Variational setting
In this paper, we establish a variational structure that enables us to reduce the existence of 2τ-periodic solutions of (2) to the existence of critical points of corresponding functional defined on some appropriate function space.
Assume that \(\lambda =\frac{\tau}{\pi}\), \(s=\frac{\pi}{\tau}t\). Then equation (2) is transformed to
$$\begin{aligned} \ddot{x}(t)=-\lambda ^{2}f\bigl(x(t-\pi )\bigr), \end{aligned}$$
(4)
and we seek 2π periodic solutions of (4), which, of course, correspond to the 2τ periodic solutions of (2). Define \(Ax=-\ddot{x}(t+\pi )\). Then A is self-adjoint on \(H^{1}(S^{1}, {\mathbb{R}}^{n})\) with domain \(D(A)=H^{2}(S^{1}, {\mathbb{R}}^{n})\) (see Lemma 2.2 of [23]). Let \(\sigma (A)\), \(\sigma _{d}(A)\), \(\sigma _{e}(A)\) denote, respectively, the spectrum, the discrete spectrum, and the essential spectrum of A. It is easy to calculate that
$$\begin{aligned} \sigma (A)=\sigma _{d}(A). \end{aligned}$$
(5)
For any 2π-period continuous matrix-valued function \(B_{0}(t)\), we denote \(B_{0}\) as the multiplication operator by \(B_{0}(t)\) in \(L^{2}(S^{1}, {\mathbb{R}}^{n})\). Let \(A_{B_{0}}=A-B_{0}\). By (5), we also have
$$\begin{aligned} \sigma (A_{B_{0}})=\sigma _{d}(A_{B_{0}}). \end{aligned}$$
(6)
Throughout this paper, we require \(0\notin \sigma (A_{B_{0}})\), which means Ker\((A-B_{0})=\emptyset \). In fact, if \(0\in \sigma (A_{B_{0}})\), by property (6), there exists \(\epsilon _{0}\) such that, for any \(\epsilon \in (0, \epsilon _{0})\), we have \(0\notin \sigma (A_{B_{0}+\epsilon})\), and then we can replace \(B_{0}\) by \(B_{0}+\epsilon \).
Moreover, (4) can be transformed to
$$\begin{aligned} -\ddot{x}(t+\pi )-\lambda ^{2} B_{0}(t)x(t)= \lambda ^{2}f\bigl(x(t-\pi )\bigr)- \lambda ^{2} B_{0}(t)x(t). \end{aligned}$$
(7)
This modification is crucial for the establishment of the linking structure for the problem. More precisely, in Sect. 3, we may assume that \(B_{0}=A_{0}-\epsilon \) for some ϵ small, where \(A_{0}\) is defined as in condition (\(f_{0}\)).
Let \(|A_{B_{0}}|\) be the absolute value of \(A_{B_{0}}\) and \(E_{B_{0}}=D(|A_{B_{0}}|^{\frac{1}{2}})\) be the domain of the self-adjoint operator \(|A_{B_{0}}|^{\frac{1}{2}}\), which is a Hilbert space equipped with the inner product
$$\begin{aligned} (z,w)_{B_{0}}=\bigl( \vert A_{B_{0}} \vert ^{\frac{1}{2}}z, \vert A_{B_{0}} \vert ^{\frac{1}{2}}w\bigr)_{2} \end{aligned}$$
and the induced norm \(\|z\|_{B_{0}}=(z,z)_{B_{0}}^{\frac{1}{2}}\). By the spectral properties (6), we have \(|A_{B_{0}}|^{-\frac{1}{2}}\) is a compact operator and it follows that
Lemma 1
\(E_{B_{0}}\) embeds continuously into \(H^{1}(S^{1}, {\mathbb{R}}^{n})\), and \(E_{B_{0}}\) embeds compactly into \(L^{p}(S^{1}, {\mathbb{R}}^{n})\) for all \(p\geq 2\).
Let \(\{G_{\lambda}\}_{\lambda \in {\mathbb{R}}}\) denote the spectral family of \(A_{B_{0}}\). We define the following projections:
$$\begin{aligned} P_{\beta,B_{0}}^{+}= \int _{0}^{+\infty}\,dG_{\lambda},\qquad P_{\beta,B_{0}}^{0}= \int _{-\beta}^{0}\,dG_{\lambda},\qquad P_{\beta,B_{0}}^{-}= \int _{- \infty}^{-\beta}\,dG_{\lambda}. \end{aligned}$$
Here \(\beta >0\) is large enough and \(\pm \beta \notin \sigma (A_{B_{0}}) \). This induces an orthogonal decomposition on \(E_{B_{0}}\):
$$\begin{aligned} E_{B_{0}}=E_{\beta,B_{0}}^{+}\oplus E_{\beta,B_{0}}^{0} \oplus E_{ \beta,B_{0}}^{-}, \quad\text{where } E_{\beta,B_{0}}^{\pm}=P_{\beta,B_{0}}^{ \pm }E_{B_{0}} \text{ and } E_{\beta,B_{0}}^{0}=P_{\beta,B_{0}}^{0} E_{B_{0}}. \end{aligned}$$
For any \(x\in E_{B_{0}}\), we have \(x=x^{+} + x^{0} + x^{-}\in E_{\beta,B_{0}}^{+}\oplus E_{\beta,B_{0}}^{0} \oplus E_{\beta,B_{0}}^{-}\) and \(|A_{B_{0}}|x=A_{B_{0}}(x^{+} - x^{0} - x^{-})\).
On \(E_{B_{0}}\) we define the functional
$$\begin{aligned} I_{\beta, B_{0}}(x)={}&\frac{1}{2} \bigl\Vert x^{+} \bigr\Vert _{B_{0}}^{2}-\frac{1}{2} \bigl\Vert x^{0} \bigr\Vert _{B_{0}}^{2}- \frac{1}{2} \bigl\Vert x^{-} \bigr\Vert _{B_{0}}^{2} \\ &{}-\lambda ^{2} \int _{0}^{2\pi}F\bigl(x(t)\bigr)+\frac{1}{2} \lambda ^{2}(B_{0}x,x)_{2}. \end{aligned}$$
(8)
By a standard argument as in [4, 23], the functional \(I_{\beta, B_{0}}\) is continuously differentiable on \(E_{B_{0}}\) and the existence of 2π-periodic solutions \(x(t)\) for (2) is equivalent to the existence of critical points of functional \(I_{\beta, B_{0}}(x)\).
