{A}: \Omega \times \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}\), Ω is an open bounded subset in \(\mathbb{R}^{N}\) (\(N\geq 3\)) with smooth boundary ∂Ω, ν is the outward normal vector field on ∂Ω, \(\Gamma _{1}\) and \(\Gamma _{2}\) are two smooth \((N-1)\)-dimensional submanifolds of ∂Ω such that \(\Gamma _{1}\cap \Gamma _{2}=\emptyset \), \(\overline{\Gamma _{1}}\cup \overline{\Gamma _{2}}=\partial \Omega \), \(\overline{\Gamma _{1}}\cap \overline{\Gamma _{2}}\) is a \((N-2)\)-dimensional submanifold of ∂Ω, \(\lambda >0\) and \(\mu \geq 0\) are real positive parameters, \(a(x)\in L^{\infty}(\Omega )\) with \(\operatorname{ess}\inf_{ \Omega}a(x)>0\), \(a_{0}=\operatorname{ess}\sup_{\Omega}a(x)\), \(f:\Omega \times \mathbb{R} \to \mathbb{R}\) is a Carathéodory function satisfying
where \(0< b\in L^{\alpha}(\Omega )\), \(\alpha >\frac{N}{p}\), \(1< s\leq p\), and \(M_{1}\), \(M_{2}\) are positive constants; with g satisfying
where \(q\in (1, p)\), \(0< h(x)\in L^{\beta}(\Gamma _{2})\), \(\beta > \frac{N-1}{p-1}\) and \(\gamma :W^{1,p}(\Omega )\rightarrow L^{p}(\partial \Omega )\) is called a trace map satisfying \(\gamma (u)=u|_{\partial \Omega}\), \(\forall u\in W^{1,p}(\Omega )\cap C^{1}( \overline{\Omega})\), that is, \(\gamma (u)\) is the trace of u or the generalized boundary values of u.
2 Preliminaries and variational structure
Throughout the paper we denote the \(L^{z}\)-norm by \(\|u\|_{z}\). Let Ω be an open, bounded subset in \(\mathbb{R}^{N}\) (\(N\geq 3\)), \(1< p< N\), \(W^{1,p}_{0}(\Omega )=\{u\in W^{1,p}( \Omega ):u|_{\Gamma _{1}}=0\}\) be the Sobolev space with the norm
Obviously, \(W^{1,p}_{0}(\Omega ) \) is a reflexive Banach space, and the embedding \(W^{1,p}_{0}(\Omega )\hookrightarrow L^{p^{*}}(\Omega ) \) is continuous, thus there exists a positive constant T such that \(\|u\|_{p*}\leq T\|u\|\), \(\forall u\in W^{1,p}_{0}(\Omega )\), where \(p*=\frac{Np}{N-p}\). Furthermore, we can obtain \(\|u\|_{p}\leq |\Omega |^{\frac{p^{*}-p}{p^{*}p}}T\|u\|\) by the Hölder inequality.
\(\mathcal{A}:\overline{\Omega}\times \mathbb{R}^{N}\to \mathbb{R}\) is a continuous function with continuous derivative \(\mathbf{A}(x,\xi )=\partial _{\xi}\mathcal{A}(x,\xi )\), satisfying \(\mathbf{A}(x,u+v)\leq \bar{c}(\mathbf{A}(x,u) +\mathbf{A}(x,v))\), \(\forall u, v\in W^{1,p}_{0}(\Omega )\), for some positive constant c̄, and \(\mathcal{A}\) satisfy the following assumptions,
-
(A1)
\(\mathcal{A}(x,0)=0\), \(\mathcal{A}(x,\xi )=\mathcal{A}(x,-\xi )\) for all \(x\in \Omega \), \(\xi \in \mathbb{R}^{N}\).
-
(A2)
\(\mathcal{A}\) is strictly convex in \(\mathbb{R}^{N}\) for all \(x\in \Omega \).
-
(A3)
There exist \(a_{1},a_{2}>0\) such that
$$ \mathbf{A}(x,\xi )\cdot \xi >a_{1} \vert \xi \vert ^{p}, \qquad \bigl| \mathbf{A}(x, \xi )\bigr| \leq a_{2} \vert \xi \vert ^{p-1} $$for all \(x\in \Omega \) and \(\xi \in \mathbb{R}^{N}\).
From (A1) and (A3), one has \(a_{1}|\xi |^{p}\leq p\mathcal{A}(x,\xi )\leq a_{2}|\xi |^{p}\), see [5, Remark 2.3] for details.