Index theory
In this subsection, we investigate the linear second-order delay differential equations
$$\begin{aligned} \begin{aligned}&\ddot{x}(t+\pi )-\lambda ^{2}B_{0}(t)x(t)= \lambda ^{2}\bigl(B(t)-B_{0}(t)\bigr)x(t), \\ &x(t+\pi )=x(t-\pi ), \end{aligned} \end{aligned}$$
(9)
where \(B_{0}(t)\), \(B(t)\) are 2π-period continuous matrix-valued functions. Recall that we define \((A_{B_{0}}x)(t)=\ddot{x}(t+\pi )-\lambda ^{2} B_{0}(t)x(t)\) and \((Bx)(t)=B(t)x(t)\). Then (9) can be rewritten as
$$\begin{aligned} A_{B_{0}}x(t)-\lambda ^{2}(B-B_{0})x(t)=0. \end{aligned}$$
(10)
Let \(x\in E_{B_{0}}\) be a solution of (10). Set \(u=|A_{B_{0}}|^{\frac{1}{2}}x\). Then \(u\in L^{2}(S^{1}, {\mathbb{R}}^{n})\). The projections \(P_{\beta, B_{0}}^{+}\), \(P_{\beta, B_{0}}^{0}\), \(P_{\beta, B_{0}}^{-}\) defined as in Sect. 2.1 also induce a decomposition on \(L^{2}(S^{1}, {\mathbb{R}}^{N})\):
$$\begin{aligned} L^{2}\bigl(S^{1}, {\mathbb{R}}^{n} \bigr)=L_{\beta, B_{0}}^{+}\oplus L_{\beta,B_{0}}^{0} \oplus L_{\beta,B_{0}}^{-}, \end{aligned}$$
where \(L_{\beta,B_{0}}^{\pm}=P_{\beta,B_{0}}^{\pm }L^{2}(S^{1}, { \mathbb{R}}^{n})\) and \(L_{\beta,B_{0}}^{0}=P_{\beta,B_{0}}^{0} L^{2}(S^{1}, {\mathbb{R}}^{n})\). For any \(u\in L^{2}(S^{1}, {\mathbb{R}}^{n})\), we have \(u=u^{+} + u^{0} + u^{-}\in L_{\beta,B_{0}}^{+}\oplus L_{\beta,B_{0}}^{0} \oplus L_{\beta,B_{0}}^{-}\). Then (10) is equivalent to
$$\begin{aligned} u^{+}-u^{0}-u^{-}- \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}u=0,\quad u\in L^{2} \bigl(S^{1}, {\mathbb{R}}^{n}\bigr). \end{aligned}$$
(11)
Define the associated bilinear form
$$\begin{aligned} q_{\beta, B_{0},B}(u,v)={}&\frac{1}{2}\bigl(u^{+}, v^{+} \bigr)_{2}-\frac{1}{2}\bigl(u^{0}, v^{0} \bigr)_{2}-\frac{1}{2}\bigl(u^{-}, v^{-} \bigr)_{2} \\ &{}-\frac{1}{2}\bigl( \vert A_{B_{0}} \vert ^{-\frac{1}{2}} \lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}u,v\bigr)_{2} \end{aligned}$$
for any \(u, v\in L^{2}(S^{1}, {\mathbb{R}}^{n})\). From (11), it is easy to get
$$\begin{aligned} -u^{-}-P_{\beta,B_{0}}^{-} \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}u=0 \end{aligned}$$
and
$$\begin{aligned} &{-}\bigl(P_{\beta,B_{0}}^{-}+P_{\beta,B_{0}}^{-} \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}}P_{\beta,B_{0}}^{-} \bigr)u^{-} \\ &\quad=P_{\beta,B_{0}}^{-} \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\bigl(u^{+}+u^{0}\bigr). \end{aligned}$$
Since \(P_{\beta,B_{0}}^{-}|A_{B_{0}}|^{-\frac{1}{2}}=\int _{-\infty}^{- \beta}|\lambda |^{-\frac{1}{2}}\,d F_{\lambda}\), we have
$$\begin{aligned} \bigl\Vert P_{\beta,B_{0}}^{-} \vert A_{B_{0}} \vert ^{-\frac{1}{2}} \bigr\Vert \leq \frac{1}{\sqrt{\beta}}. \end{aligned}$$
(12)
Thus, by choosing \(\beta >\lambda ^{2}(\|B\|+ \|B_{0}\|) \), we have
$$\begin{aligned} \bigl\Vert P_{\beta,B_{0}}^{-} \vert A_{B_{0}} \vert ^{-\frac{1}{2}} \lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}P_{\beta,B_{0}}^{-} \bigr\Vert \leq \frac{\lambda ^{2}( \Vert B \Vert + \Vert B_{0} \Vert ) }{\beta}< 1. \end{aligned}$$
It follows that \(P_{\beta,B_{0}}^{-}+P_{\beta,B_{0}}^{-}|A_{B_{0}}|^{-\frac{1}{2}} \lambda ^{2}(B-B_{0})|A_{B_{0}}|^{-\frac{1}{2}}P_{\beta,B_{0}}^{-}\) is invertible. Let \(L_{\beta, B_{0}}^{\ast}=L_{\beta, B_{0}}^{+}\oplus L_{\beta, B_{0}}^{0}\) and define \(L_{\beta, B_{0}, B }:L_{\beta, B_{0}}^{\ast}\rightarrow L_{\beta, B_{0}}^{-}\):
$$\begin{aligned} L_{\beta, B_{0}, B }={}&{-}\bigl(P_{\beta,B_{0}}^{-}+P_{\beta,B_{0}}^{-} \vert A_{B_{0}} \vert ^{- \frac{1}{2}} \lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}}P_{\beta,B_{0}}^{-} \bigr)^{-1} \\ &{}\times P_{\beta,B_{0}}^{-} \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\bigl(u^{+}+u^{0}\bigr). \end{aligned}$$
Then it is easy to calculate that, for fixed \(u^{\ast}\in L_{\beta, B_{0}}^{\ast}\), \(L_{\beta, B_{0}, B }u^{\ast}\) is the unique solution for
$$\begin{aligned} -y-P_{\beta,B_{0}}^{-} \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\bigl(u^{\ast}+y\bigr)=0,\quad y\in L_{\beta, B_{0}}^{-} . \end{aligned}$$
Moreover, for any \(u^{\ast }\in L_{\beta, B_{0}}^{\ast}\), we define
$$\begin{aligned} \psi _{u^{\ast}}(y) = q_{\beta, B_{0}, B}\bigl(u^{\ast}+y,u^{\ast}+y \bigr),\quad \forall y\in L_{\beta, B_{0}}^{-}. \end{aligned}$$
Then \(\psi _{u^{\ast}}(y)\) is of class \(C^{2}\) on \(L_{\beta, B_{0}}^{-}\), and for any \(w\in L_{\beta, B_{0}}^{-}\),
$$\begin{aligned} D^{2} \psi _{u^{\ast}}(y) (w, w)=- \Vert w \Vert ^{2}_{2}-\bigl( \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}}w, w\bigr)_{2}. \end{aligned}$$
And it follows from (12) that \(D^{2} \psi _{u^{\ast}}(y)(w, w)<0\). Thus \(\psi _{u^{\ast}}(y)\) has unique maximum at the point \(L_{\beta, B_{0}, B }u^{\ast}\). This yields
$$\begin{aligned} q_{\beta, B_{0}, B}\bigl(u^{\ast}+y,u^{\ast}+y\bigr) \leq q_{\beta, B_{0}, B}\bigl(u^{ \ast}+L_{\beta, B_{0}, B }u^{\ast},u^{\ast}+L_{\beta, B_{0}, B }u^{ \ast} \bigr). \end{aligned}$$
(13)
Now we define a quadratic form \(\tilde{q}_{\beta, B_{0}, B}\) on \(L^{\ast}_{\beta, B_{0}}\) as
$$\begin{aligned} \tilde{q}_{\beta, B_{0}, B}\bigl(u^{\ast},v^{\ast} \bigr)={}&q_{\beta, B_{0}, B}\bigl(u^{ \ast}+L_{\beta, B_{0}, B }u^{\ast},v^{\ast}+L_{\beta, B_{0}, B }v^{ \ast} \bigr) \\ ={}&\frac{1}{2}\bigl(u^{+}, v^{+}\bigr)_{2}- \frac{1}{2}\bigl(u^{0}, v^{0}\bigr)_{2}- \frac{1}{2}\bigl(L_{\beta, B_{0}, B }u^{\ast}, L_{\beta, B_{0}, B }v^{ \ast} \bigr)_{2} \\ &{}-\bigl( \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\bigl(u^{\ast}+L_{\beta, B_{0}, B }u^{\ast} \bigr),v^{\ast}+L_{ \beta, B_{0}, B }v^{\ast}\bigr)_{2}. \end{aligned}$$
By the definition of \(L_{\beta, B_{0}, B }\), we have
$$\begin{aligned} L_{\beta, B_{0}, B }u^{\ast}=-P_{\beta,B_{0}}^{-} \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\bigl(u^{\ast}+L_{ \beta, B_{0}, B }u^{\ast} \bigr),\quad \forall u^{\ast}\in L^{\ast}_{\beta, B_{0}}, \end{aligned}$$
and for any \(u^{\ast}, v^{\ast}\in L^{\ast}_{\beta, B_{0}}\),
$$\begin{aligned} &\bigl(L_{\beta, B_{0}, B }u^{\ast}, L_{\beta, B_{0}, B }v^{\ast} \bigr)_{2} \\ &\quad=-\bigl( \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\bigl(u^{\ast}+L_{\beta, B_{0}, B }u^{\ast}\bigr), L_{\beta, B_{0}, B }v^{\ast}\bigr)_{2}. \end{aligned}$$
This yields
$$\begin{aligned} \tilde{q}_{\beta, B_{0}, B}\bigl(u^{\ast},v^{\ast} \bigr)={}&\frac{1}{2}\bigl(u^{+}, v^{+} \bigr)_{2}- \frac{1}{2}\bigl(u^{0}, v^{0} \bigr)_{2} \\ &{}-\frac{1}{2}\bigl( \vert A_{B_{0}} \vert ^{-\frac{1}{2}} \lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}u^{\ast}, v^{\ast} \bigr)_{2} \\ &{}-\frac{1}{2}\bigl( \vert A_{B_{0}} \vert ^{-\frac{1}{2}} \lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}} L_{\beta, B_{0}, B }u^{\ast}, v^{\ast} \bigr)_{2}. \end{aligned}$$
(14)
Remark 2
In the spirit, the saddle-point reduction process was developed by Amann and Zehnder [2], Chang [5], and Long [36], although technically our constructions of reduction are different.
Lemma 2
For any 2π-periodic continuous matrix-valued function B, there is a splitting
$$\begin{aligned} L_{\beta, B_{0}}^{\ast}=L_{\beta, B_{0}}^{+}(B)\oplus L_{\beta, B_{0}}^{0}(B) \oplus L_{\beta, B_{0}}^{-}(B) \end{aligned}$$
such that
(1) \(L_{\beta, B_{0}}^{+}(B)\), \(L_{\beta, B_{0}}^{0}(B)\), \(L_{\beta, B_{0}}^{-}(B)\) are \(\tilde{q}_{\beta, B_{0}, B}\)-orthogonal, and \(\tilde{q}_{\beta, B_{0}, B}\) is positive definite, negative definite on \(L_{\beta, B_{0}}^{+}(B)\) and \(L_{\beta, B_{0}}^{-}(B)\), respectively. Moreover, \(\tilde{q}_{\beta, B_{0}, B}(u^{\ast}, u^{\ast})=0\), \(\forall u^{\ast }\in L_{\beta, B_{0}}^{0}(B)\).
(2) \(L_{\beta, B_{0}}^{0}(B)\), \(L_{\beta, B_{0}}^{-}(B)\) are two finite dimensional subspaces.