Define the functional \(\mathcal{I}_{\lambda}\colon W^{1,p}_{0}(\Omega )\to \mathbb{R}\) by
where
and \(F(x,u)=\int _{0}^{u} f(x, \tau ) \,d\tau \), \(G(x,u)= \int _{0}^{u} g(x,\tau ) \,d\tau \), \(\forall (x,u)\in \Omega \times \mathbb{R}\).
We say that \(u\in W^{1,p}_{0}(\Omega )\) is a weak solution of the problem (1.1) if
The following Bonanno–Marano-type three critical points theorem is from the results contained in [3], which is the main tool used to obtain our results.
Theorem 2.1
([3, Theorem 3.6])
Let X be a reflexive real Banach space; \(\Phi :X \to \mathbb{R}\) be a sequentially weakly lower semicontinuous, coercive, and continuously Gâteaux differentiable functional whose Gâteaux derivative admits a continuous inverse on \(X^{*}\), \(\Psi :X \to \mathbb{R}\) be a sequentially weakly upper semicontinuous, continuously Gâteaux differentiable functional whose Gâteaux derivative is compact, such that
Assume that there exist \(r >0\) and \(\bar{x}\in X\), with \(r<\Phi (\bar{x})\) such that
-
(i)
\(r_{1}=\sup_{\Phi (x)\leq r}\Psi (x) < r \Psi (\bar{x})/ \Phi ( \bar{x})=r_{2}\);
-
(ii)
for each λ∈ \(\Lambda _{r}=(\frac{r}{r_{2}}, \frac{r}{r_{1}})\), the functional \(\Phi -\lambda \Psi \) is coercive.
Then, for each \(\lambda \in \Lambda _{r}\) the functional \(\Phi -\lambda \Psi \) has at least three distinct critical points in X.
Lemma 2.2
The functional \(\Phi :W^{1,p}_{0}(\Omega ) \to \mathbb{R}\) is convex, sequentially weakly lower semicontinuous, and of class \(C^{1}\) in \(W^{1,p}_{0}(\Omega )\) with
and \(\Phi ':W^{1,p}_{0}(\Omega )\to W^{-1,p'}(\Omega )\) admits a continuous inverse in \(W^{-1,p'}(\Omega )\), where \(W^{-1,p'}(\Omega )\) is the dual space of \(W^{1,p}_{0}(\Omega )\).
Proof
By Lemma 2.5 in [5], one has that \(\Phi :W^{1,p}_{0}(\Omega ) \to \mathbb{R}\) is convex, sequentially weakly lower semicontinuous, and of class \(C^{1}\) in \(W^{1,p}_{0}(\Omega )\) with
Next, we prove that \(\Phi '\) admits a continuous inverse in \(W^{-1,p'}(\Omega )\).
For any \(u \in W^{1,p}_{0}(\Omega )\setminus {\{0\}}\), one has
thus
then \(\Phi '\) is coercive thanks to \(p>1\).
For any \(u,v\in W^{1,p}_{0}(\Omega )\), in view of \(\mathbf{A}(x,u+v)\leq \bar{c}(\mathbf{A}(x,u) +\mathbf{A}(x,v))\), for some \(\bar{c}>0\), and assumption (A3), one has
thus we have that \(\Phi '\) is uniformly monotone in \(W^{1,p}_{0}(\Omega )\).
Taking into account Theorem 26.(A)d of [13], we obtain the conclusion. □
In view of f fulfilling \((\mathbf{f})\), g fulfilling \(( \mathbf{g})\), according to [5, Lemma 3.2] and [5, Lemma 4.4], we can obtain the following lemma.
Lemma 2.3
The functional Ψ is a sequentially weakly upper semicontinuous, continuously Gâteaux differentiable functional with
and \(\Psi ':W^{1,p}_{0}(\Omega )\to W^{-1,p'}(\Omega )\) is compact.
3 Main results
Noting that \(\alpha >\frac{N}{p}>1\), one has \(W^{1,p}(\Omega )\) is embedded in \(L^{\alpha '}(\Omega )\), where \(\alpha '=\frac{\alpha}{\alpha -1}\) is the conjugate of α, thus \(W^{1,p}_{0}(\Omega )\) is embedded in \(L^{\alpha '}(\Omega )\). Similarly, \(W^{1,p}_{0}(\Omega )\) is embedded in \(L^{\alpha 's}(\Omega ), 1< s\leq p\). Let \(c_{\alpha '}\) be the embedding constant of the compact embedding \(W^{1,p}(\Omega )\hookrightarrow L^{\alpha '}(\Omega )\), and \(c_{\alpha 's}\) be the embedding constant of the compact embedding \(W^{1,p}(\Omega )\hookrightarrow L^{\alpha 's}(\Omega )\), \(1< s\leq p\).