Proof
Define the self-adjoint operator \(\Lambda _{\beta, B_{0}, B }\) on \(L^{\ast}_{\beta, B_{0}}\) as follows:
$$\begin{aligned} \Lambda _{\beta, B_{0}, B }u^{\ast}={}&2 P_{\beta, B_{0}}^{0}u^{\ast}+ \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}u^{\ast} \\ &{}+ \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}L_{\beta, B_{0}, B }u^{\ast}. \end{aligned}$$
Then, by (14), we have
$$\begin{aligned} \tilde{q}_{\beta, B_{0}, B}\bigl(u^{\ast},u^{\ast}\bigr)= \frac{1}{2}\bigl( (\mathrm{Id}- \Lambda _{\beta, B_{0}, B }) u^{\ast}, v^{\ast}\bigr)_{2},\quad \forall u^{ \ast}, v^{\ast} \in L^{\ast}_{\beta, B_{0}}, \end{aligned}$$
where Id denotes the identity map on \(L_{\beta, B_{0}}^{\ast}\). Recalling that \(|A_{B_{0}}|^{-\frac{1}{2}}\) is a compact operator, we have \(\Lambda _{\beta, B_{0}, B }: L_{\beta, B_{0}}^{\ast}\rightarrow L_{ \beta, B_{0}}^{\ast}\) is self-adjoint and compact. Then there is a basis \(\{ e_{j}\}\in L_{\beta, B_{0}}^{\ast}\) and a sequence \(\mu _{j}\rightarrow 0\) in \({\mathbb{R}}\) such that
$$\begin{aligned} \Lambda _{\beta, B_{0}, B } e_{j}=\mu _{j} e_{j};\quad (e_{j}, e_{i})_{2}= \delta _{i, j }. \end{aligned}$$
(15)
Thus, for any \(u^{\ast}\in L_{\beta, B_{0}}^{\ast}\), which can be expressed as \(u^{\ast}=\sum _{j=1}^{\infty }c_{j} e_{j}\), we have
$$\begin{aligned} \tilde{q}_{\beta, B_{0}, B}\bigl(u^{\ast},u^{\ast}\bigr)&= \frac{1}{2} \bigl\Vert u^{ \ast} \bigr\Vert _{2}^{2}- \frac{1}{2}\bigl(\Lambda _{\beta, B_{0}, B } u^{\ast}, u^{ \ast} \bigr)_{2} \\ &=\frac{1}{2}\sum _{j=1}^{\infty }(1-\mu _{j})c_{j}^{2}. \end{aligned}$$
Since \(\mu _{j}\rightarrow 0\), all the coefficients \((1-\mu _{j})\) are positive except a finite number. Thus our lemma follows by
$$\begin{aligned} &L_{\beta, B_{0}}^{+}(B)=\Biggl\{ \sum _{j=1}^{\infty }c_{j} e_{j} | c_{j}=0, \text{ if } 1-\mu _{j}\leq 0 \Biggr\} , \\ &L_{\beta, B_{0}}^{0}(B)=\Biggl\{ \sum _{j=1}^{\infty }c_{j} e_{j} | c_{j}=0, \text{ if } 1-\mu _{j}\neq 0 \Biggr\} , \\ &L_{\beta, B_{0}}^{-}(B)=\Biggl\{ \sum _{j=1}^{\infty }c_{j} e_{j} | c_{j}=0, \text{ if } 1-\mu _{j}\geq 0 \Biggr\} . \end{aligned}$$
□
Definition 1
For any 2τ-periodic continuous matrix-valued function B, we define
$$\begin{aligned} \nu _{\beta, B_{0}}(B)=\dim L_{\beta, B_{0}}^{0}(B);\qquad i_{ \beta, B_{0}}(B)=\dim L_{\beta, B_{0}}^{-}(B). \end{aligned}$$
We call \(i_{\beta, B_{0}}(B)\) and \(\nu _{\beta, B_{0}}(B)\) the index and nullity of B, respectively.
Lemma 3
\(\nu _{\beta, B_{0}}(B)=\dim \ker (A-B) \).
Proof
For any \(u^{\ast}\in L_{\beta, B_{0}}^{0}(B)\), we have
$$\begin{aligned} \tilde{q}_{\beta, B_{0}, B}\bigl(u^{\ast}, v^{\ast}\bigr)=0,\quad \forall v^{ \ast}\in L_{\beta, B_{0}}^{\ast}. \end{aligned}$$
This implies
$$\begin{aligned} &\bigl(P_{\beta,B_{0}}^{+}-P_{\beta,B_{0}}^{0} \bigr)u^{\ast} \\ &\quad{}-\bigl(P_{\beta,B_{0}}^{+}+P_{\beta,B_{0}}^{0}\bigr) \vert A_{B_{0}} \vert ^{- \frac{1}{2}} \lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\bigl(u^{\ast}+L_{ \beta,B_{0},B}u^{\ast} \bigr)=0. \end{aligned}$$
(16)
By the definition of \(L_{\beta,B_{0},B}\), we have
$$\begin{aligned} -L_{\beta,B_{0},B}u^{\ast}-P_{\beta,B_{0}}^{-} \vert A_{B_{0}} \vert ^{- \frac{1}{2}} \lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\bigl(u^{\ast}+L_{ \beta,B_{0},B}u^{\ast} \bigr)=0. \end{aligned}$$
(17)
Combining (16) and (17), we obtain
$$\begin{aligned} &\bigl(P_{\beta,B_{0}}^{+}-P_{\beta,B_{0}}^{0} \bigr)u^{\ast}-L_{\beta,B_{0},B}u^{ \ast} \\ &\quad{} - \vert A_{B_{0}} \vert ^{-\frac{1}{2}} \lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\bigl(u^{\ast}+L_{\beta,B_{0},B}u^{\ast} \bigr)=0. \end{aligned}$$
Let \(x=|A_{B_{0}}|^{-\frac{1}{2}}(u^{+}- u^{0}- L_{\beta,B_{0},B}u^{\ast})\), where \(u^{+}=P_{\beta, B_{0}}^{+}u^{\ast}\), \(u^{0}=P_{\beta, B_{0}}^{0}u^{\ast}\). Then \(x\in E_{B_{0}}\) and
$$\begin{aligned} Ax-Bx=0. \end{aligned}$$
Hence, \(\dim L_{\beta, B_{0}}^{0}(B)=\dim \ker (A-B)\). □
Remark 3
From Lemma 3, we observe that \(\nu _{\beta, B_{0}}(B)\) is independent of β and \(B_{0}\). Thus, we will write \(\nu (B)\) for convenience.
Recall that for a symmetric bilinear form φ defined on a Hilbert space X, its Morse index is defined as \(m^{-}(\phi )=\max \{ \dim X_{1} | X_{1}\text{ is a subspace of }X \text{ such that } \phi (x,x)<0\text{ for any }x\in X_{1}\backslash \{0\} \}\).