Noting that \(q\in (1, p)\), \(\beta >\frac{(N-1)}{p-1}\), one has \(1<\beta ' q<\frac{(N-1)p}{N-p}\), where \(\beta '=\frac{\beta}{\beta -1}\) is the conjugate exponent of β, so \(W^{1,p}_{0}(\Omega )\) is embedded in \(L^{\beta 'q}( \partial \Omega )\) (see [4], Theorem 2.79). Let \(c_{\beta ' q}\) be the continuous embedding constant of \(W^{1,p}(\Omega )\hookrightarrow L^{\beta 'q}(\partial \Omega )\).
Putting
for all \(x \in \Omega \), we can show that there exists \(x_{0} \in \Omega \) such that \(B(x_{0},d) \subseteq \Omega \), where
Suppose there exist two positive constants δ, r, with \(r= \frac{a_{1}}{p}(\frac{2}{d})^{p-N}\delta ^{p}(2^{N}-1)|B(0,1)|\), such that
where \(\gamma =(\frac{pr}{a_{1}})^{\frac{1}{p}}\), \(C=(\frac{N-p}{p})^{p}\).
With the above notations we present the following results.
Theorem 3.1
Assume conditions \((\mathbf{f})\), \((\mathbf{g})\), and
-
(H1)
\(F(x,\xi )\geq 0\), \(\forall (x,\xi )\in B(x_{0},d) \times [0,\delta ]\);
-
(H2)
\(\limsup_{|\xi |\to +\infty} \frac{\sup_{x \in \Omega}F(x,\xi )}{\xi ^{p}} \le \frac{a_{1}}{pc} ( \frac{M_{1}\gamma}{r}c_{\alpha '}\|b\|_{\alpha}+ \frac{M_{2}\gamma ^{s}}{rs}c_{\alpha 's}\|b\|_{\alpha})\), where \(c=|\Omega |^{\frac{p^{*}-p}{p^{*}}}T^{p}\), \(r=\frac{a_{1}}{p}( \frac{2}{d})^{p-N}\delta ^{p}(2^{N}-1)|B(0,1)|\)
hold, then for every \(\lambda \in (\check{\lambda},\hat{\lambda}) \), when \(\mu \in [0, \frac{q(rs-\lambda s \gamma M_{1}c_{\alpha '}\|b\|_{\alpha}-\lambda \gamma ^{s} M_{2}c_{\alpha 's}\|b\|_{\alpha})}{\gamma ^{q}c_{q}h_{0}s})\), where \(h_{0}= \operatorname{ess}\sup_{\Gamma _{2}}h(x) \), the problem (1.1) has at least three weak solutions.
Proof
Let \(u_{0}(x)=0\), δ be a constant, and
thus \(u_{0}, \bar{u}\in W^{1,p}_{0}(\Omega ) \), \(\Phi (u_{0})=\Psi (u_{0})=0\), and
Taking account of the following Hardy inequality (see [8, Lemma 2.1] for more details),
where \(C=(\frac{N-p}{p})^{p}\) is the optimal constant, one has
In view of the conditions (H1) and \((\mathbf{g})\), one has
Noting that \(0< b\in L^{\alpha}(\Omega )\), \(\alpha >N/p\), since \(p< N\), \(W^{1,p}(\Omega )\) is embedded in \(L^{\alpha '}(\Omega )\), where \(\alpha '=\frac{\alpha}{\alpha -1}\) is the conjugate exponent of α, so \(W^{1,p}_{0}(\Omega )\) is embedded in \(L^{\alpha '}(\Omega )\). Similarly, \(W^{1,p}_{0}(\Omega )\) is embedded in \(L^{\alpha 's}(\Omega ), 1< s\leq p\).