Lemma 4
\(i_{\beta, B_{0}}(B)\) is the Morse index of \(\tilde{q}_{\beta, B_{0},B}\).
Proof
Let \(E_{1}\subset L^{\ast}_{\beta, B_{0}}\) with \(\dim E_{1}=k\) such that
$$\begin{aligned} \tilde{q}_{\beta, B_{0},B}\bigl(u^{\ast},u^{\ast} \bigr)< 0,\quad \forall u^{ \ast}\in E_{1}\backslash \{0\}. \end{aligned}$$
Let \(\{e_{j}\}_{j=1}^{k}\) be linear independent in \(E_{1}\). We have the following decomposition:
$$\begin{aligned} &e_{j}= e_{j}^{+} + e_{j}^{0} +e_{j}^{-},\quad j=1,\ldots, k. \\ &e_{j}^{+}\in L_{\beta, B_{0}}^{+}(B),\qquad e_{j}^{0}\in L_{\beta, B_{0}}^{0}(B),\qquad e_{j}^{-}\in L_{\beta, B_{0}}^{-}(B). \end{aligned}$$
We claim that \(e_{1}^{-}, \ldots, e_{k}^{-}\) are linear independent. Arguing indirectly, we assume that there exist not all zero numbers \(\alpha _{j}\in {\mathbb{R}}\) such that
$$\begin{aligned} \sum _{j=1}^{k}\alpha _{j}e_{j}^{-}=0. \end{aligned}$$
Denote \(e=\sum _{j=1}^{k}\alpha _{j}e_{j}\). On the one hand, we have \(e\in E_{1}\) and
$$\begin{aligned} \tilde{q}_{\beta, B_{0},B}(e,e)< 0. \end{aligned}$$
On the other hand, \(e=\sum _{j=1}^{k}\alpha _{j}(e_{j}^{0}+e_{j}^{+})\in L_{\beta, B_{0}}^{0}(B) \oplus L_{\beta, B_{0}}^{+}(B)\), we have
$$\begin{aligned} \tilde{q}_{\beta, B_{0},B}(e,e)\geq 0. \end{aligned}$$
This is a contradiction. Thus, \(e_{1}^{-}, \ldots, e_{k}^{-}\) are linear independent, which implies dim\(L_{\beta, B_{0}}^{-}\geq k\) and \(i_{\beta, B_{0}}(B)\geq m^{-}(\tilde{q}_{\beta, B_{0},B})\).
In addition, by the definition of \(L_{\beta, B_{0}}^{-}\), we have
$$\begin{aligned} \tilde{q}_{\beta, B_{0},B}\bigl(u^{\ast}, u^{\ast}\bigr)< 0,\quad \forall u^{ \ast }\in L_{\beta, B_{0}}^{-} \backslash \{0\}. \end{aligned}$$
Thus, \(m^{-}(\tilde{q}_{\beta, B_{0},B})\geq \) dim\(L_{\beta, B_{0}}^{-}=i_{ \beta, B_{0}}(B)\). This completes the proof. □
For any \(B_{1}< B_{2}\), let \(B_{s}=(1-s)B_{1}+sB_{2}\), \(s\in (0,1]\), and let \(i_{\beta, B_{0}}(s)=i_{\beta, B_{0}}(B_{s})\), \(\nu (s)=\nu (B_{s})\).
Lemma 5
For any \(s_{0}\in [0,1)\), there exists \(\delta >0\) such that
$$\begin{aligned} i_{\beta, B_{0}}(s_{0})+\nu (s_{0})\leq i_{\beta, B_{0}}(s), \quad\forall s\in (s_{0}, s_{0}+\delta ). \end{aligned}$$
Proof
Let \(C_{B_{s}}=(P_{\beta, B_{0}}^{-} + P_{\beta, B_{0}}^{-} | A_{B_{0}}|^{- \frac{1}{2}} \lambda ^{2}(B_{s}-B_{0})| A_{B_{0}}|^{-\frac{1}{2}} P_{ \beta, B_{0}}^{-} )^{-1}\). By direct calculation, we have
$$\begin{aligned} C_{B_{s}}=C_{B_{s_{0}}}-(s-s_{0})C_{B_{s_{0}}}P_{\beta, B_{0}}^{-} \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\lambda ^{2}(B_{2}-B_{1}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}}P_{ \beta, B_{0}}^{-}C_{B_{s_{0}}}+o(s-s_{0}) \end{aligned}$$
and
$$\begin{aligned} &\Lambda _{\beta, B_{0}, B_{s} }-\Lambda _{\beta, B_{0}, B_{s_{0}} } \\ &\quad=- (s-s_{0}) \bigl(P_{\beta, B_{0}}^{\ast} \vert A_{B_{0}} \vert ^{-\frac{1}{2}}-P_{ \beta, B_{0}}^{\ast} \vert A_{B_{0}} \vert ^{-\frac{1}{2}}B_{s_{0}} \vert A_{B_{0}} \vert ^{- \frac{1}{2}}C_{B_{s_{0}}}P_{\beta, B_{0}}^{-} \vert A_{B_{0}} \vert ^{- \frac{1}{2}} \bigr) \\ &\qquad{}\times \lambda ^{2}(B_{2}-B_{1}) \bigl(P_{\beta, B_{0}}^{\ast} \vert A_{B_{0}} \vert ^{- \frac{1}{2}}- \vert A_{B_{0}} \vert ^{-\frac{1}{2}}C_{B_{s_{0}}} \vert A_{B_{0}} \vert ^{- \frac{1}{2}}B_{s_{0}} P_{\beta, B_{0}}^{\ast} \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\bigr)+o(s-s_{0}), \end{aligned}$$
where \(P_{\beta, B_{0}}^{\ast}=P_{\beta, B_{0}}^{+}+ P_{\beta, B_{0}}^{0}\). Thus, for any \(u^{\ast}\in L_{\beta, B_{0}}^{\ast}(B_{s_{0}})\), there exists \(\delta >0\) such that if \(0< s-s_{0}<\delta \), we have
$$\begin{aligned} \tilde{q}_{\beta, B_{0},B_{s}}\bigl(u^{\ast},u^{\ast}\bigr)< 0. \end{aligned}$$
Note that \(\dim L_{\beta, B_{0}}^{\ast}(B_{s_{0}})<+\infty \), \(L_{\beta, B_{0}}^{\ast}(B_{s_{0}})\) is compact. It is easy to deduce that there exists \(\delta _{0}\) independent of \(u^{\ast}\) such that
$$\begin{aligned} \tilde{q}_{\beta, B_{0},B_{s}}\bigl(u^{\ast},u^{\ast}\bigr)< 0,\quad u^{\ast} \in L_{\beta, B_{0}}^{\ast}(B_{s_{0}}) \end{aligned}$$
for all \(s\in (s_{0}, s_{0}+\delta )\). Thus, by Lemma 4, we have \(i_{\beta, B_{0}}(s_{0})+\nu (s_{0})\leq i_{\beta, B_{0}}(s)\). □
Let \(i_{\beta, B_{0}}(s+0)=\lim_{t\rightarrow s^{+}}i_{\beta, B_{0}}(t)\). We have
Lemma 6
\(i_{\beta, B_{0}}(s+0)=i_{\beta, B_{0}}(s)+\nu (s)\).
Proof
From Lemma 5, we have \(i_{\beta, B_{0}}(s+0)\geq i_{\beta, B_{0}}(s)+\nu (s)\). Thus, it suffices to prove \(i_{\beta, B_{0}}(s+0)\leq i_{\beta, B_{0}}(s)+\nu (s)\). Let \(i_{\beta, B_{0}}(s+0)=k\). Since \(i_{\beta, B_{0}}\) is a finite integer, there exists \(s'>s\) such that
$$\begin{aligned} i_{\beta, B_{0}}(p)=i_{\beta, B_{0}}(s+0),\qquad \nu (p)=0,\quad \forall p\in \bigl(s, s'\bigr). \end{aligned}$$
Similar to (15), for each p, there is a basis \(\{ e_{p,j}\}_{j=1}^{k}\subset L_{\beta, B_{0}}^{-}(B_{p})\) such that
$$\begin{aligned} \Lambda _{\beta, B_{0}, B_{p} }e_{p,j}=\mu _{p,j} e_{p,j};\quad (e_{p,j}, e_{p,i})_{2}=\delta _{i,j}. \end{aligned}$$
(18)
Here, \(1-\mu _{p,j}<0\). Since \(\Lambda _{\beta, B_{0}, B_{p} }\) is bounded, we obtain that \(\mu _{p,j}=(\Lambda _{\beta, B_{0}, B_{p} }e_{p,j},e_{p,j})_{2}\) is bounded. Then, for any j, there exists \(\{p_{l}\}_{l}\subseteq (s,s')\) with \(p_{l}\rightarrow s+0\) such that
$$\begin{aligned} \mu _{p_{l},j}\rightarrow \mu _{j}, \qquad e_{p_{l},j} \rightharpoonup e_{j} \quad\text{in }L^{2}\bigl(S^{1}, {\mathbb{R}}^{n}\bigr) \text{ as }l\rightarrow \infty. \end{aligned}$$
Recall that \(1-\mu _{p_{l},j}<0\). We have \(\{\frac{1}{\mu _{p_{l},j}}\}\) is bounded. Taking the limit in (18), we have
$$\begin{aligned} 1-\mu _{j}\leq 0, \quad\Lambda _{\beta, B_{0}, B_{s} }e_{j}=\mu _{j}e_{j}, \quad\forall j=1,2,\ldots,k. \end{aligned}$$
Moreover, for all \(i, j=1,2,\ldots,k\),
$$\begin{aligned} e_{p_{l}, j}=\frac{1}{\mu _{p_{l},j}}\Lambda _{\beta, B_{0}, B_{p_{l}} }e_{p_{l}, j} \rightarrow \frac{1}{\mu _{j}}\Lambda _{\beta, B_{0}, B_{s} }e_{ j} = e_{ j} \quad\text{and}\quad (e_{j}, e_{i})_{2}= \delta _{i,j}. \end{aligned}$$
This means, by Definition 1, that \(i_{\beta, B_{0}}(s)+\nu (s)\geq k=i_{\beta, B_{0}}(s+0)\). This completes the proof. □
By Lemma 5 and Lemma 6, we conclude that the index function \(i_{\beta, B_{0}}(s)\) is integer-valued and nondecreasing on \([0, 1)\). Its value at any point s must be equal to the sum of the jumps it incurred in \([0, 1)\). Hence,
Lemma 7
For any \(B_{1}< B_{2}\), we have
$$\begin{aligned} i_{\beta, B_{0}}(B_{2})-i_{\beta,B_{0}}(B_{1})=\sum _{s\in [0,1)} \nu \bigl(B_{1}+s(B_{2}-B_{1}) \bigr). \end{aligned}$$
By Lemma 7, we observe that the difference between \(i_{\beta, B_{0}}(B_{1})\) and \(i_{\beta, B_{0}}(B_{2})\) is independent of β and \(B_{0}\). We define
Definition 2
For any 2π periodic continuous matrix-valued functions \(B_{1}\) and \(B_{2}\) with \(B_{1}< B_{2}\), we define
$$\begin{aligned} I(B_{1}, B_{2})=\sum_{s\in [0,1)}\nu \bigl(B_{1}+s(B_{2}-B_{1})\bigr), \end{aligned}$$
and for any \(B_{1}\), \(B_{2}\) we define
$$\begin{aligned} I(B_{1}, B_{2})=I(B_{1}, K\mathrm{id})-I(B_{2}, K\mathrm{id}), \end{aligned}$$
where K is a constant and id is the identity map on \(L_{B_{0}}^{\ast}\), satisfying \(K\mathrm{id}>B_{1}\) and \(K\mathrm{id}>B_{2}\). We call \(I(B_{1}, B_{2})\) the relative Morse index between \(B_{1}\) and \(B_{2}\).
Remark 4
If we choose \(k_{1}\), \(k_{2}\) such that \(k_{1}\mathrm{id}\), \(k_{2}\mathrm{id}>B_{1}\) and \(B_{2}\), we have
$$\begin{aligned} I(B_{2}, k_{1}\mathrm{id})-I(B_{1}, k_{1}\mathrm{id})=I(B_{2}, k_{2}\mathrm{id})-I(B_{1}, k_{2}\mathrm{id}). \end{aligned}$$
Thus, the relative Morse index \(I(B_{1}, B_{2})\) depends only on \(B_{1}\), \(B_{2}\) and the operator A and is well defined.