By the Hölder inequality, we can obtain
For every \(u \in \Phi ^{-1}(- \infty ,r]\), one has \(\Phi (u)\leq r\), and \(\|u\|\leq (\frac{pr}{a_{1}})^{\frac{1}{p}}=\gamma \). Thus,
Thus, taking account of \(\mu \in [0, \frac{q(rs-\lambda s \gamma M_{1}c_{\alpha '}\|b\|_{\alpha}-\lambda \gamma ^{s} M_{2}c_{\alpha 's}^{s}\|b\|_{\alpha})}{s\gamma ^{q}c_{\beta 'q}^{q}\|h\|_{\beta ,\partial \Omega}})\), one has
Combining (3.1), (3.3) with (3.4), one has
Therefore, thanks to (3.5) and (3.6), one has that assumption (i) of Theorem 2.1 is satisfied.
Now, we prove the coercivity of the functional \(\mathcal{I}_{\lambda ,\mu}(u)\).
In view of condition (H2), we can choose a constant θ satisfying
then, there exists a function \(k_{\theta}(x)\in L^{1}(\Omega )\) such that
Combining (3.7), (3.8) with the Hölder inequality, we have
Thus, the coercivity of \(\mathcal{I}_{\lambda ,\mu}(u)\) is obtained according to (3.7) and \(q< p\). Hence, combining Lemma 2.2 with Lemma 2.3, Theorem 2.1 ensures the conclusion. □
As special cases of Theorem 3.1, we can obtain the following results.
Theorem 3.2
Assume conditions \((\mathbf{f})\), \((\mathbf{g})\), and
- \((H_{1})\):
-
\(F(x,\xi )\geq 0\), \(\forall (x,\xi )\in B(x_{0},d) \times [0,\delta ]\);
- \((H_{2})'\):
-
\(\limsup_{|\xi |\to +\infty} \frac{\sup_{x \in \Omega}F(x,\xi )}{\xi ^{p}}=0\)
hold, then for every \(\lambda \in (\check{\lambda},\hat{\lambda}) \), when \(\mu \in [0, \frac{q(rs-\lambda s \gamma M_{1}c_{\alpha '}\|b\|_{\alpha}-\lambda \gamma ^{s} M_{2}c_{\alpha 's}\|b\|_{\alpha})}{\gamma ^{q}c_{q}h_{0}s})\), where \(h_{0}= \operatorname{ess}\sup_{\Gamma _{2}}h(x) \), the problem (1.1) has at least three weak solutions.
Proof
We only need to prove the coercivity of the functional \(\mathcal{I}_{\lambda ,\mu}(u)\).
Fix \(0\le \varepsilon \le \frac{a_{1}}{\lambda pc}\). In view of condition \((H_{2})'\), there is a function \(k_{\varepsilon}(x)\in L^{1}(\Omega )\) such that
Combining (3.9) with the Hölder inequality, we have
Thus, the coercivity of \(\mathcal{I}_{\lambda ,\mu}(u)\) is obtained according to (3.7) and \(q< p\), \(0< \varepsilon < \frac{a_{1}}{\lambda pc}\). Hence, combining Lemma 2.2 with Lemma 2.3, Theorem 2.1 ensures the conclusion. □
Suppose there exist two positive constants δ, r, with \(r= \frac{a_{1}}{p}(\frac{2}{d})^{p-N}\delta ^{p}(2^{N}-1)|B(0,1)|\), such that
where \(\gamma =(\frac{pr}{a_{1}})^{\frac{1}{p}}\), \(C=(\frac{N-p}{p})^{p}\).
Let \(c_{1}\) be the embedding constant of the compact embedding \(W^{1,p}(\Omega )\hookrightarrow L^{1}(\Omega )\); and \(c_{s}\) be the embedding constant of the compact embedding \(W^{1,p}(\Omega )\hookrightarrow L^{s}(\Omega )\), \(1< s\leq p\).
Similarly, we can obtain the following two theorems as special cases of Theorem 3.1.
Theorem 3.3
Assume the condition \((\mathbf{g})\), and
- \((H_{1})'\):
-
\(|f(u)|\leq M_{1}+M_{2}|u|^{s-1}\), \(\forall u\in \mathbb{R}\), \(1< s\le p\), \(F(\xi )\geq 0\), \(\forall \xi \in [0,\delta ]\);
- \((H_{2})''\):
-
$$ \limsup_{|\xi |\to +\infty} \frac{F(\xi )}{\xi ^{p}} \le \frac{a_{1}}{pc} \biggl(\frac{M_{1}\gamma}{r}c_{1}+ \frac{M_{2}\gamma ^{s}}{rs}c_{s}\biggr), $$
where \(c=|\Omega |^{\frac{p^{*}-p}{p^{*}}}T^{p}\), \(r=\frac{a_{1}}{p}( \frac{2}{d})^{p-N}\delta ^{p}(2^{N}-1)|B(0,1)|\)
hold, then for every \(\lambda \in (\check{\alpha},\hat{\alpha}) \), when \(\mu \in [0, \frac{q(rs-\lambda s \gamma M_{1}c_{1}-\lambda \gamma ^{s} M_{2}c_{s})}{\gamma ^{q}c_{q}h_{0}s})\), where \(h_{0}= \operatorname{ess}\sup_{\Gamma _{2}}h(x) \), the following elliptic problem
has at least three weak solutions.