Lemma 8
If \(\nu (B)=0\) for some β large enough, then \(( \tilde{q}_{\beta, B_{0}, B}(u^{\ast},u^{\ast}))^{\frac{1}{2}}\) and \((-\tilde{q}_{\beta,B_{0},B}(u^{\ast},u^{\ast}))^{\frac{1}{2}}\) are equivalent norms on \(L^{+}_{\beta, B_{0}}(B)\) and \(L^{-}_{\beta, B_{0}}(B)\), respectively.
Proof
It is sufficient to prove that, for sufficiently large β, there exists \(\delta >0\) independent of β such that
$$\begin{aligned} (1-\delta, 1+\delta ) \cap \sigma (\Lambda _{\beta,B_{0}, B})= \emptyset. \end{aligned}$$
Arguing indirectly, there exist \(\beta _{k}\rightarrow \infty \), \(\mu _{k}\rightarrow 1\) such that
$$\begin{aligned} \Lambda _{\beta _{k}, B_{0}, B}e_{k}^{\ast}=\mu _{k} e_{k}^{\ast}, \end{aligned}$$
where \(e_{k}^{\ast}\in L^{\ast}_{\beta _{k}, B_{0}}\) with \(\| e_{k}^{\ast}\|_{2}=1\). This yields
$$\begin{aligned} &\bigl(2P_{\beta _{k}, B_{0}}^{0}+ \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}} \\ &\quad{}+ \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}L_{\beta _{k}, B_{0}, B} \bigr)e_{k}^{\ast}=\mu _{k} e_{k}^{ \ast}. \end{aligned}$$
(19)
Assume that \(e_{k}^{\ast}=e_{k}^{+}+e_{k}^{0} \in L^{+}_{\beta _{k}, B_{0}}(B) \oplus L^{0}_{\beta _{k}, B_{0}}(B)\). Then, up to a subsequence,
$$\begin{aligned} e_{k}^{\ast}\rightharpoonup e^{\ast},\qquad e_{k}^{+}\rightharpoonup e^{+},\qquad e_{k}^{-}\rightharpoonup e^{-}. \end{aligned}$$
From (19) we have
$$\begin{aligned} \mu _{k} e_{k}^{+}={}&\bigl(P_{\beta _{k}, B_{0}}^{+} \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}} \\ &{}+ P_{\beta _{k}, B_{0}}^{+} \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}}L_{\beta _{k}, B_{0}, B}\bigr)e_{k}^{\ast} \end{aligned}$$
and
$$\begin{aligned} (\mu _{k}-2) e_{k}^{0}={}&\bigl(P_{\beta _{k}, B_{0}}^{0} \vert A_{B_{0}} \vert ^{- \frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}} \\ &{}+ P_{\beta _{k}, B_{0}}^{0} \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{-\frac{1}{2}}L_{\beta _{k}, B_{0}, B}\bigr)e_{k}^{\ast}. \end{aligned}$$
Recall that \(|A_{B_{0}}|^{-\frac{1}{2}}\) is compact and \(\|L_{\beta _{k}, B_{0}, B}\|\rightarrow 0\) as \(\beta _{k}\rightarrow \infty \). Taking the limit as \(k\rightarrow \infty \), we have
$$\begin{aligned} &e^{+}=P^{+}_{B_{0}} \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}e^{\ast}, \\ &e^{0}=P^{-}_{B_{0}} \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}e^{\ast}, \end{aligned}$$
and
$$\begin{aligned} e^{\ast}= \vert A_{B_{0}} \vert ^{-\frac{1}{2}}\lambda ^{2}(B-B_{0}) \vert A_{B_{0}} \vert ^{- \frac{1}{2}}e^{\ast}. \end{aligned}$$
This yields
$$\begin{aligned} \bigl(A-\lambda ^{2} B\bigr)e^{\ast}=0. \end{aligned}$$
This is a contradiction to \(\nu (B)=0\). □
Note that, for any \(x\in E_{B_{0}}=D(|A_{B_{0}}|^{\frac{1}{2}})\), we have \(|A_{B_{0}}|^{\frac{1}{2}}x\in L^{2}(S^{1}, {\mathbb{R}}^{n})\). Thus \(L^{2}(S^{1}, {\mathbb{R}}^{n})\) and \(E_{B_{0}}\) are isomorphic. Define \(E_{\beta,B_{0}}^{\ast}=E_{\beta,B_{0}}^{+} \oplus E_{\beta,B_{0}}^{0}\) and \(\tilde{L}_{\beta, B_{0}, B}:E_{\beta,B_{0}}^{\ast }\rightarrow E_{ \beta,B_{0}}^{-}\)
$$\begin{aligned} \tilde{L}_{\beta, B_{0}, B}x^{\ast}= \vert A_{B_{0}} \vert ^{-\frac{1}{2}}L_{ \beta, B_{0}, B} \vert A_{B_{0}} \vert ^{\frac{1}{2}}x^{\ast}. \end{aligned}$$
Definition 3
For any \(x, y\in E_{B_{0}}\) and \(x^{\ast}=P^{\ast}_{\beta, B_{0}}x\), \(y^{\ast}=P^{\ast}_{\beta, B_{0}}y\), we define
-
\(Q_{\beta, B_{0}, B}(x,y)=q_{\beta, B_{0}, B}(|A_{B_{0}}|^{ \frac{1}{2}}x,|A_{\epsilon}|^{\frac{1}{2}}x) = \frac{1}{2}(x^{+}, y^{+})_{B_{0}} -\frac{1}{2}(x^{0}, y^{0})_{B_{0}} - \frac{1}{2}(x^{-}, y^{-})_{B_{0}} - \frac{1}{2}(\lambda ^{2}(B-B_{0}) x,y)_{2} \).