Theorem 3.4
Assume the condition \((\mathbf{g})\), and
- \((H_{1})'\):
-
\(|f(u)|\leq M_{1}+M_{2}|u|^{s-1}\), \(\forall u\in \mathbb{R}\), \(1< s\le p\), \(F(\xi )\geq 0\), \(\forall \xi \in [0,\delta ]\);
- \((H_{2})'''\):
-
$$ \limsup_{|\xi |\to +\infty} \frac{F(\xi )}{\xi ^{p}}=0 $$
hold, then for every \(\lambda \in (\check{\alpha},\hat{\alpha}) \), when \(\mu \in [0, \frac{q(rs-\lambda s \gamma M_{1}c_{1}-\lambda \gamma ^{s} M_{2}c_{s})}{\gamma ^{q}c_{q}h_{0}s})\), where \(h_{0}= \operatorname{ess}\sup_{\Gamma _{2}}h(x) \), the following elliptic problem
has at least three weak solutions.
Availability of data and materials
Not applicable.
References
Afrouzi, G.A., Hadjian, A., Rădulescu, V.D.: Variational approach to fourth-order impulsive differential equations with two control parameters. Results Math. 65, 371–384 (2014)
Bonanno, G., Chinnì, A.: Existence of three solutions for a perturbed two-point boundary value problem. Appl. Math. Lett. 23, 807–811 (2010)
Bonanno, G., Marano, S.: On the structure of the critical set of non-differentiable functions with a weak compactness condition. Appl. Anal. 89, 1–10 (2010)
Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Springer, New York (2007)
Colasuonno, F., Pucci, P., Varga, C.: Multiple solutions for an eigenvalue problem involving p-Laplacian type operators. Nonlinear Anal. 75, 4496–4512 (2012)
Colorado, E., Peral, I.: Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions. J. Funct. Anal. 199, 468–507 (2003)
Garcia Azorero, J., Malchiodi, A., Montoro, L., Peral, I.: Concentration of solutions for some singularly perturbed mixed problems: asymptotics of minimal energy solutions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, 37–56 (2010)
García Azorero, P.J., Peral Alonso, I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144, 441–476 (1998)
Liu, J., Yu, W.: Two solutions to superlinear Hamiltonian systems with impulsive effects. Appl. Math. Lett. 102, 106162 (2020)
Liu, J., Yu, W.: Triple solutions for elliptic Dirichlet problems with a parameter. Results Appl. Math. 10, 100157 (2021)
Liu, J., Zhao, Z.: Multiple solutions for impulsive problems with non-autonomous perturbations. Appl. Math. Lett. 64, 143–149 (2017)
Liu, J., Zhao, Z., Zhang, T.: Multiple solutions to damped Hamiltonian systems with impulsive effects. Appl. Math. Lett. 91, 173–180 (2019)
Zeilder, E.: Nonlinear Functional Analysis and Its Applications, II/B: Nonlinear Monotone Operators. Springer, Berlin (1990)
Funding
Projects ZR2021MA070 and ZR2020MA012 supported by Shandong Provincial Natural Science Foundation.
Author information
Authors and Affiliations
Contributions
Investigation and formal analysis, Liu, J., Zhao, Z.; writing-original draft, Liu, J., Zhao, Z.; writing-review and editing, Liu, J.; All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Liu, J., Zhao, Z. Existence of triple solutions for elliptic equations driven by p-Laplacian-like operators with Hardy potential under Dirichlet–Neumann boundary conditions. Bound Value Probl 2023, 3 (2023). https://doi.org/10.1186/s13661-023-01692-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-023-01692-8
MSC
- 35J15
- 35J20
- 35J25
Keywords
- Elliptic equations
- p-Laplacian type
- Two parameters
- Hardy potential
- Mixed boundary conditions