-
For the reduced functional, we define
$$\begin{aligned} \tilde{Q}_{\beta, B_{0}, B}\bigl(x^{\ast}, y^{\ast}\bigr) ={}&\tilde{q}_{\beta, B_{0}, B}\bigl( \vert A_{B_{0}} \vert ^{\frac{1}{2}}x^{\ast}, \vert A_{B_{0}} \vert ^{\frac{1}{2}}x^{ \ast}\bigr) \\ ={}& \frac{1}{2}\bigl(x^{+}, y^{+} \bigr)_{B_{0}} - \frac{1}{2}\bigl(x^{0}, y^{0} \bigr)_{B_{0}} \\ &{}-\frac{1}{2}\bigl(\lambda ^{2}(B-B_{0}) x^{\ast},y^{\ast}\bigr)_{2} - \frac{1}{2}\bigl( \lambda ^{2}(B-B_{0})\tilde{L}_{\beta, B_{0}, B} x^{\ast},y^{ \ast}\bigr)_{2}. \end{aligned}$$
(20)
Also, by (13), for any \(x^{\ast}\in E_{\beta, B_{0}}^{\ast}\), we have
$$\begin{aligned} Q_{\beta, B_{0}, B}\bigl(x^{\ast }+y, x^{\ast }+y \bigr) \leq \tilde{Q}_{\beta, B_{0}, B}\bigl(x^{\ast}, x^{\ast}\bigr)\quad \text{for any } y\in E_{\beta, B_{0}}^{-}. \end{aligned}$$
(21)
Applying Lemma 2, Lemma 7, and Lemma 8 to \(E_{B_{0}}^{\ast}\) and \(\tilde{Q}_{\beta,B}\), we conclude
Lemma 9
(1) The \(E_{B_{0}}^{\ast}\) has the following decomposition:
$$\begin{aligned} E_{B_{0}}^{\ast}=E^{+}_{\beta, B_{0}}(B) \oplus E^{0}_{\beta, B_{0}}(B) \oplus E^{-}_{\beta, B_{0}}(B) \end{aligned}$$
such that \(\tilde{Q}_{\beta,B}\) is positive definite, zero, and negative definite on \(E^{+}_{\beta, B_{0}}(B)\), \(E^{0}_{\beta, B_{0}}(B)\), and \(E^{-}_{\beta, B_{0}}(B)\), respectively. Furthermore, \(E^{0}_{\beta, B_{0}}(B)\) and \(E^{-}_{\beta, B_{0}}(B)\) are finitely dimensional with
$$\begin{aligned} \nu (B)=\operatorname{dim } E^{0}_{\beta, B_{0}}(B),\qquad i_{\beta, B_{0}}(B)= \operatorname{dim } E^{-}_{\beta, B_{0}}(B). \end{aligned}$$
(2) For any \(x^{\ast}\in E_{\beta, B_{0}}^{\ast}\), \(({\bar{Q}}_{\beta,B}(x^{\ast},x^{\ast}))^{\frac{1}{2}}\) and \((-{\bar{Q}}_{\beta,B}(x^{\ast},x^{\ast}))^{\frac{1}{2}}\) are equivalent norms on \(E^{+}_{\beta, B_{0}}(B)\) and \(E^{-}_{\beta, B_{0}}(B)\).
(3) There exists \(\epsilon _{0}>0\) such that, for any \(\epsilon \in (0, \epsilon _{0}]\), we have
$$\begin{aligned} &\nu (B+\epsilon )=0=\nu (B-\epsilon ), \\ &i_{\beta, B_{0}}(B-\epsilon )=i_{\beta, B_{0}}(B) \\ &i_{\beta, B_{0}}(B+\epsilon )=i_{\beta, B_{0}}(B)+\nu (B). \end{aligned}$$
Proof
(1) and (2) of Lemma 9 come from Lemma 2 and Lemma 8 directly. By Lemma 7, (3) follows by the fact that the index function and the relative Morse index are all integer-valued. □
Critical point theorem
To prove Theorem 1 and Theorem 2, we use the following critical point theorems.
Let E be a real Hilbert space with \(E=X\oplus Y\). A sequence \((z_{n})\subset E\) is said to be a \((PS)_{c}\)-sequence if \(\Phi (z_{n})\rightarrow c\) and \(\Phi '(z_{n})\rightarrow 0\). Φ is said to satisfy the \((PS)_{c}\)-condition if any \((PS)_{c}\)-sequence has a convergent subsequence.
Theorem 3
([14, Theorem 2.5])
Let \(e\in Y \backslash \{0\}\) and \(\Omega =\{u=se+v: \|u\|< R, s>0, v\in X \}\). Suppose that
\((I_{1})\) \(\Phi \in C^{1}(E, {\mathbb{R}})\) satisfies the \((PS)_{c}\)-condition for any \(c\in {\mathbb{R}}\);
\((I_{2})\) there is \(r\in (0, R)\) such that \(\rho:=\inf \Phi (X\cap \partial B_{r})>\omega:=\sup \Phi ( \partial \Omega )\), where ∂Ω refers to the boundary of Ω relative to span\(\{e\}\oplus X\), and \(B_{r}=\{u\in E: \|u\|< r \}\).
Then Φ has a critical value \(c\geq \rho \) with
$$\begin{aligned} c=\inf_{h\in \Gamma}\sup_{u\in \Omega} \Phi \bigl(h(u) \bigr), \end{aligned}$$
where
$$\begin{aligned} \Gamma =\bigl\{ h\in C(E,E): h|_{\partial \Omega}=\mathrm{id}, \Phi \bigl(h(u)\bigr)\leq \Phi (u) \textit{ for } u\in \bar{\Omega} \bigr\} . \end{aligned}$$
Theorem 4
([14, Theorem 2.8])
Assume that ϕ is even and satisfies \((\Phi _{1})\). If
\((I_{3})\) there exists \(r>0\) with \(\inf \Phi (S_{r}Y) >\Phi (0)=0\), where \(S_{r}=\partial B_{r}\);
\((I_{4})\) there exists a finite dimensional subspace \(Y_{0}\subset Y\) and \(R>r\) such that, for \(E_{\ast}=X\oplus Y_{0}\), \(M_{\ast}=\sup \Phi (E_{\ast})<+\infty \) and \(\sigma:=\sup \Phi (E_{\ast}\backslash B_{R})<\rho \),
then Φ possesses at least m distinct pairs of critical points, where \(m=\dim Y_{0}\).
Remark 5
(1) By using the abstract critical point theorems, we do not need to do the saddle point reduction procedure for the variational function \(I_{\beta, B_{0}}\). Correspondingly, the nonlinearity f does not need to be \(C^{1}\). For this kind of critical point theorems, we also refer to [3, 13].
(2) Recall that, in this paper, we only consider the nonresonance case (\(\nu (A_{\infty})=0\)). The PS-condition is sufficient to prove our theorems. Thus we use the PS-condition instead of the Cerami condition in the theorems.